O T T M KA **COTORPACINGCHAR** 

## Д.С.Волосов

# ФОТОГРАФИЧЕСНАЯ ОПТИКА

L.C.BORGCOB

## Д.С.Волосов

# ФОТОГРАФИЧЕСКАЯ ОПТИКА

(Теория, основы проектирования, оптические характеристики)

Издание 2, исправленное

ДОПУЩЕНО ГЛАВНЫМ УПРАВЛЕНИЕМ КАДРОВ И УЧЕБНЫХ ЗАВЕДЕНИЙ ГОСКИНО СССР В КАЧЕСТВЕ УЧЕБНОГО ПОСОБИЯ ДЛЯ СТУДЕНТОВ КИНОВУЗОВ

> Москва «Искусство» 1978



#### Волосов Д. С.

B 68

Фотографическая оптика: (Теория, основы проектирования, оптич. характеристики). Учеб-пособие для киновузов. — 2-е изд. — М.: Искусство, 1978. — 543 с.

В книге дается анализ технического уровня современной фотографической и проекционной оптики, определяются возможные пути ее развития и перспективы. В книге также обобщены результаты исследований и разработок, выполненных ее автором — лауреатом Ленинской и Государственной премий СССР, заслуженным деятелем науки и техники РСФСР, доктором технических наук профессором Волосовым Д. С. и его сотрудниками. Книга является учебным пособием по курсу прикладной оптики. Она содержит также главы монографического характера, предназначенные для научных работников.

 $B \frac{32302-167}{025(01)-78} 139-78$ 

ББК 37.91 77

Жене и другу — Э. Г. Волосовой

Весьма быстрое распространение первого издания книги явилось основанием для ее переиздания в качестве пособия по прикладной оптике со специализированным уклоном в область оптики фотографической. Отдельные главы книги носят монографический характер, что, по-видимому, также способствовало расширению круга ее читателей.

В отечественной литературе отсутствуют монографии по фотографической и проекционной оптике для различных приемников изображений. Книга в некоторой мере восполняет этот пробел в качестве пособия как для студентов и аспирантов, так и для научных работников и инженеров, занимающихся проектированием, разработкой и применением объективов различного назначения в оптико-механической, физико-технической, инженерно-фотографической и других областях техники.

Второе издание представилось возможным дополнить, к сожалению, лишь весьма краткими сведениями и вставками: о новом типе аберраций, исследованных автором — термохроматических аберрациях, влияющих на хроматизм, в частности апохроматизм оптических систем (глава II); схемой определения рабочего диапазона пространственных частот, отображаемых оптико-фотографической системой на основе частотных характеристик ее звеньев — от объекта до приемника изображений (глава V); некоторыми характеристиками разработанных за последние годы объективов (глава V); краткими сведениями о дальнейшем развитии метода автоматизированной коррекции на ЭВМ аберраций оптических систем, основанного на алгоритмах, использующих различные критерии качества коррекции, в частности минимизацию волновых аберраций, сопутствуемую определением монохроматических и полихроматических частотно-контрастных характеристик систем в рабочем диапазоне пространственных частот (глава IX).

В книге обобщены некоторые результаты исследований и разработок, выполненных автором и его сотрудниками в Государственном оптическом институте имени С. И. Вавилова (ГОИ) и Ленинградском институте киноинженеров (ЛИКИ). Повседневное содружество с промышленностью позволило доводить почти все теоретические замыслы и оптические разработки до конкретных результатов и промышленного внедрения; эти новые разработки защищены свыше ста авторскими свидетельствами.

В результате творческих усилий оптиков и математиков, физиков и фототехников, конструкторов и технологов отечественное объективостроение за последние три десятилетия развилось и достигло достаточно высокого технического уровня.

В этом большая и общепризнанная заслуга коллектива Государственного оптического института имени С. И. Вавилова. Определенный вклад в развитие отечественной кинооптики внесен кафедрой физики и оптики и отраслевой лабораторией кинооптики Ленинградского института киноинженеров. ЧАСТЬ ПЕРВАЯ

# Основные оптические свойства объективов

Объективом назовем оптическую систему, образующую проективное изображение плоских или протяженных предметов на плоской (иногда искривленной) поверхности приемника: фотографическом слое, фотокатоде телевизионной трубки или электронно-оптического преобразователя и т. п.

Оптические системы приборов как визуальных, предназначенных для совместной работы с глазом наблюдателя (микроскопы, зрительные трубы), так и объективных, предназначенных для работы с различными приемниками оптических изображений или световых сигналов, содержат объектив, оптические характеристики которого зависят от назначения и условий работы оптического прибора.

Развитие современной техники автоматического наблюдения, контроля и фиксации изображений или световых сигналов имеет тенденцию автоматизировать оптические приборы, заставив их работать без участия глаза человека. В подобных приборах решающим оптическим элементом подчас оказывается объектив. Тем большее значение приобретатают проблемы создания и совершенствования объективов различного назначения. Объективостроение становится одним из центральных разделов прикладной оптики.

Трудности разработки современных высококачественных объективов определяются прежде всего тем, что, в отличие от некоторых других классов оптических систем, объектив обычно корригируется в отношении всех аберраций. Корригируются аберрации, определяющие качество оптического изображения в центральной области поля, сферическая и хроматическая, сферохроматическая и вторичный спектр, аберрация комы; аберрации, влияющие на качество изображения в пределах всего поля зрения, — астигматизм и кривизна поверхности изображения, монохроматические и хроматические аберрации широких наклонных пучков лучей, расположенных как в меридиональном, так и во внемеридиональном сечениях. Решение последней задачи, требующей выполнения большого объема вычислений, оказалось особо эффективным и возможным благодаря применению электронных быстродействующих цифровых вычислительных машин (ЭВМ). Предположим, что объектив является идеальным, т. е. безаберрационным. Даже в этом случае изображения объективом в плоскости приемника различных частей пространства предметов приводят не только к некоторой неустранимой нерезкости изображений предметов, расположенных на различных расстояниях, но и к специфическим остаточным искажениям изображений, являющимся причиной неполного соответствия впечатлений, получаемых от рассмотрения изображений, образуемых объективом, и непосредственного визуального наблюдения тех же предметов в натуре.

Объектив образует на плоском светочувствительном слое приемника обычно уменьшенное перспективное изображение части пространства, в котором расположены объекты разных размеров и на различных расстояниях. Из возможных способов изображения пространства объектив дает, по-видимому, наиболее простое и наглядное решение он образует перспективное изображение пространства. При этом характерно уменьшение масштаба изображения по мере увеличения расстояния до предметов. Как известно, о размерах предметов мы судим по тому углу, под которым они видны: предмет виден под большим углом, когда он находится вблизи, и под малым углом — при значительном удалении.

Чтобы по плоскому перспективному изображению получить правильное представление об изображаемом пространстве, необходимо рассматривать рисунок из той точки, в которой был расположен при съемке центр выходного зрачка объектива: в этом случае угловые размеры всех деталей изображения будут такими же, какими они были при непосредственном наблюдении пространства предметов из так называемого центра проекции — точки, в которой при съемке располагался центр входного зрачка объектива. Если же изображение с негатива, как это часто имеет место в малоформатной фотографии, печатается с увеличением, то расстояние до рисунка при его наблюдении должно быть увеличено соответственно кратности увеличения негатива при печати. В противном случае будет некоторое перспективное искажение изображаемого пространства, т. е. не вполне правильное восприятие пространственных соотношений между отдельными частями изображаемого пространства.

Нетрудно сообразить, что при заданном положении центра проекции каждому предмету соответствует определенная перспектива, однако одной и той же перспективе может соответствовать не один, а несколько удаленных предметов, различающихся формами и размерами. Следовательно, правильное представление о соотношении видимых форм, размеров и взаимном расположении отдельных частей изображенного пространства можно получить при рассмотрении плоского перспективного изображения не только из центра перспективы, но если при этом известен хотя бы один из изображенных предметов; в последнем случае представляется возможным опознать истинные размеры изображенного.

#### **ГЛАВА І**

### СВОЙСТВА ИДЕАЛЬНОГО ОБЪЕКТИВА

Рассмотрим основные оптические и фотометрические свойства идеального объектива и особенности образования им перспективного изображения.

### § 1. ОБЛАСТЬ ПАРАКСИАЛЬНОЙ ОПТИКИ

Теория оптических приборов в основном построена на законах геометрической (лучевой) оптики. Однако отдельные вопросы могут быть правильно объяснены только на основе физической (волновой) оптики; к ним относятся вопросы, связанные с явлениями интерференции и дифракции света, с поглощением света в прозрачных средах и т. д.

Задача геометрической оптики в узком смысле заключается в указании простейших способов определения хода лучей световых пучков через оптическую систему и путей расчета и проектирования новых оптических систем, удовлетворяющих поставленные заранее требования; в последнем — практическое значение этой отрасли прикладной физики.

Положения и следствия геометрической оптики основываются на известных теоремах геометрии и на пяти экспериментально установленных физических законах. Последние исходят из понятия светового луча и касаются законов его распространения.

В геометрической оптике световым лучом иногда называют линию, вдоль которой распространяется световая энергия. Однако если ввести такое представление, то объемная плотность этой энергии окажется бесконечно большой и световой луч в таком понимании в действительности существовать не может.

Процесс переноса световой энергии протекает в пространстве, которое назовем световым полем. Физический световой луч в световом поле имеет поперечные размеры — является некоторой световой трубкой. Под световой трубкой будем понимать часть светового поля, ограниченного боковой линейчатой поверхностью и бесконечно малыми поперечными сечениями  $dS_1$  и  $dS_2$  в любом месте трубки, образованной лучами, соединяющими каждую точку сечения  $dS_1$  с каждой точкой сечения  $dS_2$  (рис. I, 1). Элементарными сечениями  $dS_1$  и  $dS_2$  могут быть, в частности, малые отверстия в экранах; наконец, элемент  $dS_1$  может принадлежать некоторой излучающей поверхности, а элемент  $dS_2$  — поверхности приемника радиации, и наоборот. Световая трубка обладает прежде всего тем свойством, что ни один из построенных таким образом лучей не выходит за пределы трубки, ограниченной линейчатой поверхностью.



Рис. I, 1. Элементарная световая трубка

Это свойство трубки в оптически однородной среде описывается следующим инвариантом:

$$dS_1 d\Omega_1 \cos i_1 = dS_2 d\Omega_2 \cos i_2, \tag{I,1}$$

т. е. произведение площади нормального сечения световой трубки  $dS \cos i$  и элементарного телесного угла  $d\Omega$ , имеющего вершину в точке этого сечения, остается инвариантным для любого сечения световой трубки.

Это выражение можно получить из рис. I, 1, обратив внимание, что

$$d\Omega_1 = \frac{dS_2 \cos i_2}{R^2}; \quad d\Omega_2 = \frac{dS_1 \cos i_1}{R^2}, \quad (I, I')$$

где R — расстояние между точками  $O_1$  и  $O_2$ .

Если трубка имеет исчезающе малые поперечные размеры  $dS_1$  и  $dS_2$  по сравнению с длиной, то она и представляет собой физический световой луч. Ось  $O_1O_2$  такой световой трубки представит световой луч в понимании геометрической оптики.

Основные законы геометрической оптики. Всякое светящееся тело является источником световой энергии. Если размеры излучающего тела малы по сравнению с теми расстояниями, на которых изучается действие излучаемой этим телом энергии, то его можно принять за светящуюся точку. Направление, по которому распространяется световая энергия от источника, определяется (построенной на нем) световой трубкой, осью которой является световой луч.

Опыт показывает, что в однородной прозрачной среде световые лучи распространяются прямолинейно; это первый закон геометрической оптики — закон прямолинейного распространения света. Этот закон верен лишь в известных границах. Например, он оказывается неприменимым к случаям прохождения света через очень малые отверстия, когда начинают проявляться волновые свойства света и возникают дифракционные явления. Дифракционные явления приводят к тем меньшим отклонениям от закона прямолинейности, чем короче длина  $\lambda$ световой волны. Поэтому лучевую (геометрическую) оптику можно рассматривать как предельный случай оптики волновой — при длинах волн, близких нулю,  $\lambda \rightarrow 0$ .

Пучок световых лучей, испускаемых светящейся точкой или сходящихся в одной точке, называется гомоцентрическим. Если пучки лучей, исходящие из точки A (рис. I, 2), после прохождения через оптический прибор снова сходятся в точке A', то последняя называется изо-



Рис. I, 2. Действительные и мнимые точки предметов и их изображения

бражением точки A. Это изображение действительное, если в точке A' имеет место действительное пересечение лучей; точка предмета или изображения называется мнимой, если в ней пересекаются не сами лучи, а лишь линии их продолжения.

Второй закон геометрической оптики — закон независимого распространения лучей — утверждает, что световые лучи распространяются независимо друг от друга так, как будто других лучей, кроме рассматриваемых, не существует. Например, устанавливая непрозрачный экран P (рис. I, 3) на пути пучка световых лучей, мы исключаем (экранируем) из состава пучка некоторую часть его. По свойству независимости лучей мы должны считать, что действие лучей, оставшихся незаэкранированными, от этого не изменится. Предполагается, что лучи не влияют друг на друга и распространяются так, как если бы других лучей и не существовало. Между тем из волновой оптики известно, что при определенных условиях наблюдаются сложные явления интерференции, при которых взаимодействие световых лучей сопровождается ослаблением или, наоборот, усилением действия их во многих точках пространства.

Третий закон геометрической оптики — закон отражения света — описывает явление, наблюдающееся при падении луча на границу раздела двух сред: падающий луч, отраженный луч и перпендикуляр к отражающей поверхности (рис. I, 4) лежат в одной плоскости, а угол падения *i* равен углу отражения *i* по абсолютной величине и отличается лишь знаком: i = -i.

В оптике установлено правило знаков для углов: углы отсчитываются от какой-нибудь определенной оси, например от нормали к поверхности раздела двух сред или от оптической оси (см. ниже); угол счита-

ется положительным, если его можно образовать вращением прямой линии от указанной оси в направлении, совпадающем с направлением движения часовой стрелки, и отрицательным — в противоположном случае.

На той же границе, если среды / и // прозрачные (см. рис. 1, 4), имеет место явление преломления лучей, описываемое четвертым законом геометрической оптики: падающий луч, преломленный луч и перпендикуляр к преломляющей поверхности лежат в одной плоскости,



Рис. I, 3. Независимое распространеие лучей



Рис. I, 4. Отражение и преломнение луча

а отношение синуса угла падения *i* к синусу угла преломления *i'* величина постоянная, равная обратному отношению показателей преломления *n* и *n'* этих сред:

$$\frac{\sin i}{\sin i'} = \frac{n'}{n} \,. \tag{I, 2}$$

Явления отражения и преломления света связаны со скоростью распространения световых волн в различных средах. С предельно большой скоростью ( $c = 3 \cdot 10^{10} \frac{cm}{ce\kappa}$ ) свет распространяется в вакууме. Отношение скорости распространения световых волн в вакууме *с* к скорости их распространения в некоторой среде *v* называется абсолютным показателем преломления данной среды:

$$n = \frac{c}{v}$$

Преломление света в средах будет тем сильнее, чем больше разнятся в них скорости распространения v и v' и, следовательно, соответствующие показатели преломления  $n = \frac{c}{v}$  и  $n' = \frac{c}{v'}$ .

Закон преломления (1, 2) удобнее писать в более симметричном виде, имеющем форму инварианта:

$$n\sin i = n'\sin i'. \tag{I.2'}$$

Из закона преломления (I, 2) следует, что если n > n', т. е. если луч преломляется из среды с бо́льшим показателем преломления, то преломленный луч удаляется от нормали (i' > i). При некоторой вели-

чине угла падения  $i_m$  угол преломления достигает  $i' = 90^\circ$ , так что преломленный луч начинает распространяться вдоль границы раздела двух сред. При дальнейшем возрастании угла падения ( $i > i_m$ ) наблюдаем явление полного отражения светового луча в ту среду, из которой он распространялся, — явление полного внутреннего отражения. Величина угла падения  $i_m$  называется предельным углом полного внутреннего отражения:

$$\sin i_m = \frac{n'}{n} ,$$

что, очевидно, возможно только при n > n'.

Отражение света можно рассматривать как частный случай преломления, поскольку отраженная от поверхности волна распространяется в той же среде, что и падающая; если принять при этом, что знак скорости изменяется и, следовательно, n' = -n, то из (1, 2') получим:

$$\sin i' = -\sin i.$$

Это позволит нам в дальнейшем формулы, выведенные для случая преломления лучей, преобразовывать к случаю отражения, положив в них

$$n' = -n. \tag{I, 2''}$$

Пятый закон геометрической оптики — закон обратимости хода луче й: путь светового луча не изменяется при изменении направления его распространения на прямо противоположное. Например, луч падающий и луч преломленный (см. рис. 1, 4) могут «поменяться местами»: луч, падающий в направлении *RO*, преломится в направлении *OP*.

Законы отражения и преломления могут быть рассмотрены как следствие более общего принципа Ферма, утверждающего принцип экстремального пути луча между двумя точками — A и B (рис. I,5, a): свет распространяется по пути, оптическая длина которого экстремальна. Как известно, оптической длиной dL пути луча вдоль элемента



Рис. I, 5. Объяснение явления отражения и преломления лучей на основе принципа Ферма

ds называется произведение nds; следовательно, оптический путь L между точками A и B, если луч проходит оптическую среду с непрерывно изменяющимся показателем, выразится интегралом:

$$L = \int_{A}^{B} n ds. \tag{I, 3}$$

При прохождении лучом нескольких однородных оптических сред с показателями преломления, изменяющимися скачком на границе сред, имеем:

$$L = \sum_{k=1}^{k=p} n_k s_k,$$
 (I, 3')

где  $n_k$  — показатель преломления k-й среды, в которой длина хода луча  $s_k$ ; индекс p — номер последней среды.

Условие экстремальности оптической длины пути луча сводится к требованию, чтобы вариация от интеграла L равнялась нулю:

$$\delta L = \delta \int_{A}^{B} n ds = 0. \tag{I, 3''}$$

Символ вариации  $\delta$  выражает обобщение символа дифференциала; написанное можно толковать как первую вариацию определенного интеграла L; в зависимости от знака второй вариации этого интеграла функция L имеет минимальное или максимальное значение.

Иллюстрируем применение принципа Ферма к простейшему случаю распространения лучей на границе двух однородных сред: между точками A и B (рис. I, 5,  $\delta$ ) при отражении луча и точками A и C при его преломлении. Обозначим координаты точек  $A(x_1; y_1; 0)$ ;  $B(x_2; y_2; 0)$  и  $C(x_3; y_3; 0)$ , т. е. расположим их в плоскости XOY. В этом случае точка D, через которую проходит нормаль к поверхности раздела сред, будет лежать в той же плоскости XOY. Это следует из того, что если бы точка D сместилась за пределы этой плоскости и заняла, например, положение точки D', то пути лучей AD', BD' и CD' оказались бы длиннее соответственно путей AD, BD и CD, как гипотенузы прямоугольных треугольников ADD', BDD' и CDD'. Таким образом, возможные положения точки D на оси OX определяются лишь одной текущей координатой x.

Написав путь луча между точками А и В:

$$s = AD + DB + \sqrt{(x_1 - x)^2 + y_1^2} + \sqrt{(x_2 - x)^2 + y_2^2}$$

и после определения производной, положив ее равной нулю, получим:

$$\sin\left(-i\right)=\sin\overline{i}\,,$$

или

$$-i=\overline{i}$$
.

Пришли к закону отражения.

Написав аналогично оптический путь луча между точками А и С

$$s = n AD + n' DC = n \sqrt{(x_1 - x)^2 + y_1^2} + n' \sqrt{(x_3 - x)^2 + y_3^2}$$

и после определения производной, положив ее равной нулю:

$$\frac{ds}{dx} = n \frac{-(x_1 - x)}{\sqrt{(x_1 - x)^2 + y_1^2}} - n' \frac{(x_3 - x)}{\sqrt{(x_3 - x)^2 + y_3^2}} = n \sin(-i) - n' \sin(-i') = 0,$$

получим:

$$n \sin i = n' \sin i'$$
.

Пришли к закону преломления (I, 2').

Пользуясь теоремой о сложении вариаций, можно распространить полученный результат на случай произвольного числа преломлений и отражений.

Из принципа Ферма следует, что между точкой предмета и ее изображением оптические длины хода всех лучей пучка, образующего изображение, одинаковы. Это положение иногда оказывается удобным использовать для определения сложной формы отражающей или преломляющей



Рис. I, 6. Траектория луча в неоднородной оптической среде

поверхности в простейших оптических системах, обеспечивающих безаберрационное изображение сопряженной пары точек.

Распространение луча в неоднородной среде. Если оптическая среда, в которой распространяется луч, неоднородна, то лучи распространяются не прямолинейно, а по кривым линиям, которые можно назвать их траекториями. Криволинейное распространение лучей света может возникнуть в толще стекла линз аэрофотообъектива, если в них установились температурные градиенты, вызывающие изменение показателя преломления. Выведем формулы, определяющие траекторию луча. Ограничимся «плоской» задачей, т. е. будем считать, что траектория луча расположена в плоскости XY (рис. 1,6). Показатель преломления *n* явится функцией двух координат:

$$n=F(x, y).$$

На рисунке  $S_1S_2$  — траектория луча; через некоторую точку Mтраектории проходит кривая MP равных показателей преломления n; MG — градиент g показателя n в точке M, направленный по нормали к кривой MP. Градиент в данной точке направлен в сторону наибольшего возрастания показателя преломления. Обозначив через  $\frac{dn}{dx}$  и  $\frac{dn}{dy}$  составляющие градиента g показателя преломления в точке M, можно написать выражение для величины градиента:

$$g = \sqrt{\left(\frac{\partial n}{\partial x}\right)^2 + \left(\frac{\partial n}{\partial y}\right)^2}.$$

Как известно, элемент ds, взятый на кривой  $S_1S_2$ , следующим образом связан с кривизной  $\frac{1}{R}$  этого элемента:

$$\frac{1}{R} = \sqrt{\left(\frac{d^2x}{ds^2}\right)^2 + \left(\frac{d^2y}{ds^2}\right)^2},$$
 (I, 4)

где R — радиус кривизны траектории луча в точке M, причем центр C кривизны элемента ds расположен на нормали, проведенной в точке M в той ее части, где показатель преломления больше, т. е. луч света искривляется в направлении возрастания градиента показателя преломления.

Можно выразить [18] элемент ds траектории луча через составляющие градиента показателя преломления по осям координат:

$$\frac{d}{ds}\left(n\,\frac{dx}{ds}\right) = \frac{dn}{dx}; \quad \frac{d}{ds}\left(n\,\frac{dy}{ds}\right) = \frac{dn}{dy}.$$
 (I, 4')

Эти дифференциальные уравнения определяют траекторию луча, если показатель преломления представлен известной функцией координат:

$$n=F(x, y).$$

Кривизну  $\frac{1}{R}$  траектории можно определить, воспользовавшись теоремой, что величина  $\frac{n}{R}$  равна проекции вектора градиента *g* на направление нормали к дуге кривой *ds*:

$$\frac{n}{R} = g \cos \alpha, \qquad (1, 4'')$$

где a — угол между вектором градиента g и нормалью к траектории луча в точке M.

Пусть показатель преломления стекла изменяется вследствие, например, наличия температурного градиента в среде и возрастает в направлении, перпендикулярном оптической оси, вдоль которой направлена ось X:

$$n = n_0 + gy. \tag{I, 5}$$

Обозначив ф — угол между касательной к траектории луча и осью X (см. рис. I, 6), имеем:

$$\cos \varphi = \frac{dx}{ds}; \quad \sin \varphi = \frac{dy}{ds}.$$

Интегрируя уравнения (I, 4'), приняв во внимание, что

$$\frac{\partial n}{\partial x} = 0$$
 и  $\frac{\partial n}{\partial y} = g$ ,

находим:

$$n \frac{\partial x}{\partial s} = n \cos \varphi = n_0 \cos \varphi_0,$$

$$n \frac{\partial y}{\partial s} = n \sin \varphi = n_0 \sin \varphi_0 + gs,$$
(1, 5')

где  $n_0$  и  $\varphi_0$  — значения функций n и  $\varphi$  в начальной точке траектории, для которой s = 0.

Из первого уравнения (I, 5') имеем:

$$\cos\varphi=\frac{n_0\cos\varphi_0}{n};$$

отсюда:

$$\frac{\partial y}{\partial x} = \operatorname{tg} \varphi = \frac{\pm \sqrt{n^2 + n_0^2 \cos^2 \varphi_0}}{n_0 \cos \varphi_0}$$

Знак радикала должен быть таким, как и знак tgq.

Интегрирование уравнения дает:

$$x = \int_{0}^{y} \frac{n_0 \cos \varphi_0}{\sqrt{n^2 + n_0^2 \cos^2 \varphi_0}} \, dy,$$

где *п* является функцией *y* (см. I, 5). Радиус кривизны траектории луча во всех ее точках определится из (I, 4'), если положить  $\alpha = \varphi$ :

$$\frac{1}{R} = \frac{g}{n} \cos \varphi. \tag{I, 5''}$$

Эту формулу совместно с (I,5') весьма удобно применить, если величина градиента  $g = \frac{dn}{dy}$  мала.

Показатель преломления стекла *n* линейно изменяется при изменении температуры *t* в нешироких пределах:

$$n=n_0+\beta^*t,$$

где β<sup>\*</sup> — указываемая в каталоге оптического стекла величина температурного приращения показателя преломления.

Предположим, что температура стекла равномерно возрастает от оптической оси к краю линзы:

$$\frac{dt}{n_y} = \overline{\gamma},$$

где  $\overline{\gamma}$  — значение градиента температуры.

Отсюда находим:

$$g = \frac{\partial n}{\partial y} = \frac{\partial n}{\partial t} \frac{\partial t}{\partial y} = \beta^* \overline{\gamma}.$$

У оптических стекол величина  $\beta^*$  очень мала; если градиент температуры  $\overline{\gamma}$  невелик, то градиент показателя преломления *g* также мал и, следовательно, кривизна траектории  $\frac{1}{R}$  небольшая (см. I, 5'') и достигнет максимального значения при  $\varphi = 0$ , т. е. когда направление касательной к траектории луча составляет прямой угол к направлениям градиента g показателя преломления. Кривизна  $\frac{1}{R}$  обратится в нуль при направлении луча вдоль направления градиента ( $\varphi = 90^{\circ}$ ): луч проходит в этом направлении без искривления.

Определим угол отклонения  $\Delta \phi$  луча, прошедшего дугу *s* траектории. Эта дуга по форме близка к окружности очень малой кривизны, так как радиус кривизны *R* велик (см. I, 5<sup>'''</sup>) и его величина мало изменяется в разных точках траектории:

$$\Delta \varphi = \frac{s}{R} = \frac{gs}{R} \cos \varphi; \qquad (1, 5''')$$

так как s cos  $\phi = x$  вследствие малой кривизны луча, находим:

$$\Delta \varphi = \frac{gx}{n} = \frac{\beta^* \overline{\gamma}}{n} x.$$

Приходим к выводу, что угол отклонения лучей не зависит от их направления; если данная толща стекла проходится пучком лучей различного направления, то все лучи пучка поворачиваются на одинаковый угол  $\Delta \varphi$ .

Пусть, например, градиент температуры в стекле  $\overline{\gamma} = 0.05 \frac{z p a \partial}{c_M}$ ;



Рис. I, 7. Преломление луча на плоской границе раздела двух сред

температурное приращение показателя преломления  $\beta^* = 3 \cdot 10^{-6}$ ; после прохождения 100 *см* толщины стекла луч отклонится на 10<sup>-5</sup> радиана, или на 2''. Заметим, что пучки лучей, идущие ниже оптической оси, отклонятся на тот же угол, но в противоположную сторону, вследствие осесимметричного температурного градиента.

Преломление пучка лучей через плоскую поверхность. Гомоцентрический пучок лучей после преломления через плоскую границу раздела *AB* (рис. I, 7) двух сред с различными показателями преломления

(*n* и *n*') перестает быть гомоцентрическим. Из светящейся точки *S*, лежащей на расстоянии *s* от плоскости, распространяется гомоцентрический пучок лучей. На рисунке углы падения и преломления *i* и *i*' отрицательны по знаку. Отрезок *s* также отрицательный. Введем здесь правило знаков для отрезков, принятое в оптике.

Отрезки прямых отсчитываются от вершины преломляющей поверхности (или от другой точки, указываемой в каждом отдельном случае) и считаются положительными, если идут по направлению распространения света, и отрицательными — при обратном направлении. При этом свет всегда предполагается идущим слева направо. Условимся, кроме того, отмечать на чертежах и рисунках только абсолютные значения отрезков и, следовательно, если какая-нибудь буква означает отрицательную величину, то на чертеже она должна быть поставлена со знаком минус.

На рис. I, 7 расстояние s' будет отрицательным, так как продолжение преломленного луча SA пересекает ось SO в точке S', расположенной слева от точки Ö, являющейся в данном случае началом отсчета отрезков.

Определим расстояние s' от преломляющей поверхности AB. Из треугольников OSA и OS'A имеем:

$$y = s \operatorname{tg} i = s' \operatorname{tg} i'.$$

На основании закона преломления (I, 2) находим:

$$s' = s \frac{n' \cos i'}{n \cos i}.$$
 (I, 6)

Следовательно, величина s' не будет постоянной, а зависит от угла iДля параксиальных лучей отношение  $\frac{\cos i'}{\cos i}$  близко к единице и величина s' оказывается равной:

$$\mathbf{s}_0' = \frac{n'}{n} \mathbf{s}.\tag{I, 6'}$$

По мере возрастания угла i точки S' удаляется от точки  $S'_0$ , которая является параксиальным изображением точки S.

Разность

$$\delta s' = s' - s'_0$$

называется продольной сферической аберрацией. Она определяет длину того отрезка оси S'<sub>0</sub>S', в пределах которого расположены точки пересечения лучей, составляющих конус SAB, после их преломления.

Из последних трех формул находим:

$$\delta s' = \left(\frac{\cos i'}{\cos i} - 1\right) \frac{n'}{n} s. \tag{I,7}$$

В результате преломления гомоцентрического пучка через плоскую грань в нем появляется не только сферическая аберрация, но и так называемый астигматизм.

Рассмотрим пару весьма близких лучей:  $SM_1$  и  $SM_2$  (рис. I, 8). Два таких луча после преломления пересекаются в точке P, которая является изображением точки S.

Обозначим отрезок  $PM_1$ , приближенно равный  $PM_2$ , через  $p'_m$ , а отрезок  $S'_1M'_1$ , приближенно равный  $S'_2M'_2$ , через  $p'_s$ . Разность  $p'_s$ — $-p'_m$  (при весьма малых разностях высот падения лучей  $\delta y$ ) называется астигматической разностью и, как доказывается в курсах геометрической оптики, выражается формулой:

$$p'_{s} - p'_{m} = p \frac{n'}{n} \left(1 - \frac{\cos^{2} i'}{\cos^{2} i}\right).$$
 (I.8)

Астигматическая разность обращается в нуль при i = i' = 0; в этом случае точка P совпадает с точкой  $S'_1$ . При возрастании угла i астигматическая разность увеличивается.

Повернем рис. I, 8 вокруг оси SO на малый угол  $\varphi$ ; лучами  $S'_{1}M_{1}$ и  $S'_{2}M_{2}$  выражается узкий наклонный пучок в пространстве (рис. I, 9). Таким пучком точка S изображается уже не в виде точки, а в виде



Рис. I, 8. Астигматизм узкого пучка



Рис. I. 9. Сагиттальное  $a_s$  и меридиональное  $a_m$  изображения точки S

двух отрезков:  $a_s$  и  $a_m$ , из которых первый расположен в плоскости чертежа, а второй  $(a_m)$  — перпендикулярно плоскости чертежа. Первый из этих отрезков  $(a_s)$  называется сагиттальным изображением точки S,



Рис. I, 10. Каустические поверхности, образованные широким пучком лучей, преломившихся через плоскость

второй  $(a_m)$  — меридиональным изображением этой точки. Астигматическая разность, или астигматизм, — есть расстояние между этими отрезками по направлению хода луча.

Все сказанное до сих пор относилось к бесконечно тонким (элементарным) пучкам; рассмотрим преломление через плоскость пучков лучей, заполняющих телесные углы конечных размеров. На рис. I, 10 изображен широкий гомоцентрический пучок лучей, выходящих из точки S и преломляющихся на границе OM. Если на продолжении каждого преломленного луча нанести точку фокуса меридионального элементарного пучка, для которого данный луч служит осью, а также отметить точку пересечения этого луча с осью SO, на которой расположены точки фокусов сагиттальных элементарных пучков, то геометрическое ме-

сто точек в плоскости чертежа образует кривую MS'N и отрезок прямой на оси S'O. Геометрическое место всех таких точек в пространстве образует поверхность, называемую каустической. Каустическая поверхность меридиональных лучей есть поверхность, образованная вращением линии MS' вокруг оси OS'; другая каустическая

поверхность, образуемая фокальными точками сагиттальных пучков, в данном случае превращается в отрезок оси OS'.

Преломление пучка через плоскопараллельную пластинку. И в этом случае гомоцентрический пучок, прошедший пластинку, перестает быть гомоцентрическим. Однако сферическая аберрация, появляющаяся при преломлении у первой грани пластинки, отчасти компенсируется при втором преломлении.

Всякий падающий луч выходит из пластинки параллельно своему прежнему направлению, но смещенным в направлении, перпендикулярном граням пластинки, на величину ∆ s' (рис. I, 11). Применив дважды закон преломления на гранях пластинки, получим:

$$\sin i_1 = n \sin i_1; \quad n \sin i_2 = \sin i_2.$$

Обратив внимание, что  $i'_1 = i_2$ , находим:

$$\sin i_1 = \sin i_2'; \quad i_1 = i_2',$$

т. е. луч из пластинки выходит параллельно лучу падающему. Величина смещения луча  $\Delta s'$  зависит от угла падения луча i и толщины пластинки d; она выражается формулой:

$$\Delta s' = d\left(1 - \frac{\operatorname{tg}\,i_1'}{\operatorname{tg}\,i_1}\right),\tag{I,9}$$

где d — толщина пластинки, а  $i'_1$ —угол преломления на первой грани пластинки. Тонкий пучок лучей, идущих вдоль оси OE, образует малые углы i и i'; в этом случае отношение тангенсов углов в последней формуле можно заменить отношением синусов  $\frac{\sin i_1}{\sin i_1}$ , которое на основе закона преломления (I, 2') равно отношению показателей:  $\frac{n_1}{n_2} = \frac{1}{n}$ . Равенство (I, 9) принимает вид:

$$\Delta s_0' = \frac{n-1}{n} d; \qquad (1,9')$$

последнее выражает величину смещения параксиального пучка.

Так как величина смещения луча ∆s', вышедшего из плоскопараллельной пластинки, зависит от угла падения і, пластинка вносит сферическую аберрацию в гомоцентрический пучок; например, если лучи  $M'_{1}S'_{1}$  и  $M'_{2}S'_{2}$  (рис. I, 12) продолжить назад, по выходе из пластинки они пересекут ось SE в разных точках:  $S'_{1}$  и  $S'_{2}$ . Через  $S'_{0}$  обозначена точка пересечения оси ОЕ вышедшими из пластинки параксиальными лучами. Величина продольной сферической аберрации, т. е. расстояние между точками S'<sub>2</sub> и S'<sub>0</sub>, выражается формулой:

$$\delta s' = \frac{d}{n} \left( 1 - \frac{\cos i'}{\cos i} \right). \tag{I, 10}$$

Гомоцентрический пучок лучей, преломившихся через пластинку, превращается в пучок астигматический. Астигматическая разность узкого наклонного пучка, преломленного через плоскопараллельную пластинку, выражается формулой:

$$p'_{s} - p'_{m} = -\frac{d}{n\cos i'} \left(1 - \frac{\cos^{2} i}{\cos^{2} i'}\right).$$
 (I.11)

Ее анализ показывает, что при большом удалении светящейся точки, когда пучок падающих лучей становится почти параллельным, нару-



Рис. 1, 11. Преломление луча через плоскопараллельную пластинку



Рис. I, 12. Сферическая аберрация пучка после его преломления через плоскопараллельную пластинку

шение гомоцентричности пучка незначительно, а при строго параллельном пучке, нормально падающем на пластинку, последняя не вызывает совершенно никаких искажений. Влияние астигматизма на изображе-



Рис. I, 13. Преломляющая призма

ние точки можно не учитывать во всех тех случаях, когда толщины пластинки сравнительно невелики (защитные стекла, светофильтры и т. д.).

Преломление пучка через призму. Преломляющая призма применяется в ряде оптических, в частности спектральных, приборов в сочетании с объективом. Преломление светового пучка через призму вызывает не только его отклонение, но и дисперсию пучка: лучи различных цветов претерпевают разное отклонение вследстпоказателей вие различия преломления

для световых лучей разных длин волн, соответствующих различным цветам спектра.

Призма определяется углом  $\sigma$  между преломляющими плоскостями и показателем преломления n вещества, из которого она изготовлена (рис. I, 13). Воспользовавшись законом преломления (I, 2') и рис. I, 13, получим формулы, определяющие последовательное преломление луча через призму при заданном угле падения луча  $i_1$ :

$$\sin i'_{1} = \frac{\sin i_{1}}{n}; \quad i_{2} = \sigma + i'_{1}; \quad \sin i'_{2} = n \sin i_{2};$$
$$\varepsilon = -i_{1} + i'_{2} - \sigma. \tag{1,12}$$

Как видно из формулы (I, 12), угол отклонения  $\varepsilon$  луча, преломившегося в призме, зависит от угла падения  $i_1$ . Следовательно, гомоцентрический пучок лучей после преломления через призму перестает быть гомоцентрическим.

Угол отклонения луча є, как показывает анализ, имеет наименьшее значение є<sub>мин</sub>, когда ход луча внутри призмы симметричен относительно преломляющих граней, т. е. когда

$$-i'_{1} = i_{2} = -\frac{1}{2}\sigma; \quad \sin i_{1} = -n\sin\frac{\sigma}{2}.$$

Наименьший угол отклонения ємин определяется из выражения:

$$\sin \frac{\sigma + \epsilon_{\text{MHH}}}{2} = n \sin \frac{\sigma}{2} \,. \tag{I, 13}$$

Эта формула используется в лабораторной практике для определения показателей преломления n стекол по известной величине  $\sigma$  и по измеряемой угломерным прибором (например, гониометром) величине  $\varepsilon_{мин}$ .

В случае призмы с малым преломляющим углом — оптического клина вместо системы формул (I, 12) получаем формулу, непосредственно определяющую угол отклонения луча:



Рис. I, 14. Отклонение пучка лучей оптическим клином

$$\varepsilon = \sigma \left[ \sqrt{n^2 + (n^2 - 1) \operatorname{tg}^2 i_1} - 1 \right].$$
 (I, 14)

При малых углах падения *i*<sub>1</sub> эта формула может быть представлена приближенно:

$$\varepsilon = \sigma (n-1) \left(1 + \frac{n+1}{2n} i_1^2\right).$$

Если угол  $i_1$  мал, последнее выражение далее упрощается:

$$\boldsymbol{\varepsilon} = \boldsymbol{\sigma} (n-1). \tag{I, 14'}$$

Как видно из рис. I, 14, изображение точки A' в этом случае сместится относительно самой точки A на величину

$$y' = s' \varepsilon = s' (n-1) \sigma. \tag{I, 15}$$

Разность углов отклонения для лучей различных длин волн, например соответствующих фраунгоферовым линиям F (длина волны  $\lambda = 486,1$  нм) и  $C(\lambda = 656,3$  нм), определяется из формулы (I, 14') путем двукратного ее применения. Эта разность равна:

$$\varepsilon_F - \varepsilon_C = \sigma \left( n_F - n_C \right), \qquad (I, 16)$$

где  $n_F - n_C$  — разность показателей преломления, которую условились называть средней дисперсией стекла. От величины этой разности зави-

сит дисперсия световых пучков призмой и вообще любой оптической системой.

Средняя дисперсия  $n_F - n_C$  наряду с величиной показателя преломления стекла  $n_D$  для фраунгоферовой линии спектра D (соответствующей желтым лучам с длиной волны  $\lambda = 589,3$  нм) положена в основу классификации оптических стекол: марки стекол, имеющие большую среднюю дисперсию, условились относить к классу флинтов; стекла, обладающие малой дисперсией называют кронами. Применяющиеся в настоящее время оптические стекла обладают еще рядом других специфических особенностей, рассматриваемых ниже.

Сферическая преломляющая поверхность. Основной деталью оптических приборов является линза. Линзой называется прозрачное тело,



Рис. I, 15. Преломление луча через сферическую поверхность

ограниченное с двух сторон сферическими поверхностями (плоскую поверхность можно при этом рассматривать так же, как сферическую с очень большим радиусом кривизны). Линзы могут быть изготовлены из любого оптически прозрачного вещества, например из стекла, кристаллов и др.; поверхности линз могут быть также и бо-

лее сложной асферической формы, например цилиндрические, параболические и т. д. Здесь рассмотрены лишь системы из сферических преломляющих поверхностей; при этом предполагаем, что последние центрированы. Оптическая система является центрированной, если она симметрична относительно некоторой оси, так называемой оптической оси системы; на последней расположены центры кривизны всех преломляющих поверхностей линз оптической системы прибора.

Сферическая поверхность, разделяющая две среды с различными показателями преломления n и n' (рис. I, 15), является простейшей оптической системой. Предположим, что на такую поверхность с радиусом r падает луч SM, исходящий из светящейся точки S и составляющий угол u с оптической осью. После преломления этот луч будет иметь направление MS'. Установим зависимость положения точки S' (отрезок s') от удаления светящейся точки S (отрезок s) от радиуса r и показателей преломления n и n'.

Из треугольника SMC находим:

$$\sin i = \frac{r-s}{r} \sin u. \tag{1, 17}$$

Воспользовавшись законом преломления, получим:

$$\sin i' = \frac{n}{n'} \sin i. \tag{1,18}$$

Из треугольника S'MC следует:

$$u' = -i + i' + u;$$
 (1, 19)

$$\frac{r-s'}{r} = \frac{\sin i'}{\sin u}; \qquad (1,20)$$

отсюда:

$$s' = r - r \frac{\sin i'}{\sin u'}.$$
 (I, 21)

Последовательное применение формул (I, 17)—(I, 21) позволяет при заданных значениях n, n', r и начальных координатах луча s и uвычислить координаты преломленного луча s' и u'.

Как следует из (I, 21), положение изображения точки S' на оптической оси (см. рис. I, 15), определяемое расстоянием s', является функцией синусов углов u и u'. Для того чтобы точка S' являлась идеальным изображением точки S, необходимо, чтобы отрезок s' оставался постоянным для любого значения угла u.

Такое условие, в частности, будет выполнено в случае, представляющем особый практический интерес, а именно: при u = -i' из формулы (I, 19) u' = -i; отсюда приходим к соотношению:

$$\frac{\sin u}{\sin u'} = \frac{\sin i'}{\sin i} = \frac{n}{n'} = \text{const.}$$

Из формул (I, 17)—(I, 20) последовательно получим:

$$s = \frac{n+n'}{n} r; \quad s' = \frac{n+n'}{n'} r.$$
 (I, 22)

При указанных расстояниях *s* и *s*' получаем оптически сопряженную пару так называемых апланатических точек *S* и *S*': точка *S*' является идеальным (безаберрационным) изображением точки *S*. Для апланатической пары точек сохраняется гомоцентричность пучка лучей до и после его преломления.

Из формул (I, 22) следует, что так как всегда n > 0 и n' > 0, то отрезки *s* и *s'* будут одного знака. Это значит, что если предметная точка *S* действительная, то ее изображение S' — мнимое, и наоборот.

Заметим, что условие  $\frac{\sin u}{\sin u'} = \text{const}$  будет выполнено также еще в двух очевидных случаях, а именно, как следует из (I, 21), при s = 0 и s' = 0; при s = s' = r, т. е. когда предмет и его изображение расположены в центре кривизны поверхности.

Для параксиальных лучей формулы (I, 17)—(I, 20) принимают вид:

$$i = \frac{r-s}{r} \alpha; \quad i' = \frac{n}{n'} i; \quad \alpha' = -i + i' + u;$$
  
 $\frac{r-s'}{r} = \frac{i'}{\alpha'}.$  (1, 23)

В этих формулах мы ввели обозначения параксиальных углов буквами а и а' соответственно вместо обозначений углов конечной величины и и и'.

Из соотношений (I, 23) нетрудно получить известный в оптике инвариант Аббе:

$$n\left(\frac{1}{r}-\frac{1}{s}\right)=n'\left(\frac{1}{r}-\frac{1}{s'}\right),\qquad(\mathrm{I},\mathrm{24})$$

или

$$\frac{n'}{s'} - \frac{n}{s} = \frac{n' - n}{r} \,. \tag{I, 24'}$$

Следовательно, в параксиальной области положение изображения однозначно зависит только от положения *s* предмета для всех лучей пучка, вышедших из точки предмета.

Формула для сферического зер-кала. Из формулы (1,24') можно получить непосредственно зависимость между отрезками s и s', определяющими положение точки предмета и ее изображения для одной отражающей поверхности, т. е. для Рис. I, 16. К выводу инварианта Ла-гранжа — Гельмгольца зеркала. Воспользовавшись условием (I, 2'') и положив n' = -n,

находим:

$$\frac{1}{s'} + \frac{1}{s} = \frac{2}{r}.$$
 (I,24")

Для бесконечно удаленной точки предмета ( $s = -\infty$ ) ее изображение получается в фокусе зеркала. Фокус расположен на расстоянии s' = f' от вершины зеркала; это расстояние — так называемое фокусное расстояние f' зеркала—определится из (I, 24'') при  $s = -\infty$ :  $f' = \frac{r}{2}$ , формула (I, 24") может быть теперь представлена в виде:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f'}.$$
 (I,24''')

Изображение элементарного отрезка преломляющей сферической поверхностью. Рассмотрим изображение dl', образуемое преломляющей сферической поверхностью (рис. I,16) малого отрезка dl, располо-женного перпендикулярно оптической оси в точке S. Если отрезки dl или dl' направлены вверх от оптической оси, то они считаются поло-жительными, а если вниз, — отрицательными. Отношение величины изображения dl' к величине предмета dl называется линейным, или поперечным, увеличением  $\overline{\beta}$ :

$$\overline{\beta} = \frac{dl'}{dl} \,. \tag{I,25}$$

При  $\overline{\beta} > 0$  изображение называется прямым: при  $\overline{\beta} < 0$  — обратным; при  $\overline{|\beta|} < 1$  — уменьшенным; при  $\overline{|\beta|} > 1$  — увеличенным.



Проведем из точки A луч AC через центр C поверхности, который пройдет через поверхность не преломляясь. Рассматривая подобные треугольники, образованные этим лучом, получим:

$$\overline{\beta} = \frac{dl'}{dl} = \frac{s' - r}{s - r}.$$
(I, 26)

Воспользовавшись (I, 24) и обратив внимание, что в параксиальной области (см. рис. I, 16)

$$h = s \, a = s' a', \tag{I,27}$$



Рис. 1, 17. Последовательные изображения, образуемые системой преломляющих поверхностей

из (I, 26) приходим к инварианту Лагранжа — Гельмгольца:

$$n \, \alpha dl = n' \alpha' dl'. \tag{I,28}$$

Из зависимостей (I, 24) и (I, 28) следует, что каждому положению точки S предмета соответствует определенное положение ее изображения S' и каждому элементарному отрезку dl, перпендикулярному к оптической оси, соответствует изображение в виде отрезка dl', также перпендикулярного к оси. Отсюда, очевидно, что элемент плоскости, перпендикулярный к оптической оси, изображается также элементом плоскости, перпендикулярным к той же оси. Такие пары точек S и S', отрезков dl и dl' и элементов плоскости  $\overline{dS}$  и  $d\overline{S'}$  называются оптически сопряженными.

Параксиальные изображения, образуемые системой преломляющих поверхностей. Рассмотрим образование изображений в параксиальной области оптической системой, состоящей из преломляющих поверхностей — сферических или асферических: в параксиальной области форма любой поверхности определяется ее кривизной в вершине.

Пусть система состоит из ряда поверхностей 1, 2, ..., *р* (рис. I, 17). Изображение предшествующей точки предмета является в свою очередь предметом для последующей поверхности:

$$S'_{1} = S_{2}, \quad S'_{2} = S_{3}, \dots, \quad S'_{p-1} = S_{p};$$
  
$$dl'_{1} = dl_{2}, \quad dl'_{2} = dl_{3}, \dots, \quad dl'_{p-1} = dl_{p}.$$

Из того же рисунка следует:

$$n'_{1} = n_{2}, n'_{2} = n_{3}, ..., n'_{p-1} = n_{p};$$
  
 $a'_{1} = a_{2}, a'_{2} = a_{3}, ..., a'_{p-1} = a'_{p}.$ 

Применяя инвариант (I, 28) к каждой из преломляющих поверхностей, получим:

$$n_1 \alpha_1 dl_1 = n_2 \alpha_2 dl_2 = \cdots = n_p^{'} \alpha_p^{'} dl_p^{'}.$$
 (1,29)

Эта формула позволяет определить линейное увеличение всей системы:

$$\overline{\beta} = \frac{dl'_p}{dl_1} = \frac{n_1 \alpha_1}{n'_p \alpha'_p}; \qquad (1,30)$$

однако для этого необходимо рассчитать параксиальный угол по выходе луча из системы.

Займемся определением угла  $a'_p$ , а также расстояния  $s'_p$  (см. рис. I, 17) изображения от последней поверхности оптической системы.

Воспользовавшись формулами (I, 24) и (I, 27), можно получить следующее выражение для преломления луча через любую, например *k*-ю, поверхность:

$$n'_{k}\alpha'_{k}-n_{k}\alpha_{k}=h_{k}\left(\frac{n'_{k}-n_{k}}{r_{k}}\right). \tag{1,31}$$

Из рис. І, 17 следует:

$$h_{h+1} = h_h - d_h \alpha_{h+1}. \tag{1,32}$$

Полученные формулы (I, 31) и (I, 32) являются формулами рекуррентными: применяя последовательно каждую из этих формул к каждой из преломляющих поверхностей, мы, зная входные координаты луча  $\alpha_1$  и  $h_1 = s_1 \alpha_1$ , найдем все значения углов и высот:

$$a_1$$
 и  $h_1$ ,  $a_2$  и  $h_2$ , ...,  $a'_p$  и  $h_p$ .

В заключение расчета определяется положение изображения  $s'_p$ , линейное увеличение  $\overline{\beta}$  и величина изображения  $dl'_p$ :

$$s'_{\rho} = \frac{h_{\rho}}{a'_{\rho}}; \quad \overline{\beta} = \frac{n_1 \alpha_1}{n'_{\rho} \alpha'_{\rho}}; \quad dl'_{\rho} = \overline{\beta} dl_1.$$
 (1,33)

Заметим при этом, что параксиальный угол  $a_1$  может выражаться в произвольных единицах; при этом высота  $h_1 = a_1 s_1$  также выразится в условных единицах и только отрезки  $s_1 \dots s'_p$  получатся в реальных выбранных единицах длины. Обычно, если точка предмета  $S_1$  (см. рис. I, 17) находится на конечном расстоянии, то принимают  $a_1 = -1$  (или задают угол равным любой другой величине) и  $h_1 = a_1 s_1$ . Если предметная точка бесконечно удалена, принимают  $a_1 = 0$  и  $h_1 = 1$  (или задают  $h_1$  равным любой другой величине, например, как увидим ниже, фокусному расстоянию f' системы).

Определение радиусов кривизны преломляющих поверхностей при заданном ходе параксиального луча. Иногда на практике приходится решать обратную задачу: задан ход параксиального луча через систему преломляющих поверхностей и необходимо определить величину радиусов кривизны поверхностей, обеспечивающих заданный ход луча.

Итак, заданы следующие параметры (см. рис. I, 17):

$$a_1, a_2, \ldots, a_p;$$
  
 $h_1, h_2, \ldots, h_{ct}$ 

При этом, конечно, соблюдается зависимость (I, 32):

$$h_{k+1} = h_k - d_k \alpha_{k+1}.$$

Из (I, 31) получаем формулу, решающую данную задачу:

$$r_k = \frac{n'_k - n_k}{n'_k \alpha'_k - n_k \alpha_k} h_k,$$

или в более сжатой записи:

$$\boldsymbol{r}_{\boldsymbol{k}} = \frac{\Delta \boldsymbol{n}_{\boldsymbol{k}}}{\Delta \boldsymbol{n}_{\boldsymbol{k}} \boldsymbol{\alpha}_{\boldsymbol{k}}} \boldsymbol{h}_{\boldsymbol{k}}.$$
 (I,34)

#### § 2. ИДЕАЛЬНАЯ ОПТИЧЕСКАЯ СИСТЕМА

Оптические системы, даже специально рассчитанные, неизбежно дают изображение предмета в большей или меньшей степени искаженным, а отдельные детали его — размытыми. В зависимости от строгости требований, предъявляемых к качеству изображения, что в свою очередь определяется назначением оптического прибора, их оптические конструкции обладают различной сложностью. На погрешностях изображений в реальных оптических системах остановимся ниже (глава II). Здесь же введем понятие об идеальной оптической системе, свободной от всех недостатков реальных систем. При этом предполагается, что идеальная система образует изображения точек сколь угодно большой части пространства посредством широких гомоцентрических пучков лучей. Эта идеализированная система позволяет построить общую теорию для приближенного решения различных задач практической оптики.

Совокупность возможных положений точек предметов — вершин гомоцентрических пучков лучей, входящих в оптическую систему, назовем *пространством предметов*; пространство, в котором расположены изображения точек, — вершины гомоцентрических пучков лучей, вышедших из оптической системы, — назовем *пространством изобра*жений. Идеальная оптическая система удовлетворяет следующим условиям:

1. Каждой точке пространства предметов соответствует одна и только одна точка пространства изображений; обе соответствующие точки называются сопряженными точками обоих пространств.

2. Каждой прямой линии пространства предметов соответствует одна и только одна прямая линия пространства изображений; соответственные линии называются сопряженными.

3. Если какая-нибудь точка в пространстве предметов лежит на прямой, то сопряженная с ней точка лежит на прямой, сопряженной с первой прямой.

Из этих условий логически следует, что всякой плоскости в прост-



Рис. I, 18. Линейное увеличение оптической системы

ранстве предметов соответствует сопряженная ей плоскость в пространстве изображений.

Для большинства оптических систем можно ограничиться рассмотрением лишь таких сопряженных пространств, которые обладают двумя сопряженными осями симметрии. Плоскости в пространстве предметов, перпендикулярной оси,

соответствует вследствие условия симметрии плоскость, также перпендикулярная оси в пространстве изображений.

Для дальнейшего упрощения будем считать, что обе сопряженные оси симметрии образуют одну прямую — оптическую ось. Всякую плоскость, проходящую через оптическую ось, будем называть меридиональной плоскостью. Лучу, находящемуся в меридиональной плоскости предметов, соответствует луч в сопряженной меридиональной плоскости пространства изображений.

Локализованная здесь идеальная оптическая система обладает, таким образом, круговой симметрией: все ее преломляющие или отражающие оптические поверхности имеют сферическую или асферическую аксиально-симметричную форму относительно оптической оси, на которой расположены центры кривизны всех поверхностей: такая система называется центрированной.

Ни одна реальная оптическая система, за исключением плоского зеркала, не удовлетворяет условиям идеальной системы вполне строго. Реальные оптические системы обладают этими свойствами лишь в параксиальной области.

Фокусы, фокусные расстояния и главные точки идеальной оптической системы. Пусть на рис. I,18 OO' изображена некоторая оптическая система. Обозначим величину объекта SA через l, а величину его изображения S'A' — через l'.

Отношение линейных размеров изображения *l* к соответствующим им размерам объекта *l* называется линейным увеличением оптической системы.

$$\overline{\beta} = \frac{l'}{l} \,. \tag{1,35}$$

Линейное увеличение  $\overline{\beta}$  идеальной системы есть некоторая постоянная величина для данной пары сопряженных плоскостей *P* и *P'*, расположенных перпендикулярно оси, в которых лежат отрезки *SA* и *S'A'*. Постоянная величина линейного увеличения является также следствием круговой симметрии оптической системы и обеспечивает геометрическое подобие изображения предмету.

Перемещая объект вдоль оптической оси, мы будем получать различные значения линейного увеличения. В частном случае можно определить для всякой оптической системы такую пару сопряженных плоскостей, для которой линейное увеличение равно единице:

$$\overline{\beta} = +1,$$
 (I, 36)

т. е. линейный объект в этом случае равен по величине своему изображению и одинаково с ним направлен относительно оптической оси. Эту пару сопряженных плоскостей называют *главными плоскостями* системы.

На рис. I, 19 указано одно из возможных положений главных плоскостей  $\overline{H}$  и  $\overline{H'}$  и главных точек H и H'. Для определения положения

этих плоскостей можно поступить следующим образом. Предположим, что на оптическую систему падает луч PM, параллельный оптической оси. Пройдя через систему, луч будет иметь некоторое направление K'F'. Предположим дальше, что в систему вступает луч Q'M', идущий справа налево параллельно оптической оси и на том же расстоянии от нее, что и луч PM. Пройдя



Рис. І, 19. Главные плоскости оптической системы

через систему, этот луч будет иметь некоторое направление К.F.

Если бы выходящему лучу KF было дано обратное направление от  $F \kappa K$ , то он прошел бы путь через оптическую систему в обратной последовательности и, выйдя из системы, имел направление M'Q'. Таким образом, точку R можно рассматривать как точку пересечения лучей PM и FK, вступающих в систему, т. е. она является вершиной пучка лучей, вступающих в систему (светящейся точкой). Изображением этой точки будет точка R' пересечения выходящих из системы лучей. Если теперь из точки R опустить перпендикуляр RH на оптическую ось и отрезок RH считать объектом, то отрезок R'H' будет его изображением. Но RH = R'H'. Следовательно, найденная пара сопряженных отрезков удовлетворяет условию (I, 36). Плоскости H и H', в которых лежат эти отрезки, и будут соответственно передней и задней главными плоскостями системы. Точки их пересечения с оптической осью называются передней H и задней H' главными точками системы.

Когда светящаяся точка, перемещаясь вдоль оптической оси, удаляется в бесконечность, то ее изображение получается в точке *F*' (см. рис. I, 19), называющейся *задним фокусом*; в этом фокусе пересекаются по выходе из системы все лучи, вступающие в систему параллельно оптической оси.

Передним фокусом называют ту точку, в которую надо поместить точечный объект для того, чтобы его изображение находилось на бесконечности. При этом лучи, вышедшие из точки F, пройдя через систему, пойдут пучком, параллельным оси. Плоскости, перпендикулярные оптической оси и проходящие через точки фокусов F и F', называются соответственно *передней* и задней фокальными плоскостями. Расстояние HF = f от передней главной точки H до переднего фокуса F носит название переднего фокусного расстояния. Аналогично H'F' = f' является задним фокусным расстоянием. Заметим, что фокусы F и F', в отличие от главных точек H и H', не являются сопряженными между собой.



Рис. I, 20. Определение положения и величины изображения

Если точки фокусов от соответствующих главных точек расположены по направлению распространения света, то фокусные расстояния считаются положительными, в противном случае — отрицательными.

считаются положительными, в противном случае — отрицательными. Если на рис. I, 19 принять, что RH = h, а R'H' = h', то из данного выше определения фокусных расстояний следует:

$$f' = \frac{h}{\operatorname{tg} u'}; \quad f = \frac{h'}{\operatorname{tg} u}. \tag{I,37}$$

Очевидно, в параксиальной области соответственно:

$$f' = \frac{h}{\alpha'}; \quad f = \frac{h'}{\alpha}. \tag{I,38}$$

Эти формулы в практике расчета оптических систем служат для нахождения фокусных расстояний по известным направлениям хода лучей.

Увеличение оптической системы; формула сопряженных отрезков. Если известно положение главных точек и фокусов системы, то можно выполнить построения изображений графически.

Луч *AK*, параллельный оптической оси, после преломления пойдет через точку заднего фокуса *F*' (рис. I, 20); одновременно по свойству главных плоскостей этот же луч должен пересечь вторую главную плоскость в точке *R*', расположенной от оптической оси на таком же расстоянии, как и точка R; таким образом, направление преломленного луча K'A' определится точками R' и F'.

Аналогично луч AM, проходящий через точку F переднего фокуса, после преломления через систему выйдет в направлении M'A', параллельном оптической оси, на расстоянии Q'H', равном расстоянию HQ. Пересечение лучей K'A' и M'A' определит точку A', которая явится изображением точки A. Так как по условию оптическая система идеальная, то все лучи, вышедшие из точки A, после преломления должны пересечься в точке A'. Отрезок l', проведенный через точку A' перпендикулярно оптической оси, явится изображением отрезка l, также перпендикулярной оси. Изображение точки S расположено на оптической оси в точке S'.

Обозначим расстояние изображения S' от точки F' заднего фокуса через x'; соответственно расстояние предмета S от переднего фокуса F — через x.

Из подобия треугольников ASF и HFQ следует:

$$\frac{-f}{-x} = \frac{-l'}{l} \,. \tag{I,39}$$

Аналогично из другой пары подобных треугольников R'H'F' и A'S'F' находим:

$$\frac{x'}{l'} = \frac{-l'}{l}.$$
 (1,39')

Сопоставив равенства (I, 39) и (I, 39') с выражением (I, 35), получим

$$\overline{\beta} = -\frac{f}{x} = -\frac{x'}{f'}.$$
(1,40)

Эта формула позволяет, зная расстояние x или x' и фокусное расстояние системы, определить линейное увеличение  $\beta$ .

Формулы Ньютона и Гаусса. Из формулы (1,40) непосредственно следует:

$$xx' = ff'. \tag{I,41}$$

Пользуясь этим выражением, можно по известным фокусным расстояниям и положению предмета относительно переднего фокуса найти положение изображения на оптической оси системы. Полученное выражение называется формулой Ньютона.

Положение объекта и его изображения иногда удобнее определять относительно главных плоскостей.

Произведя замены переменных (см. рис. I, 20)

$$x = a - f; \quad x' = a' - f',$$
 (1,42)

приходим к формуле Гаусса:

$$\frac{f'}{a'} + \frac{f}{a} = 1.$$
 (I, 43)

33

Взаимозависимость между фокусными расстояниями системы. Прибавляя к обеим частям равенства (I, 41) одну и ту же величину xf'. получим:

$$x(x'+f') = f'(x+f);$$

отсюда и из (I, 40) имеем:

$$\overline{\beta} = -\frac{f}{x} = -\left(\frac{f'}{x}\right)\frac{f}{f'} = -\frac{f}{f'}\frac{a'}{a}.$$
 (I,44)

Из рис. І, 20 непосредственно следует:

$$a \operatorname{tg} u = a' \operatorname{tg} u'. \tag{I,45}$$

После подстановки в (I, 44), приняв  $\overline{\beta} = \frac{l'}{l}$ , находим выражение, которое иногда называют теоремой Лагранжа — Гельмгольца:

$$fl \operatorname{tg} u = -f'l' \operatorname{tg} u'. \tag{I, 46}$$

Очевидно, это уравнение имеет место и в параксиальной области при малых значениях углов u = a и u' = a':

$$fl\alpha = -f'l'\alpha'. \tag{I, 46'}$$

Деля почленно равенства (1, 46') и (1, 28), находим:

$$\frac{f}{f'} = -\frac{n}{n'} \tag{I,47}$$

Во многих случаях средой пространства предметов и изображений является воздух и, следовательно, n = n' = 1. При таком допущении переднее и заднее фокусные расстояния будут численно равны и отличаться только знаками:

$$f' = -f. \tag{1,48}$$

Формула Ньютона (1, 41) принимает вид:

$$xx' = -f'^2 \cdot (1,49)$$

Формула Гаусса (1, 43):

$$\frac{1}{a'} - \frac{1}{a} = \frac{1}{f'}.$$
 (1,50)

Выражение линейного увеличения (1, 44):

$$\overline{\beta} = \frac{a'}{a} \,. \tag{I,51}$$

Изображение бесконечно удаленной точки предмета, расположенной вне оптической оси. Из точки предмета в систему поступит пучок параллельных лучей, образующих угол наклона w относительно оптической оси (рис. 1, 21).

Определим расстояние *l'* точки изображения *A'*, расположенной в задней фокальной плоскости *F'* системы. Среди лучей наклонного пуч-

ка найдется луч, проходящий через передний фокус *F* и, следовательно, идущий параллельно оптической оси по выходе из системы; для этого луча находим:

$$l' = f \operatorname{tg} \omega. \tag{I,52}$$

Среди лучей того же пучка найдется луч AH, проходящий через переднюю главную точку H и, следовательно, по выходе из системы проходящий через заднюю главную точку H'; для этого луча можно написать:

$$l' = -f' \operatorname{tg} w'_{H'} \,. \tag{I,52'}$$

Если первая и последняя среды, окружающие оптическую систему, одинаковы, то n = n' и f' = -f; сопоставляя (I, 52) и (I, 52'), находим:

$$\omega'_{H'} = \omega, \qquad (\mathbf{I}, 52'')$$

т. е. всякий луч, входящий в оптическую систему через переднюю главную точку под некоторым углом, по выходе из системы проходит через заднюю главную точку под тем же



Рис. I, 21. Изображение бесконечно удаленной точки предмета, расположенной вне оптической оси

углом, если последняя и первая оптические среды одинаковы. В этом случае для величины изображения *l*' бесконечно удаленного предмета получим:

$$l' = -f' \operatorname{tg} \omega. \tag{I,53}$$

Для общего же случая ( $n \neq n'$ ) имеем:

$$l' = -\frac{n}{n'} f' \operatorname{tg} \omega. \tag{I,53'}$$

Например, в любительском пленочном фотоаппарате с форматом снимка 24  $\times$  36 *мм* полудиагональ кадра l' = 21,6 *мм*. При фокусном расстоянии объектива f' = 52 *мм* из (I,53) находим:

$$\operatorname{tg} \omega = \frac{21,6}{52} = 0,416; \quad \omega = 22,5^{\circ}.$$

Полный угол поля зрения равен  $2w = 45^{\circ}$ . Угол поля зрения, соответствующий ширине кадра, равен:

$$\operatorname{tg} w = \frac{18}{50} = 0,360; \ w = 20^\circ; \ 2w = 40^\circ.$$

Угловое и продольное увеличения оптической системы. Угловым увеличением оптической системы называется отношение тангенсов углов *u*' и *u* (см. рис. I, 20):

$$\gamma = \frac{\operatorname{tg} u'}{\operatorname{tg} u} \,. \tag{I,54}$$
Приняв во внимание (I, 44) и (I, 47), а также, что  $\frac{\text{tg }u'}{\text{tg }u} = \frac{a}{a'}$ , находим:

$$\gamma \overline{\beta} = \frac{n}{n'} . \tag{I,54'}$$

Если угловое увеличение в данной паре сопряженных точек равно единице ( $\gamma_0 = 1$ ), то такие точки называются узловыми:

$$\gamma_0 = \frac{\operatorname{tg} u_0}{\operatorname{tg} u_0} = \frac{a_0}{a_0'} = 1;$$

отсюда:

$$u'_0 = u_0, \quad a_0 = a'_0,$$

т. е. луч, входящий в систему через переднюю узловую точку под некоторым углом, по выходе из системы проходит через заднюю узловую точку под таким же углом. Если первая и последняя среды одинаковы (n = n'), то при  $\gamma = 1$  величина  $\overline{\beta} = 1$  (см. I, 54') и, следовательно,



Рис. I, 22. К выводу формулы для продольного увеличения

узловые точки совпадают с главными точками системы. Взаимосопряженными являются также пространственные предметы и их изображения, имеющие глубину. Прямолинейный отрезок, параллельный оптической оси, изображается в виде сопряженного ему

прямолинейного отрезка, также параллельного оптической оси. Обозначим через dx и dx' малые отрезки оптической оси вблизи сопряженных плоскостей (рис. I, 22) S и S'.

Продольным увеличением а называется производная:

$$\overline{\alpha} = \frac{dx'}{dx} \,. \tag{I,55}$$

Дифференцируя уравнение Ньютона (I, 41), получим: xdx' + x'dx = 0; отсюда находим:

$$\overline{\alpha}=\frac{dx'}{dx}=-\frac{x'}{x}.$$

Из (1, 40) и (1, 47) следует:

$$\overline{\alpha} = -\frac{x'}{f'} \cdot \frac{f'}{x} = \overline{\beta} \left(-\frac{f}{x}\right) \frac{n'}{n} = \overline{\beta}^2 \cdot \frac{n'}{n}, \qquad (I, 55')$$

т. е. продольное увеличение пропорционально квадрату поперечного увеличения, а при n = n' равно ему.

Если осевые отрезки dx и dx' не бесконечно малы, а имеют конечные значения  $\Delta x = x_2 - x_1$  и  $\Delta x' = x'_2 - x'_1$ , то, применяя дважды формулу (I, 40) к каждой паре сопряженных плоскостей и воспользовавшись (I, 47), получим:

$$\frac{\Delta x'}{\Delta x} = \frac{x'_2 - x'_1}{x_2 - x_1} = \frac{n'}{n} \bar{\beta_1} \bar{\beta_2}, \qquad (I, 55'')$$

где  $\overline{\beta_1}$  и  $\overline{\beta_2}$  — поперечные увеличения в плоскостях изображений обеих пар сопряженных плоскостей, определяемых соответственно координатами  $x_1$ ,  $x'_1$  и  $x_2$ ,  $x'_2$ .

Зависимость между тремя видами оптических увеличений. Поперечное, угловое и продольное увеличения взаимосвязаны. Из (I, 54') и (I, 55') непосредственно находим:

$$\gamma \overline{\alpha} = \overline{\beta}. \tag{I, 56}$$

Это выражение является общим, полученным без каких-либо допущений.

Оптическая сила системы; сходимость лучей. Иногда пользуются терминологией и обозначениями, представляющими в некоторых случаях известные удобства и чаще всего применяемые в офтальмологической оптике. Умножив обе части уравнения (I, 43) на  $\frac{n'}{f'}$  и воспользовавшись (I, 47), получим:

$$\frac{n'}{a'} - \frac{n}{a} = \frac{n'}{f'} = -\frac{n}{f}.$$
 (1,56')

Условимся называть величину отношения показателя преломления к отрезку, определяющему положение центра гомоцентрического пучка сходимостью пучка по отношению к точке, от которой отсчитывается отрезок. Обозначим сходимости  $\frac{n'}{a'}$  и  $\frac{n}{a}$  прописными буквами греческого алфавита — соответственно  $\Sigma'$  и  $\Sigma$ . Отношение показателя преломления среды к соответствующему фокусному расстоянию назовем оптической силой системы  $\varphi$ :

$$\varphi = \frac{n'}{f'} = -\frac{n}{f}.$$
 (1,57)

Приняв указанные обозначения, напишем уравнение (I, 56') в виде:

$$\Sigma' = \Sigma + \varphi,$$
 (I, 57')

т. е. сходимость пучка лучей, дающего изображение точки на оси, равна сумме сходимости пучка лучей, выходящих из изображаемой точки предметов, и оптической силы системы; причем сходимости определены по отношению к главным точкам системы.

Иногда наряду с понятием оптической силы системы  $\varphi = \frac{n'}{f'}$  вво-

дят понятие силы оптической системы  $\Phi = \frac{1}{f'}$ . Очевидно, что  $\varphi = n'\Phi$ ; для систем, находящихся в воздухе, n' = 1 и  $\varphi = \Phi$ .

За единицу оптической силы системы принимают оптическую силу системы, у которой второе фокусное расстояние положительно и равно одному метру в воздухе; эта единица называется диоптрией. Очевидно, что сходимости можно также выражать в диоптриях. Заметим, что если все отрезки определены не по отношению к главным точкам системы, а по отношению к вершине преломляющей поверхности, то принято отмечать это словом «вершинный», например: «вершинное фокусное расстояние», «вершинная оптическая сила».

### § 3. ОПТИКА УЗКИХ НАКЛОННЫХ ПУЧКОВ

Выше были рассмотрены свойства оптических систем при двух диаметрально противоположных допущениях: свойства систем малой апертуры и малого поля зрения — систем в параксиальной области; свойства систем больших апертур и широкого поля зрения — идеальных



Рис. I, 23. Преломление элементарного астигматического пучка

оптических систем. Рассмотрим здесь свойства промежуточных систем, образующих изображения в пределах широкого поля, но узкими пучками лучей: изображения этими системами формируются бесконечно тонкими пучками, идущими вблизи любых меридиональных, в частности, главных лучей, образующих конечные углы *и* и *и* с оптической осью и конечные углы падения *i* и преломления *i* с поверхностями оптической системы.

Под меридиональным лучом понимаем луч, лежащий в меридиональной плоскости, т. е. плоскости, проходящей через оптическую ось системы и данную точку предмета.

На рис. I, 23 представлен меридиональный луч SMS', преломляющийся через сферическую поверхность и проходящий через точку предмета. Этот луч будем рассматривать как ось некоторого бесконечно узкого пучка. К такому пучку могут быть применены законы параксиальной оптики. Однако при этом появляется и существенное отличие.

В рассмотренных выше параксиальных пучках ось бесконечно тонкого пучка была направлена по нормали к сферическим поверхностям в точках падения (оптическая ось); в этих случаях элементарный гомоцентрический пучок оставался гомоцентрическим. Если же ось пучка (выбранный меридиональный луч) образует конечный угол *i* с нормалью (радиусом) в точке падения, то преломленный элементарный пучок делается астигматическим.

На меридиональном луче взята точка T, расположенная на расстоянии  $-t_m$  от точки падения луча M на сферическую поверхность. Если направить из точки T бесконечно близкий луч, образующий угол du с меридиональным лучом TM, то после преломления через поверхность этот луч пересечет луч MS' в некоторой точке  $T'_m$ , которую можно рассматривать как меридиональное изображение точки T, образуемое узким пучком. Расстояние  $t'_m$  этого изображения от точки M встречи луча с поверхностью определяется формулой Юнга:

$$\frac{n'\cos^2 i'}{t'_m} - \frac{n\cos^2 i}{i_m} = \frac{n'\cos i' - n\cos i}{r} .$$
 (I,58)

Заметим, что эта формула принимает вид, аналогичный формуле (I, 24'), если положить i = i' = 0, т. е. если осью пучка выбрать оптическую ось.

Проведем из той же точки T бесконечно близкий сагиттальный луч (на рисунке он не показан), расположенный в сагиттальной плоскости, проходящей через луч TM и перпендикулярный меридиональной плоскости. Этот луч после преломления пересечет луч MS' в некоторой точке, расположенной на расстоянии  $t_s$  от точки M и называемой сагиттальным изображением точки T; вторая формула Юнга позволяет определить положение изображения, образуемого элементарным сагиттальным пучком;

$$\frac{n'}{t'_{s}} - \frac{n}{t_{s}} = \frac{n'\cos i' - n\cos i}{r}.$$
 (1,58')

Если i = i' = 0, то обе формулы Юнга идентичны и при  $t_s = t_m$ , расстояния изображений  $t'_s$  и  $t'_m$  будут также равны и, следовательно, гомоцентричность пучка сохранится; в общем же случае (когда  $i \neq 0$ ) элементарный гомоцентрический пучок после преломления становится астигматическим ( $t'_m \neq t'_s$ ), т. е. точка предмета T изобразится двумя точками: точками меридионального и сагиттального изображений, расположенными друг от друга на расстоянии ( $t'_s - t'_m$ ), называемом астигматической разностью, или, короче, астигматизмом.

К таким пучкам применим также инвариант Лагранжа — Гельмгольца (см. 1,28), но при выводе этой формулы предполагалось, что элемент изображения  $dl_{\perp}$  перпендикулярен оси пучка; положив a = du и a' = du', получим:

$$ndl_{\perp}du = n'dl'_{\perp}du'. \tag{I,59}$$

Как следует из рис. I, 23,  $dl_{\perp} = dl_m \cos u$  и  $dl'_{\perp} = dl'_m \cos u'$ ; приходим к хорошо известному в светотехнике [4] для плоских элементарных пучков инварианту Штраубеля:

$$ndl_m du \cos u = n' dl'_m du' \cos u'; \qquad (I,59')$$

но в данном случае элементы  $dl_m$  и  $dl'_m$  оптически сопряжены и их отношение выражает линейное меридиональное увеличение  $\overline{\beta_m}$ :

$$\overline{\beta}_m = \frac{dl_m}{dl_m} \,. \tag{I,60}$$

Произведение *ndl* cos *u du* остается инвариантным и при всех последующих преломлениях через систему оптических поверхностей:

$$n_1 dl_1 \cos u_1 du_1 = \cdots = n_k dl_k \cos u_k du_k$$

так как, очевидно:



Рис. I, 24. К выводу законов параксиальной оптики вдоль главного луча

Основные соотношения параксиальной оптики вдоль главного луча непосредственно следуют из рис. I, 24. Точки  $A_m$  и  $A'_m$  оптически сопряжены. При перемещении точки  $A_m$  в пространстве предметов в бесконечность сопряженная с ней точка займет положение заднего меридионального фокуса  $F'_m$  оптической системы OO'. Полагая изображение  $dl'_m$  на главном луче перпендикулярным оптической оси OO' системы, можно найти на главном луче главные точки  $H_m$  и  $H'_m$ , меридиональное увеличение  $\overline{\beta_m}$  в которых равно единице:

$$\overline{\beta}_m = \frac{h'_m}{h_m} = 1. \tag{1,60'}$$

Эти представления приводят к известным соотношениям параксиальной оптики, но вдоль главного луча:

$$\overline{\beta}_{m} = -\frac{f_{m}}{x_{m}} = -\frac{\dot{x_{m}}}{f_{m}'}; \quad x_{m}x_{m}' = f_{m}f_{m}'.$$
 (I,61)

В сагиттальной плоскости предмет dl<sub>s</sub> и его изображение dl'<sub>s</sub> можно образовать, поворачивая на небольшой угол всю меридиональ-

ную плоскость вокруг оптической оси системы; при этом элементы  $dl_s$  и  $dl'_s$  будут перпендикулярны к главному лучу. Формула Ньютона имеет аналогичный вид и для сагиттальных пучков:

$$\overline{\beta}_{s} = -\frac{f_{s}}{x_{s}} = -\frac{x'_{s}}{f'_{s}}; \ x_{s}x'_{s} = f_{s}f'_{s}.$$
 (1,61')

Не останавливаясь здесь на более подробном рассмотрении соотношений параксиальной оптики вдоль главного луча, укажем лишь, что не все ранее выведенные формулы параксиальной оптики могут быть перенесены сюда автоматически. В частности, формула для углового увеличения, как следует из рис. I, 24, примет вид:

$$du_{m} = \frac{h_{m} \cos u}{x_{m} + f_{m}}; \quad du'_{m} = \frac{h'_{m} \cos u'}{x'_{m} + f'_{m}};$$
  
$$\gamma = \frac{\cos u'}{\cos u} \cdot \frac{x_{m} + f_{m}}{x'_{m} + f'_{m}}. \quad (1,62)$$

Воспользовавшись формулой Ньютона (I, 61), находим:

$$\overline{\beta}_m \gamma_m = -\frac{f_m}{f'_m} \frac{\cos u'}{\cos u} \,. \tag{1,62'}$$

Соответственно для сагиттальных элементарных пучков получим:

$$\overline{\beta}_{s}\gamma_{s} = -\frac{f_{s}}{f_{s}'}, \qquad (1,62'')$$

что приводит к инварианту в сагиттальной плоскости:

$$f_s dl_s du_s = -f'_s dl'_s du'_s.$$

Другие соотношения элементарного пучка вдоль главного луча будут также несколько отличными [13].

# § 4. СЛОЖНАЯ ОПТИЧЕСКАЯ СИСТЕМА

Всякий оптический прибор представляет систему из двух или большего числа компонентов, понимая под последними комбинации из нескольких склеенных или близко друг к другу расположенных линз. Для определения оптического действия такой системы должно быть известно положение фокусов и главных плоскостей в каждом компоненте и их взаимное расположение, определяемое расстояниями  $d_i$  между задней главной плоскостью предыдущего (*i*-го) компонента и передней главной плоскостью последующего (рис. 1, 25).

Расчет хода луча через многокомпонентную оптическую систему. Возьмем некоторый луч, проходящий через точку  $S_1$  (рис. I, 25), основание отрезка  $l_1$ . Преломляясь внутри системы, этот луч будет проходить через точки  $S_2, S_3 ... S_i... S_m$ ,  $S'_m$ , соответствующие изображению точки S<sub>1</sub>. Положение этих точек для некоторого, например *i*-го, компонента, определится формулой (I, 43):

$$\frac{f'_i}{a'_i} + \frac{f_i}{a_i} = 1.$$
(1,63)

Умножив обе части этого выражения на высоту  $h_1$  и произведя замену:



Рис. I, 25. Ход луча через многокомпонентную оптическую систему

получим:

$$\operatorname{tg} u_i' = -\frac{f_i}{f_i'} \operatorname{tg} u_i + h_i \Phi_i = \frac{n_i}{n_i'} \operatorname{tg} u_i + h_i \Phi_i, \qquad (I, 64)$$

где  $\Phi_i$  — сила *i*-го компонента; напомним символику, а именно:  $n'_i = n_{i+1}$ ;  $u'_i = u_{i+1}$  и т. д.

Далее из простого геометрического построения находим:

$$h_{i+1} = h_i - d_i \, \mathrm{tg} \, u_{i+1}. \tag{I,65}$$

Последние две рекуррентные формулы позволяют выполнить расчет хода луча через многокомпонентную систему, определяя последовательно координаты луча  $u_i$  и  $h_i$  для каждого из компонентов. Для этого необходимо лишь знать начальные координаты входа луча  $u_1$  и  $h_1$  (или  $a_1$ , так как  $h_1 \approx d_1 \text{tg} u_1$ ) и гауссовы элементы оптики, т. е. все значения  $f_i$ ,  $f'_i$ ,  $d_i$ . Положение точки изображения  $S'_m$  определим из формулы:

$$a'_m = \frac{h_m}{\operatorname{tg} u'_m}.\tag{I,66}$$

Линейное, угловое и продольное увеличения установим из формул (I, 54), (I, 46) и (I, 58):

$$\gamma = \frac{\operatorname{tg} u'_m}{\operatorname{tg} u_1}; \quad \overline{\beta} = -\frac{f}{f'} \cdot \frac{\operatorname{tg} u_1}{\operatorname{tg} u'_m} = \frac{n_1}{n'_m} \cdot \frac{\operatorname{tg} u_1}{\operatorname{tg} u'_m}; \quad \overline{\alpha} = \frac{n'_m}{n_1} \overline{\beta}^2. \quad (I, 67)$$

Оптическая сила и положение фокусов у двухкомпонентной системы. В практике объективостроения часто применяются двухкомпонентные системы (телеобъективы, светосильные объективы Петцваля и др.). Обозначив через d расстояние между главными плоскостями компонентов, а через  $\Phi_1$  и  $\Phi_2$  — их силы, воспользовавшись (I, 64) и (I, 65) и положив  $u_1 = 0$ , получим:

tg 
$$u_2 = h_1 \Phi_1$$
;  $h_2 = h_1 - d$  tg  $u_2 = h_1 (1 - d\Phi_1)$ ;  
tg  $u_3 = h_1 \left( \frac{n_2}{n_2'} \Phi_1 + \Phi_2 - d\Phi_1 \Phi_2 \right)$ .

Отсюда находим силу оптической системы  $\Phi$  и ее фокусное расстояние f':

$$\Phi = \frac{1}{f'} = \frac{\operatorname{tg} u_3}{h_1} = \frac{n_2}{n_2'} \Phi_1 + \Phi_2 - d\Phi_1 \Phi_2.$$
 (I,68)

Положения заднего фокуса F' и задней главной точки H' определятся отрезками  $a'_{F'}$  и  $b'_{H'}$ :

$$a'_{F'} = \frac{h_2}{\operatorname{tg} u_3} = \frac{1 - d\Phi_1}{\Phi}; \quad b'_{H'} = f' - a'_{F'}, \quad (I, 69)$$

где  $b'_{H'}$  — расстояние задней главной точки H' всей системы, отсчитываемое от задней главной точки второго компонента.

Если оба компонента системы находятся в воздухе, то вместо силы оптической системы и ее компонентов  $\Phi_i$  можно принять оптическую силу системы и ее компонентов  $\phi_i$ :

$$\varphi = \frac{1}{f'} = \varphi_1 + \varphi_2 - d\varphi_1 \varphi_2; \ a'_{F'} = \frac{1 - d\varphi_1}{\varphi}; b'_{H'} = f' - a'_{F'}; \ a_F = -\frac{1 - d\varphi_2}{\varphi}; \ b_H = -f + a_F,$$
 (I,70)

где d — расстояние между задней главной точкой первого компонента и передней главной точкой второго компонента. Иногда вместо расстояния d вводят так называемый оптический интервал  $\Delta$  — расстояние от заднего фокуса первого компонента до переднего фокуса второго компонента. В этом случае имеем:

$$d = f_1' + \Delta - f_2. \tag{I,71}$$

. .

После подстановки в (I, 70) и некоторых преобразований, получим:

$$f' = -f = -\frac{f_1' f_2'}{\Delta}; \quad a'_{F'} = f_2' \left( 1 + \frac{f_2'}{\Delta} \right);$$
  
$$b'_{H'} = f' - a'_{F'}; \quad a_F = -f_1' \left( 1 + \frac{f_1'}{\Delta} \right); \quad b_H = -f + a_F. \quad (I,72)$$

Особый интерес представляет класс оптических систем, у которых оптический интервал  $\Delta = 0$ ; все величины, определяемые выражениями

(1, 72), становятся бесконечно большими, в том числе и  $f' = -f \to \infty$ ; это так называемые афокальные, или телескопические, системы.

Линзы конечной толщины. Применим формулы (1,68) и (1,69) к линзе конечной толщины, рассматривая ее как систему, состоящую из двух бесконечно тонких компонентов: каждую из преломляющих поверхностей примем в качестве компонента, у которого обе главные точки совмещены и расположены в вершине поверхности. Одновременно в формулах (I, 68) и (I, 69) произведем замену буквенных обозначений положений F' и H' применительно к линзе, у которой расстояния точек F' и H' обычно отсчитываются от вершины соответствующей поверхности, а именно:  $a'_{F'} = s'_{F'}$  и  $b'_{H'} = t'_{H'}$  (рис. I, 26).



Рис. I, 26. Преломление луча в линзе конечной толщины



Рис. I, 27. Положение главных илоскостей в линзах различного вида

Воспользовавшись инвариантом Аббе (I, 24), напишем выражения фокусных расстояний для обеих поверхностей линзы, приняв  $n_2 = n$  и  $n'_2 = 1$ :

$$f'_1 = \frac{nr_1}{n-1}$$
;  $f'_2 = -\frac{r_2}{n-1}$ .

После подстановки в (I, 68) и (I, 69), обратив внимание, что  $\Phi_1 = \frac{1}{f'_1}$  и  $\Phi_2 = \frac{1}{f'_2}$ , получим:

$$\varphi = \frac{1}{f'} = (n-1) \left( \frac{1}{r_1} - \frac{1}{r_2} \right) + \frac{(n-1)^2 d}{nr_1 r_2};$$
  

$$s'_{F'} = f' \left( 1 - \frac{n-1}{nr_1} d \right); \quad t'_{H'} = -f' \frac{n-1}{nr_1} d.$$
(I,73)

Не приводя здесь вывода, напишем выражения отрезков  $s_F$  и  $t_H$ , определяющих положения переднего фокуса и передней главной точки линзы:

$$s_F = -f'\left(1 + \frac{n-1}{nr_2}d\right); \ t_H = -f' \frac{n-1}{nr_2}d.$$
 (I,73')

Положение главных плоскостей в линзах различного вида. Линзы делятся на две группы: а) имеющие положительное заднее фокусное расстояние (положительные линзы); б) имеющие отрицательное заднее фокусное расстояние (отрицательные линзы). По своему оптическому действию положительные линзы являются собирательными, а отрицательные — рассеивающими. По геометрической форме преломляющих поверхностей положительные линзы бывают (рис. I, 27) двояковыпуклыми (a), выпукло-плоскими (б) и выпукло-вогнутыми (положительными менисками) (в). У всех этих линз толщина по оси линзы больше, чем на краю. Отрицательные линзы бывают двояковогнутыми (г), вогнуто-плоскими (д) и вогнуто-выпуклыми (отрицательными менисками) (е). Положения главных плоскостей в линзах зависят от их формы. Как видно из рис. I, 27, при непрерывном изменении радиуса  $r_2$ второй поверхности в одну сторону без изменения радиуса  $r_1$  первой поверхности главные плоскости непрерывно перемещаются в одном и том же направлении; при этом расстояние  $\delta$  между главными плоскостями почти не изменяется и приблизительно равно:

$$\delta \approx \frac{n-1}{n} d, \qquad (I,74)$$

т. е. не зависит от радиусов  $r_1$  и  $r_2$ . Действительно, из рис. I, 26:

$$d = t_H + \delta - t'_{H'};$$

подставляя вместо  $t_H$  и  $t'_{H'}$  их значения из (1, 73) и (1, 73'), получим:

$$\delta = \left[1 - f' \ \frac{n-1}{n} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)\right] d = \left(1 - \frac{f'}{nf_0'}\right) d, \qquad (1, 74')$$

где  $f'_0$  — фокусное расстояние тонкой линзы (d = 0) с теми же радиусами  $r_1$  и  $r_2$ , какие имеет толстая линза (см. формулу I, 73).

Если толщина линзы d не слишком велика, то можно положить, что  $f' \approx f'_0$ ; приходим к написанной выше формуле (1,74). Если принять n = 1,5, получим  $\delta \approx \frac{1}{3} d$  независимо от формы линзы.

Представленные на рис. I, 27 положения главных плоскостей определяются теми же элементарными формулами для величин  $t_H$  и  $t'_{H'}$ (I, 73):

$$t'_{H'} = -f' \frac{n-1}{nr_1} d; \ t_H = -f' \frac{n-1}{nr_2} d.$$

Определение фокусных расстояний, положений главных плоскостей и фокусов в многокомпонентной системе. В этом случае луч поступает в систему параллельно оптической оси  $u_1 = 0$  на некоторой высоте  $h_1$ . Заднее фокусное расстояние всей системы f'определится из формулы (I, 37):

$$f' = \frac{h_1}{\operatorname{tg} u'_m} \,.$$

Если продолжить направления входного и выходного лучей до их взаимного пересечения (рис. I, 28) и через эту точку провести плоскость, перпендикулярную оптической оси, получим положение задней главной плоскости  $\overline{H'}$  всей системы, так как при таком построении лучи пересекают главные плоскости системы на равных высотах:

$$h' = h_1$$

Положение заднего фокуса F' всей системы определится отрезком:

$$a'_{F'} = \frac{h_m}{\operatorname{tg} u'_m} \,. \tag{I,75}$$



Рис. І, 28. Определение положения кардинальных точек

Положение переднего фокуса Fи передней главной плоскости  $\overline{H}$ , а также величина переднего фокусного расстояния f определятся в результате аналогичного расчета хода луча, но в обратном направлении, положив  $u'_m = 0$  и задавшись произвольным значением  $h_m$ . В результате расчета будут определены  $h_1$  и  $u_1$ ,что позволит вычислить искомые величины:

$$f = \frac{h_m}{\operatorname{tg} u_1}, \ a_F = \frac{h_1}{\operatorname{tg} u_1}.$$
 (I,75')

В формулах при их применении в области параксиальной оптики вместо тангенсов конечных углов *и* и *и*' следует брать малые углы а и а'.

Увеличение и оптическая сила системы компонентов, находящихся в воздухе. В формуле (I, 64) можно принять  $n_i = n'_i = 1$  и силу *i*-го компонента  $\Phi_i = \frac{1}{f'_i}$  считать равной оптической силе компонента  $\varphi_i = \frac{n'_i}{f'_i}$ . Приходим к рекуррентным формулам для последовательного расчета луча через сложную систему:

$$\operatorname{tg} u'_{i} = \operatorname{tg} u_{i} + h_{i} \varphi_{i}; \quad h_{i+1} = h_{i} - d_{i} \operatorname{tg} u'_{i}.$$
 (I,76)

Последовательно применив эту формулу к каждому из компонентов, определим:

$$+ \begin{cases} tg \, u_2 = tg \, u_1 + h_1 \varphi_1, \\ tg \, u_3 = tg \, u_2 + h_2 \varphi_2, \\ \vdots & \vdots & \vdots \\ tg \, u_{m+1} = tg \, u_m + h_m \varphi_m \end{cases}$$
(I,77)

$$\operatorname{tg} u_{m+1} = \operatorname{tg} u_1 + \sum_{1}^{m} h_i \varphi_i$$

46

Линейное увеличение  $\overline{\beta}$  всей системы определится из выражения:

$$\overline{\beta} = \frac{\operatorname{tg} u_1}{\operatorname{tg} u_{m+1}}.$$
 (I,78)

Оптическую силу  $\varphi$  системы найдем из (I, 77), положив  $u_1 = 0$ .

$$\varphi = \frac{\operatorname{tg} u_{m+1}}{h_1} = \frac{1}{h_1} \sum_{i=1}^{l=m} h_i \varphi_i.$$
 (I,79)

Эти формулы будут применены в дальнейшем к многокомпонентным объективам.

# § 5. ОГРАНИЧЕНИЕ ПУЧКОВ ЛУЧЕЙ В ОБЪЕКТИВАХ

Оптическая система может состоять из линз, призм, зеркал, вмонтированных в оправы. Кроме того, часто в оптических приборах имеются непрозрачные экраны с отверстиями — диафрагмы, которые, так же как и оправы линз, ограничивают световые пучки, вступающие и проходящие сквозь систему. Таким образом, во всех оптических приборах имеет место ограничение пучков лучей.

От ограничения пучков зависит ряд геометрических и физических свойств оптических систем: энергетические их свойства — световой поток, проходящий через систему, освещенность изображений, распределение освещенности в плоскости изображения; аберрационные свойства — структура пучков лучей, выходящих из оптической системы; дифракционные свойства, являющиеся неизбежным следствием волновой природы света и приводящие к искажению изображений точек даже в системах с весьма малыми аберрациями; геометрические свойства изображения «глубины» трехмерного пространства, связанные с величинами углов сходимости проходящих сквозь систему пучков; разрешающая способность системы, определяющая возможность изображения деталей объектов мелкой структуры; контрастные свойства изображений точек, зависящие от аберраций проходящих пучков лучей, в частности тех частей пучков, которые содержат сильно аберрированные лучи, «срезание» (экранирование) которых повышает резкость оптического изображения точек.

Оптические системы, даже специально рассчитанные, могут давать удовлетворительные изображения только ограниченных частей пространства посредством пучков лучей, заполняющих ограниченные телесные углы. В оптических приборах различают два рода диафрагм, имеющих чаще всего форму круглых отверстий с центром, расположенным на оптической оси:

a) специально установленная диафрагма или оправа одной из линз, которая ограничивает пучки лучей, выходящих из точек предмета, расположенных на оптической оси и проходящих через оптическую систему, — так называемая действующая, или апертурная, диафрагма; б) диафрагма, ограничивающая часть пространства, изображаемого оптической системой, т. е. поле зрения системы; эта диафрагма называется диафрагмой поля зрения, или полевой диафрагмой.

Зрачки оптической системы. Чтобы определить среди нескольких диафрагм или оправ линз сложной оптической системы ту, которая ограничивает проходящие в системе пучки лучей, обычно поступают следующим образом. Определяют положения и величины изображений всех диафрагм и оправ линз системы, образуемые теми частями оптической системы, какие предшествуют каждой диафрагме; иными словами, определяют их изображения в пространстве предметов.

Аналогично находят изображения тех же диафрагм в пространстве изображений. На рис. I, 29 отрезок A'B' является изображением пред-



Рис. I, 29. Ограничение пучков лучей в оптической системе

мета AB. Если из центра предмета — точки S — провести лучи к краям всех изображений диафрагм в пространстве предметов, то среди всех изображений окажется одно, для которого угол между этими лучами будет наименьшим. На рисунке схематически представлена сложная оптическая система, состоящая из двух компонентов: первого компонента  $L_1$ , расположенного между предметом AB и материальной диафрагмой  $P_1P_2$  (этот компонент может быть и многолинзовым, но мы условно представили его одной линзой  $L_1$ ), и второго компонента  $L_2$ . Из центра предмета S под некоторыми углами мы видим: оправу линзы  $L_1$ , отверстие  $P'_1P'_2$ , являющееся изображением материальной диафрагмы  $P_1 P_2$ , и отверстие  $M'_1M'_2$ , являющееся изображением оправы линзы  $L_2$ , образуемым линзой  $L_1$ .

Под наименьшим углом 2u из точки S видно отверстие  $P'_{1}P'_{2}$ . Очевидно, всякий луч, вышедший из точки S под углом с осью, превышающим угол u, не может пройти сквозь систему, так как на пути он встретит непрозрачную часть диафрагмы  $P_{1}P_{2}$  (после преломления луча через линзу  $L_{1}$ ). Следовательно, точка на оптической оси системы изображается пучком лучей, заключенным внутри телесного угла, плоское сечение которого равно 2u.

Из центра изображения S' под некоторыми углами мы видим: оправу линзы  $L_2$ , отверстие  $P''_1 P''_2$ , являющееся изображением диафрагмы  $P_1 P_2$ , образуемым линзой  $L_2$ , и отверстие  $K'_1 K'_2$ , являющееся изображением оправы линзы  $L_1$ , образуемым линзой  $L_2$ . Под наименьшим углом 2u' из точки S' видно отверстие  $P''_1P''_2$ . Следовательно, диафрагма  $P_1P_2$  (изображением которой является как отверстие  $P'_1P'_2$ , так и отверстие  $P''_1P''_2$ ) ограничивает пучки лучей, проходящих через оптическую систему; она определяет заполняемые лучами величины телесных углов, вершины которых расположены в точках S и S', а плоские сечения которых равны 2u - в пространстве предметов и 2u' - в пространстве изображений.

Диафрагма  $P_1P_2$  называется *действующей*, или апертурной, диафрагмой. Ее изображение предшествующей частью системы в пространстве предметов называется входным зрачком  $P'_1P'_2$  оптической системы; ее изображений последующей частью оптической системы в пространстве изображений называется выходным зрачком  $P'_1P'_2$  оптической системы; ее изображений называется выходным зрачком  $P''_1P''_2$  оптической системы. Угол и между оптической осью и лучом, проведенным из центра предмета S к краю входного зрачка, называется апертурным углом в пространстве предметов. Угол и' между оптической осью и лучом, проведенным из центра изображений S' к краю выходного зрачка, называется апертурным углом в пространстве изображений. Входной и выходной зрачки оптически сопряжены. Если диаметр входного зрачка  $D_{\text{вых.зр}} = 2a_0$ , а выходного  $D_{\text{вых.зр}} = 2a'_0$ , то

$$\overline{\beta}_{3p} = \frac{a_0}{a_0}, \qquad (I,80)$$

где  $\overline{\beta}_{3p}$  — линейное увеличение в зрачках системы. Апертурные углы и и и' связаны зависимостью:

$$u' = \gamma u = \frac{n}{n'} \cdot \frac{u}{\overline{\beta}}; \qquad (I,81)$$

где ү и  $\overline{\beta}$  — соответственно угловое и линейное увеличения в точках S и S'.

Синус апертурного угла u, умноженный на показатель преломления *n* пространства предметов, называется числовой апертурой оптической системы  $A = n \sin u$ . Как будет показано ниже, яркость изображения, образуемого системой, пропорциональна квадрату синуса угла u':

$$\sin^2 u' = \gamma^2 A^2.$$

Если предмет расположен на бесконечно далеком расстоянии, то апертурный угол u в пространстве предметов равен нулю. В этом случае, как это, например, принято в фотографических объективах, апертура характеризуется отношением диаметра входного зрачка  $D_{\text{вх.зр}}$  к фокусному расстоянию объектива:  $\varepsilon = \frac{D_{\text{вх.зр}}}{f'}$ . Это отношение называется относительным отверстием. Освещенность изображения, даваемого объективом, пропорциональна квадрату относительного отверстия  $\varepsilon^2$ ; поэтому последнее называют геометрической светосилой:

$$\varepsilon^{2} = \left(\frac{D_{\text{BX.3P}}}{f'}\right)^{2} \cdot \tag{I,82}$$

Люки и поле зрения оптической системы. Полем зрения оптической системы называют изображаемую ею часть пространства предметов. Так как габариты оптической системы, в частности диаметры оправ линз, всегда ограничены, то и поле зрения системы имеет вполне определенную величину. Это ограничение поля зрения достигается так называемой диафрагмой поля зрения, или полевой диафрагмой.

Предположим, что апертурная диафрагма  $P_1P_2$  (см. рис. I, 29), а следовательно, и зрачки  $P'_1P'_2$  и  $P''_1P''_2$  имеют весьма малые размеры. Всякая точка предмета AB будет изображаться узкими пучками в окрестностях через так называемых главных лучей — лучей, проходящих через центр P апертурной диафрагмы. Предположим далее, что все остальные диафрагмы, в том числе оправы линз  $L_1$  и  $L_2$  и их изображения  $K'_1K'_2$  и  $M'_1M'_2$ , имеют конечные размеры.

По отношению к центру входного зрачка P' оправа первой линзы  $K_1K_2$  и отверстие  $M'_1M'_2$  (являющееся изображением оправы  $M_1M_2$ , даваемым линзой  $L_1$ ) имеют разные угловые размеры: угол, под которым из точки P' видны края  $K_1K_2$  оправы, больше угла  $M'_1P'M'_2 = 2w$ . Отсюда очевидно, что отверстие  $M'_1M'_2$  ограничит величину изображаемого оптической системой предмета AB, иными словами, если размер входного зрачка  $P'_1P'_2$  весьма мал, то угол поля зрения системы равен 2w, но отверстие  $M'_1M'_2$  является изображением диафрагмы  $M_1M_2$ , следовательно, диафрагма  $M_1M_2$  и явится диафрагмой поля зрения.

Изображение диафрагмы поля зрения, даваемое предшествующей ей частью оптической системы в пространстве предметов, называется *входным люком*, или входным окном; в нашем случае таковым является отверстие  $M'_1M'_2$ . Угол 2*w* между лучами, проведенными из центра входного зрачка к краям входного люка, называется углом поля зрения в пространстве предметов. Изображение диафрагмы поля зрения в пространстве изображений называется *выходным люком*. В нашем случае позади диафрагмы поля зрения  $M_1M_2$  нет никакой оптической системы и, следовательно, эта диафрагма одновременно явится и выходным люком. Входной и выходной люки оптически сопряжены.

Поле зрения оптической системы и ее виньетирование. При малом диаметре входного зрачка входной люк ограничивает часть пространства, изображаемого оптической системой.

Пусть линейные размеры предмета AS равны *l*, расстояние P'S предмета AB от центра входного зрачка — p; половина угла поля зрения w; отсюда:

$$\operatorname{tg} w = -\frac{l}{p} \,. \tag{1,83}$$

Размеры изображения l' определятся из формулы:

$$l' = \overline{\beta}l = -p\overline{\beta} \operatorname{tg} \omega, \qquad (I,84)$$

где  $\overline{\beta}$  — линейное увеличение системы.

Если предмет расположен на бесконечно большом расстоянии, то из точки предмета, расположенной вне оптической оси, падает пучок па-

раллельных лучей, направленный под некоторым углом w к оптической оси (см. рис. I, 21). После прохождения через систему этот пучок соберется в точке A', расположенной в фокальной плоскости и на расстоянии l' от оси, как было показано выше (I, 53'):

$$l' = -\frac{n}{n'} f' \operatorname{tg} \omega.$$

В действительности зрачки оптической системы имеют не бесконечно малые, а конечные размеры и иногда довольно значительные (например, у светосильных объективов). В этом случае входной люк не вполне определяет поле зрения системы, так как некоторые точки предмета, для которых главные лучи не проходят сквозь систему, все же могут изображаться другими лучами пучка. На рис. I, 29 главные лучи AP' и BP' определяют линейные размеры поля зрения AB и соответствующий угол поля зрения 2w при бесконечно малом диаметре входного зрачка; однако луч  $A_2P'$ , выходящий из точки  $A_2$  и проходящий через верхний край  $M'_2$  входного люка и нижний край  $P'_1$  входного зрачка, тоже еще может пройти сквозь систему, хотя угол этого луча с оптической осью  $\overline{w}$  больше угла w, определяемого из формулы (I, 83), и равен:

$$\operatorname{tg} \overline{w} = \operatorname{tg} w - \frac{|a_0|}{\Delta}, \qquad (I,85)$$

где  $a_0$  — радиус входного зрачка;  $\Delta$  — расстояние плоскости входного люка от плоскости входного зрачка. Этой крайней точке поля  $A_2$  соответствует угол  $A_2P'S = w_1$  (см. рис. I, 29), тангенс которого равен:

$$\operatorname{tg} w_{1} = \operatorname{tg} w + \left(\frac{1}{p} - \frac{1}{\Delta}\right) |a_{0}| = \operatorname{tg} \overline{w} + \frac{|a_{0}|}{p}. \quad (I,85')$$

Очевидно, луч  $A_2P'$ , образующий угол  $\overline{w}$  с оптической осью, будет предельным лучом, пропускаемым оптической системой. Рассмотрим это весьма важное в оптике явление подробнее.

Точка S на оси и окружающие ее точки поля, расположенные в пределах радиуса поля  $SA_1$ , изображаются пучками лучей, полностью заполняющими входной зрачок  $P'_1P'_2$  системы.

Точки поля, расположенные за пределами круга радиуса  $SA_1$ , будут изображаться пучками лучей, уже не целиком заполняющими входной зрачок: часть лучей будет экранироваться входным люком системы. Например, точка A будет изображаться пучком лучей, заполняющих лишь нижнюю половину входного зрачка: от центра зрачка и до его края  $P'_1$ . Такое частичное затенение пучка лучей, вступающих во входной зрачок системы, носит название виньетирования. Обычно характеризуют величину виньетирования пучка, выражая ее в процентах. В нашем случае все точки поля в пределах круга радиуса  $SA_1$  изображаются без виньетирования. Точки поля, расположенные в кольцевой зоне, внешний радиус которой SA, а внутренний  $SA_1$ изображаются с виньетированием, не превышающим 50%; строго говоря, с виньетированием, достигающим 50%, изобразятся лишь точки предметов, расположенные на окружности радиуса SA, все же остальные точки поля, расположенные ближе к оптической оси, изобразятся с меньшим чем 50% виньетированием.

Зоне поля, имеющей виньетирование 50%, соответствует угол 2w, который и принято условно считать углом поля зрения системы. Наконец, точки поля зрения, расположенные в кольцевой зоне, внутренний радиус которой больше радиуса SA, будут изображаться с виньетированием бо́льшим чем 50%; крайней точкой поля, в которой виньетирование достигает 100%, явится точка  $A_2$ . За пределами площади, ограниченной кругом радиуса  $SA_2$ , начинается зона полного затенения.

Могут встретиться случаи различного относительного расположения зрачков и люков оптической системы. В частности, в тех случаях, когда плоскость входного люка совмещена с плоскостью предметов, все точки поля зрения системы изображаются полными пучками, т.е. без виньетирования.

Иногда в сложных оптических системах имеются два входных люка. В этих случаях пучки лучей, выходящие из точек предмета, расположенных вне центра поля, затеняются люками с двух сторон, т. е. имеет место двустороннее виньетирование. В подобных случаях изменение виньетирования наклонных пучков с изменением угла поля зрения системы оказывается довольно сложным.

Все изложенное о виньетировании пучков в поле пространства предметов может быть полностью повторено применительно к полю пространства изображений.

Определение действующего отверстия входного зрачка. Часть площади входного зрачка, заполняемая лучами наклонного пучка, проходящего через оптическую систему, назовем *действующим отверстием входного зрачка*. Отношение площади действующего отверстия зрачка  $S_w$  к общей площади его  $S_0$  назовем функцией виньетирования  $K_w$  для данного угла поля w:

$$K_{w} = \frac{S_{w}}{S_{0}} \cdot \tag{1,86}$$

Определение функции виньетирования в общем виде не представляется возможным: эта задача обычно решается как в стадии определения габаритов системы — приближенным способом, так и в последующей стадии коррекции аберраций системы, когда виньетирование уточняется на основании непосредственного расчета хода лучей. В подавляющем числе случаев величину  $K_w$  и не требуется знать с большой точностью; лишь в тех случаях, когда зрачки являются весьма сильно аберрированными, необходимо для каждого угла поля w определять изображения апертурной диафрагмы с учетом аберраций в зрачках на основании непосредственного расчета хода лучей через оптическую систему — лучей как меридиональных, так и косых (см. главу II), которые фактически проходят через точки контура апертурной диафрагмы. При применении электронных вычислительных машин (ЭВМ) эта задача решается просто и быстро. Подобную задачу с достаточной тщательностью приходится решать при разработке особо светосильных и широко-

угольных объективов, в которых аберрации в зрачках могут достигать больших величин.

В объективах с обычными оптическими характеристиками, если величина виньетирования не превышает 20—30% (т. е. величина  $K_w$  не меньше 0,8—0,7), можно считать, что  $K_w$  приближенно равно отношению соответствующих линейных размеров сечений наклонных пучков лучей в меридиональной плоскости:

$$\overline{K}_{w} = \frac{D_{w}}{D_{0}} \cdot \tag{I,87}$$

Если же величина отношения  $\frac{D_w}{D_0}$  уменьшается до 0,5, то отношение площадей, определяемое из формулы (I, 86), может оказаться значительно меньшим 50%.

Приведем формулы при так называемом двустороннем виньетировании, имеющем место в двукомпонентных объективах, в которых диафрагма расположена между апертурная компонентами системы. Такое двустороннее виньетирование представлено на рис. I, 30. Пусть С, —центр входного зрачка объектива, радиус которого  $a_0 = \frac{1}{2} D_0$ ;  $C_2$  и  $C_3$  — центры входных люков — других диафрагм (оправ линз или их изображений), экранирующих лучи наклонных пучков при их прохождении через объектив;  $\check{C}_2 A = a_1$  и  $C_3 E = a_2$  — радиусы; *D*<sub>w</sub> — меридиональное сечение проходящего через объектив наклонного пучка. Заштрихованные площади сегментов определяют виньетирование наклонных пучков люками.



Рис. І, 30. Схема двустороннего виньетирования

Площадь AHBL равна площади сектора  $C_1AHB$  минус площадь треугольника  $C_1AB$ , минус площадь сегмента ALB:

$$\overline{S} = \frac{\pi}{360} \psi_1' a_0^2 - \frac{1}{2} \sin \psi_1' a_0^2 - \left( \frac{\pi}{180} \psi_2 - \sin \psi_2 \right) \frac{a_1^2}{2}.$$

Аналогично заштрихованная площадь ЕКGM равна:

$$\overline{\overline{S}} = \frac{\pi}{360} \psi_1^{"} a_0^2 - \frac{1}{2} \sin \psi_1^{"} a_2^2 - \left(\frac{\pi}{180} \psi_3 - \sin \psi_3\right) \frac{a_2^2}{2}.$$

Площадь сечения пучка ALBGME, проходящего через объектив:

$$S_{w} = \pi a_{0}^{2} - \overline{S} - \overline{S} = \left[2\pi - \left(\frac{\pi}{180} \psi_{1}^{'} - \sin \psi_{1}^{'}\right) - \left(\frac{\pi}{180} \psi_{1}^{'} - \sin \psi_{1}^{'}\right)\right] \frac{a_{0}^{2}}{2} + \left(\frac{\pi}{180} \psi_{2} - \sin \psi_{2}\right) \frac{a_{1}^{2}}{2} + \left(\frac{\pi}{180} \psi_{3} - \sin \psi_{3}\right) \frac{a_{2}^{2}}{2}.$$

Отношение площади  $S_w$  к площади входного зрачка  $S_0 = \pi a_0^2$  определяет функцию виньетирования  $K_w$  (см. I, 86):

$$K_{w} = \frac{1}{2} \left( 2 - \frac{\psi_{1}' + \psi_{1}''}{180} + \frac{\sin\psi_{1}' + \sin\psi_{1}''}{\pi} \right) + \frac{1}{2} \left( \frac{\psi_{2}}{180} - \frac{\sin\psi_{2}}{\pi} \right) \frac{a_{1}^{2}}{a_{0}^{2}} + \frac{1}{2} \left( \frac{\psi_{3}}{180} - \frac{\sin\psi_{3}}{\pi} \right) \frac{a_{2}^{2}}{a_{0}^{2}}.$$
 (I,88)

В случае одностороннего виньетирования пучка  $\psi_3=0,\,\psi''_1=0$  находим:

$$K_{w} = \frac{1}{2} \left( 2 - \frac{\psi_{1}'}{180} + \frac{\sin\psi_{1}'}{\pi} \right) + \frac{1}{2} \left( \frac{\psi_{2}}{180} - \frac{\sin\psi_{2}}{\pi} \right) \frac{a_{1}^{2}}{a_{0}^{2}}.$$
 (I,88')

Как следует из рис. I, 29, хорда AB = d равна:

$$d = 2a_0 \sin \frac{\psi_1}{2} = 2a_1 \sin \frac{\psi_2}{2}$$

Если  $a_1 = a_0$ , то  $\psi'_1 = 2\pi - \psi_2$ ; из (I, 88') получим:

$$K_{w} = \frac{\psi}{180} - \frac{\sin\psi}{\pi}, \qquad (I, 88'')$$

где  $\psi = \psi_2$ . Меридиональное сечение пучка  $D_w$  в этом случае будет равно:

$$D_w = d \operatorname{tg} \frac{\psi}{4} \,. \tag{I,89}$$

Отсюда находим величину  $\overline{K_w}$  (I, 87):

$$\overline{K}_{w} = \frac{D_{w}}{D_{0}} = 2\sin^{2}\frac{\psi}{4} \cdot \tag{I,90}$$

Определив из расчета хода лучей через систему линейную функцию  $\overline{K}_{w}$ , из последней формулы вычисляем  $\psi$ , а из (I, 88") — функцию виньетирования  $K_{w}$  по площади зрачка.

Ограничение пучков лучей в объективах. В фотографических объективах апертурная диафрагма  $P_1P_2$  часто расположена внутри объектива в пространстве между половинками I и II (рис. I, 31). Так как диафрагма  $P_1P_2$  расположена близко к обеим половинкам системы, то ее изображения как через половину I (входной зрачок), так и через половину II (выходной зрачок) мнимые, прямые, увеличенные и расположены обычно внутри объектива недалеко от диафрагмы  $P_1P_2$ : входной зрачок  $P'_1P'_2$  расположен справа от апертурной диафрагмы; выходной зрачок  $P''_1P''_2$  — слева от нее. Для определения положения и величины зрачков рассчитывается параксиальный главный луч, проходящий через центр P апертурной диафрагмы, т. е. выполняют

расчет так называемого второго параксиального луча. Углы этого луча с оптической осью обычно принято обозначать буквами  $\beta$ , а высоты точек пересечения луча с поверхностями — буквами y; таким образом, вместо формул (I,31) и (I, 32'), предназначенных для расчета первого параксиального луча (т. е. луча, проходящего через центр предмета), приходим к аналогичным формулам:

$$n'_{k}\beta'_{k} - n_{k}\beta_{k} = y_{k}\left(\frac{n'_{k} - n_{k}}{r_{k}}\right);$$
  
$$y_{k+1} = y_{k} - d_{k}\beta_{k+1}.$$
 (I,91)



Рис. І, 31. Ограничение пучков лучей в объективе

Из расчета второго параксиального луча получаем угловые увеличения  $\gamma_{P'}$  и  $\gamma_{P'}$  в зрачках системы:

$$\gamma_{p'} = \frac{\beta_1}{\beta_g}; \quad \gamma_{p'} = \frac{\beta'}{\beta_g}; \quad (I, 92)$$

отсюда вычисляем радиусы входного  $a_0$  и выходного  $a_0'$  зрачков:

$$a_0 = \frac{\overline{a}}{\gamma_{p'}}; \quad a'_0 = \frac{\overline{a}}{\gamma_{p''}}, \quad (I, 92')$$

где <u>а</u> — радиус апертурной диафрагмы.

Из рассмотрения того же рис. I, 31 следует, что лучи наклонного пучка виньетируются оправами линз обеих половинок объектива: нижняя часть наклонного пучка лучей, расположенных ниже луча BC, экранируется оправой компонента I; верхняя часть того же наклонного пучка лучей, расположенных выше луча DE, экранируется оправой компонента II. Таким образом, в объективе имеет место сложное двустороннее виньетирование. При этом в объективе отсутствует диафрагма поля зрения как таковая: ее заменяет более сложная система диафрагм — оправы линз. Оправы линз CG первой половинки объектива выполняют функции входного люка в отношении нижней части лучей наклонного пучка; мнимое увеличение изображения K'L' оправ линз II, расположенное правее компонента II объектива, выполняет функции входного люка в отношении верхней части лучей наклонного пучка. Очевидно, положение и величины этих изображений можно определить аналогично предыдущему путем расчета вспомогательных лучей, проходящих через центры соответствующих линз (оправ) с помощью тех же формул (I, 91).

Схема рассмотренного двустороннего виньетирования представлена на рис. I, 32. Круг  $P_1P_2$  представляет входной зрачок объектива; центр зрачка — в точке *P*. (Все обозначения сохранены здесь такими же,



Рис. I, 32. Схема двустороннего виньетирования объективом

7. (все обозначения сохранены здесь такими же, как на рис. I, 31.) Окружность CG изображает сечение цилиндрической боковой поверхности пучка, проходящего через входной люк CG, плоскостью входного зрачка; окружность K'L' представляет сечение цилиндрической боковой поверхности пучка, проходящего через второй входной люк K'L', плоскостью входного зрачка. Части сечения пучка наклонных лучей, экранируемые обоими люками, заштрихованы.

Таким образом, из всего пучка, заполняющего входной зрачок, проходит только часть его, ограниченная дугами двух окружностей. При малых углах с оптической осью наклонные пучки проходят входной зрачок при весьма малом виньетировании. При дальнейшем возрастании углов, обра-

зуемых пучками с оптической осью, может появиться дополнительное виньетирование, вызванное новой диафрагмой, действие которой на пучки ранее не сказывалось; последнее часто имеет место у светосильных широкоугольных объективов.

### § 6. ОПРЕДЕЛЕНИЕ ГАБАРИТОВ ОБЪЕКТИВОВ

Знание основных оптических характеристик объектива— фокусного расстояния, относительного отверстия и угла поля зрения — делает возможным в объективе заданной оптической схемы определение его габаритов. В первой стадии разработки объектива для определения его габаритов уже достаточно, если известно число компонентов оптической системы, их оптические силы и хотя бы ориентировочные расстояния между компонентами. Число линз в каждом из компонентов и кривизны их преломляющих поверхностей в этой стадии разработки остаются вне внимания и определяются позднее.

При указанных исходных сведениях представляется возможным определение диаметров компонентов, общей длины объектива, величины его заднего фокального отрезка, виньетирования по полю и других величин, необходимость определения которых вытекает из конкретных требований к разрабатываемому объективу.

Однако в некоторых случаях не представляется возможным в первой стадии разработки определение даже этих внешних элементов: в стадии коррекции аберраций объектива они могут и притом иногда весьма существенно измениться; оптические силы компонентов и расстояния между ними часто являются теми наиболее действенными параметрами, которые в большой степени предопределяют возможность коррекции некоторых видов аберраций (например, аберрации кривизны поверхности изображения, дисторсии, хроматической аберрации увеличений) в следующей стадии разработки.

Объектив обычно содержит лишь одну диафрагму — апертурную; диафрагмы поля зрения в установленном выше понимании объектив не содержит и ограничение его поля зрения осуществляется несколькими диафрагмами, в частности оправами линз. Встречающееся иногда в оптике указание о том, что поле объектива определяется форматом приемника изображения (например, форматом фотопленки), может привести к ложному представлению, что, применив к данному объективу светочувствительный приемник большого формата, можно расширить поле объектива. Это, конечно, не так. Поле зрения объектива определяется качеством изображения в широком смысле и достигается это не только коррекцией аберраций, но и введением рационального виньетирования наклонных пучков.

Сложность (многокомпонентность) схемы разрабатываемого объектива определяется заданными оптическими характеристиками и требованиями к качеству изображения. Поэтому схема объектива, как увидим в дальнейшем, устанавливается на основе анализа ее оптических свойств и учета отечественного и зарубежного опыта разработок. Во всех случаях целесообразно при минимальной длине объектива определять области решений, в которых величины оптических сил компоненнентов также возможно малы.

Общая длина объективов является одним из существенных, а в некоторых случаях (например, в объективах с переменным фокусным расстоянием) определяющим параметром. У линзовых объективов расстояние от переднего компонента до задней фокальной плоскости изменяется в довольно широких пределах: от величины, составляющей 50—60% от фокусного расстояния (у телеобъективов малой светосилы), до 150% и более — у светосильных объективов-анастигматов и до 500—1000% и более — у короткофокусных светосильных широкоугольных объективов, в частности у объективов с особо увеличенным задним фокальным отрезком.

Эти продольные габариты в свою очередь определяют диаметры линз и компонентов, размеры которых в ряде случаев существенно зависят от допускаемого виньетирования наклонных пучков. При определении этих габаритных размеров можно допускать виньетирование лишь с учетом в каждом конкретном случае назначения и условий применения объектива. Например, в обычных фотографических объективах широкого применения (см. главу V) допускается виньетирование 40— 50%; в нормальных кинопроекционных объективах — не более 20%; в специальных широкоугольных объективах в целях повышения освещенности на краю поля виньетирование не только не допускается, но вводится обратный эффект: сечение наклонного пучка, образующего изображение, возрастает по мере возрастания угла поля зрения.

изображение, возрастает по мере возрастания угла поля зрения. При определении габаритов объектива компоненты последнего часто не могут считаться тонкими и условно задаются своими главными плоскостями, расстояния между которыми внутри компонентов зависят от степени сложности компонентов и толщин входящих в него линз. Расчет хода лучей между компонентами системы выполняется по формулам оптики идеальной оптической системы (I, 64) и (I, 65):

$$\operatorname{tg} u_i' = \frac{n_i}{n_i'} \operatorname{tg} u_i + h_i \Phi_i; \quad h_{i+1} = h_i - d_i \operatorname{tg} u_i',$$

 $\Phi = \frac{1}{f_i}$  — сила *i*-го компонента;  $d_i$  — расстояние между главгде ными плоскостями *i*-го и *i* + 1-го компонентов. Для определения действующих (световых) диаметров компонентов

необходимо рассчитать по этим формулам высоты  $h_i$  пересечения с



Рис. I, 33. Ограничение пучков в объективе Петцваля

главными плоскостями компонентов апертурного луча, выходящего из точки предмета, расположенной на оптической оси. Кроме того, необходимо также рассчитать полевой луч — главный луч, выходящий из крайней точки поля предметов и проходящий через центр входного зрачка P (рис. I, 33). Обычно расстояния от оптической оси точек пересечения этим лучом главных плоскостей компонентов обознача-

ют буквами y<sub>i</sub>, а углы луча с оптической осью — буквами w:

$$\operatorname{tg} w_{i}^{'} = \frac{n_{i}}{n_{i}^{'}} \operatorname{tg} w_{i} + y_{i} \Phi_{i}; \quad y_{i+1} = y_{i} - d_{i} \operatorname{tg} w_{i}^{'}.$$
(1,93)

Если в объективе отсутствует виньетирование, то радиусы действующих отверстий компонентов R; определятся как сумма абсолютных значений высот  $h_i$  и  $y_i$ :

$$R_i = h_i + y_i. \tag{I,94}$$

На рис. I, 33 второй вспомогательный луч  $H'_1B$  по выходе из первого компонента пересекает главную плоскость второго компонента в точке В на расстоянии  $BH_2 = y_2$  от оптической оси. Первый вспомогательный (апертурный) луч АD пересекает плоскость второго компонента в точке *D* на расстоянии  $DH_2 = h_2$ . Очевидно, отрезок  $DH_2 = CB$ , т. е. радиус отверстия второго компонента равен  $BH_2 + CB = y_2 + h_2$ .

Расчет обоих вспомогательных лучей должен быть выполнен при соответствующей нормировке величин  $h_i$  и  $y_i$ , а именно:

а) если предмет расположен на бесконечно большом расстоянии от объектива, то следует принять:

$$h_1 = \frac{1}{2} D_0; \quad y_1 = x_1 \operatorname{tg} w_1, \quad (1,94')$$

где  $D_0$  — диаметр вводного зрачка;  $x_1$  — расстояние центра входного зрачка от первого компонента;  $w_1$  — половина угла поля зрения. На рис. I, 33  $x_1 = 0$ , так как плоскость входного зрачка совмещена с главной плоскостью первого компонента, как это обычно имеет место в объективе Петцваля;

б) если плоскость предметов расположена на расстоянии — s<sub>1</sub> от первого компонента, то

$$h_{\mathbf{i}} = s_{\mathbf{i}} \operatorname{tg} u_{\mathbf{i}}, \qquad (\mathbf{I}, 94'')$$

где *u*<sub>1</sub> — апертурный угол в пространстве предметов, определяемый из выражения:

$$\operatorname{tg} u_1 = -\frac{1}{2} \frac{D_0}{(x_1 - s_1)},$$

где  $x_1 - s_1 = -p_1$  — расстояние плоскости предметов от плоскости входного зрачка, диаметр которого  $D_0$ .

Координата  $y_1$  второго вспомогательного луча в плоскости первого компонента определяется из соотношения:

$$y_{\mathbf{i}} = x_{\mathbf{i}} \operatorname{tg} w_{\mathbf{i}}, \qquad (\mathbf{I}, 94''')$$

где tg  $w_1 = \frac{l_1}{-p_1} = \frac{l_1}{x_1 - s_1}$ ;  $l_1$  — расстояние точки предмета от оптической оси.

Однако не всегда возможно, вследствие ограничения габаритов объектива, а иногда и не рационально (из-за несовершенной коррекции аберраций лучей широкого наклонного пучка) увеличивать действующие отверстия компонентов до установленных выше величин их радиусов  $R_i = h_i + y_i$ . Однако величина  $R_i$  не может быть меньше величины  $h_i$  во избежание диафрагмирования апертурного луча, что повлечет уменьшение заданного относительного отверстия объектива. Если же определять радиусы отверстий компонентов из условия  $R_i = h_i$ , то виньетирование наклонных пучков лучей будет иметь место уже для точек изображений, расположенных вблизи центра поля. Таким образом, рациональным выбором величин  $y_i$  и радиусов действующих отверстий  $R_i$  компонентов можно заранее предопределять и влиять на величину виньетирования объектива.

# § 7. ПЕРСПЕКТИВА И ГЛУБИНА ПРОСТРАНСТВА, ИЗОБРАЖАЕМОГО ОБЪЕКТИВОМ

Рассмотрим образование проективных изображений объемных объектов и их отображение объективом; установим при этом условия правильного рассмотрения перспективных изображений и определим факторы, влияющие на глубину пространства, изображаемого объективом.

Проективное изображение объемных предметов. Объектив отображает на плоском светочувствительном слое приемника проективные изображения пространства, реже — изображения плоских предметов. Эти изображения являются действительными и обычно уменьшенными. В большинстве случаев изображаемые объекты имеют некоторую глубину, иными словами, объективом изображается часть пространства, в котором расположены предметы различных размеров и на разных расстояниях. Тем самым объективом приводится к одной плоскости изображение предметов, расположенных в трехмерном пространстве.

Точечные изображения можно получить лишь от тех точек предмета, которые расположены в плоскости наведения, оптически сопряженной со светочувствительной плоскостью приемника. Для точек предмета, расположенных вне плоскости наведения, точки их изображений образуются также вне плоскости приемника; на последнем наблюдаются лишь следы, оставляемые соответствующими конусами лучей, формирующих изображения точек и называемые кружками рассеяния лучей.

Для анализа образования изображений объемных объектов необходимо рассмотреть оптически сопряженную с плоскостью изображения плоскость наведения, на которую спроецирован объект. Центром проекции при этом должен быть центр апертурной диафрагмы, через который проходят главные лучи, формирующие в плоскости приемника следы изображений точек объекта. Такая проекция называется *проективным изображением* пространственного (объемного) объекта. Его изображение в плоскости приемника является, следовательно, проективным изображением, образуемым на основе рассмотренных выше законов оптики идеальной системы.

Таким образом, проективное изображение есть проекция объемного объекта на плоскость наводки, выполненная на основании законов Центральной перспективы, причем центром проекции является центр входного зрачка, а размеры зрачка предполагаются столь малыми, что следы на плоскости наводки от конусов лучей, идущих от точек объекта, не расположенных в плоскости наведения, могут быть приняты за точки. Тем самым среди возможных способов изображения пространства объектив дает наиболее простое и близкое к восприятиям натуры перспективное изображение пространства, приводя к одной плоскости изображения предметов трехмерного пространства.

Зависимость проективного изображения от положения входного зрачка. Проекция объекта на плоскость наводки, выполненная как центральная проекция, центром которой служит середина входного зрачка, а проектирующими лучами являются главные лучи, — есть проективное изображение объекта. Соответственно различным положениям центра проекции (входного зрачка) относительно объекта проективное изображение объекта и его изображение оптической системой имеют различный вид.

Здесь возможны три положения входного зрачка (центра проекции):

а) входной зрачок расположен между объектом и бесконечностью со стороны изображения. Этот случай соответствует так называемой энтоцентрической перспективе;

б) входной зрачок расположен в бесконечности; это случай телецентрической перспективы;

в) входной зрачок расположен между объектом и бесконечностью со стороны пространства объектов; это случай гиперцентрической перспективы.

На рис. І, 34 представлены соответственно эти три случая образования проективного изображения пространственного предмета при

различных положениях входного зрачка. В случае a стенка BC изображенного на рисунке домика, расположенная ближе к объективу, выглядит большей: точка B' в плоскости наводки расположена выше, чем точка E'. В случае б, когда входной зрачок расположен в бесконечности, одинаковые по величине стенки домика BC и ED имеют в проективном изображении одинаковые размеры независимо от их расстояния от объектива. В случае b стенка домика BC, расположенная



Рис. I, 34. Проективное изображение пространственного объекта при различных положениях входного зрачка

ближе к объективу, выглядит меньшей: точка B' расположена в плоскости проективного изображения (эта же плоскость на рисунке является плоскостью наводки) ниже, чем точка E', являющаяся проективным изображением точки E (при центре проекции P'), расположенной дальше от объектива. Эта гиперцентрическая перспектива придает изображению совершенно необычный характер.

Изменение перспективы при рассмотрении проективного изображения при различных положениях глаза. При рассмотрении плоских изображений пространства одним глазом наблюдатель восстанавливает картину пространства по плоскому изображению, проецируя в пространство изображенные на плоскости точки знакомых наблюдателю предметов. Процесс восстановления пространства по перспективному изображению происходит почти всегда: при наблюдении глазом (невооруженным или вооруженным оптическим прибором), при рассмотрении фотографического снимка, при наблюдении телевизионных изображений на экране кинескопа и т. п.

При рассмотрении проективного изображения, образуемого объективом, правильность относительного расположения точек мысленно воспроизводимого пространства — правильность воспроизведения перспективы — зависит от расстояния глаза до наблюдаемого изображения. Чтобы при рассмотрении пространственных изображений не происходило искажения перспективы, необходимо рассматривать изображение с такого расстояния *D*, при котором все угловые расстояния между точками изображения равны угловым расстояниям между соответственными точками действительного пространства.

Определим точками денствительного пространства. Определим это расстояние. Пусть S'A' — плоскость, в которой получилось изображение l' сопряженного ему отрезка l (рис. I, 35), расположенного в плоскости наведения SA; в свою очередь отрезок l является проективным изображением линии BC при центре перспекти-



Рис. I, 35. К установлению масштаба проективного изображения

вы, расположенном в точке P — центре входного зрачка объектива. Так как отрезок l имеет угловые размеры w, то при наблюдении его изображения l' с сохранением правильной перспективы необходимо глаз поместить на расстоянии D:

$$D = -\frac{l'}{\operatorname{tg} \omega}; \qquad (I,95)$$

в этом случае угловые размеры изображения l' будут также равны w. Так как tg $w = -\frac{l}{P}$ , находим :

$$D=\frac{l'}{l}p=p\overline{\beta}.$$

Можно величину *D* выразить через угловое увеличение в зрачках:  $\gamma_{3p} = \frac{\text{tg}\omega'}{\text{tg}\omega}$ , обратив внимание, что

$$\overline{\beta} = rac{l'}{l} = rac{p'\,\mathrm{tg}\,w'}{p\,\mathrm{tg}\,w}$$
 ,

получим:

$$D = p\overline{\beta} = p'\gamma_{3p}.$$
 (I,95')

Это условие получено в предположении, что плоскость наведения расположена на конечном расстоянии. У объективов, имеющих оптическую схему, симметричную или близкую к симметричной,  $\gamma_{3p} = 1$  и, следовательно, D = p'; в этих случаях для восприятия изображения с сохранением правильной перспективы необходимо расположить глаз на расстоянии p' от плоскости изображений, т. е. на таком расстоянии, на котором от последней находился центр выходного зрачка.

Если расстояние глаза наблюдателя от изображения будет меньше расстояния *D*, то правильность перспективы нарушается: предметы представляются наблюдателю сжатыми по глубине, причем объекты неопознанные (истинные формы которых неизвестны) представляются наблюдателю искаженными за счет восприятия линейных размеров деталей объекта, ближе расположенных к плоскости наведения, как деталей уменьшенных размеров.

Е́сли же расстояние глаза наблюдателя от изображения больше расстояния *D*, произойдут противоположные искажения перспективы: предметы представляются вытянутыми по глубине, а объекты неопознанные (незнакомые) представляются искаженными за счет восприятия линейных размеров деталей объекта, расположенных ближе к плоскости наведения, как деталей увеличенных размеров.

Условие восприятия правильной перспективы при наблюдении изображений значительно удаленных пространственных предметов. Часто объективы изображают объекты, расположенные на расстояниях, во много раз превышающих фокусное расстояние объектива. В этих случаях угловые размеры изображаемых объектов, определяемые от центра входного зрачка, мало отличаются от таковых, определяемых из передней главной точки объектива, и, следовательно, из (I, 53) и (I, 95) находим:

$$D = f'. \tag{I,95''}$$

Таким образом, для получения естественной перспективы образуемые объективами проективные изображения пространственных предметов нужно рассматривать с правильно выбранного расстояния; для бесконечно удаленных предметов оно равно фокусному расстоянию объектива, которым получено изображение. Подобные изображения дают правильную перспективу лишь при рассмотрении их одним глазом, находящимся в центре проекции изображения.

Малоформатные изображения, образуемые короткофокусными объективами. Определенное выше расстояние D, необходимое для наблюдения естественной перспективы изображений пространственных предметов, часто значительно меньше, чем расстояние до ближней точки глаза наблюдателя. Последнее имеет место при рассматривании малоформатных (мелкомасштабных) изображений, образованных короткофокусными объективами, фокусные расстояния которых меньше, чем расстояние до ближней точки глаза, которое у нормального глаза изменяется от 100 мм в 20-летнем возрасте до приблизительно 250 мм в 40-45 лет. В подобных случаях без дополнительных мер невозможно получить при рассмотрении изображений впечатления естественной перспективы. Такое изображение следует рассматривать через лупу соответствующего увеличения, либо предварительно увеличив масштаб изображения с помощью увеличительного аппарата (увеличение фотоснимков), или методом проекции, например, телевизионных изображений с кинескопа на большой экран.

Как известно из элементарной оптики, увеличение  $N_0$  лупы равно:  $N_0 = \frac{250}{f'_{\pi}}$ , где 250 мм — расстояние наилучшего ви́дения для нормального глаза в среднем возрасте;  $f'_{\pi}$  — фокусное расстояние лупы, выраженное в миллиметрах.

Следовательно, если изображение получено короткофокусным объективом с фокусным расстоянием  $f'_{o6}$  и центр перспективы изображения расположен на том же расстоянии  $f'_{o6}$ , то последнее должно быть увеличено в  $\frac{250}{f'_{o6}}$  раз, т. е. до величины наилучшего ви́дения (~250 мм), с которого глаз способен наблюдать естественную перспективу изображенных объектов. Эти условия будут, очевидно, выполнены при  $f'_{л}$  =  $= f'_{ob}$ , т. е., применив лупу с фокусным расстоянием, равным фокусному расстоянию объектива, или, еще лучше, воспользовавшись для рассматривания изображений этим же объективом.

Во втором случае — при увеличении масштаба изображения увеличение β должно быть выбрано равным отношению

$$\overline{\beta} = \frac{\overline{D}}{f'_{oo}}, \qquad (I,95''')$$

где  $\overline{D}$  — фактическое расстояние наблюдения изображения. Из этой формулы можно получить значение правильного расстояния для наб-



Рис. І, 36. Изображение объемного предмета особо светосильным объективом людения любого увеличенного снимка.

Особенности изображения пространственных предметов особо светосильными объективами. При уточнении условий получения проективных изображений было указано, что проекция объемного объекта на плоскость наводки, выполняемая относительно некоторого центра проекции, оставляет в плоскости наводки следы от конусов лучей, идущих от точек объекта, не расположенных в плоскости наведения, и заполняющих входной

размеры зрачок объектива. Для того чтобы этих следов были быть малыми (и приняты точки), возможно могли за предпочто размеры вводного зрачка также малы. В противлагалось. ном случае появляются искажения, связанные не только с положением зрачка, но и с его величиной. Это явление наблюдается у очень светосильных объективов.

На рис. I, 36 представлено конусообразное тело, ось которого AB направлена в сторону зрачка объектива. Предположим, что апертурный угол объектива u больше, чем угол  $\alpha$  при вершине конуса. Пусть D и  $D_1$  — точки пересечения продолжений, образующих конусы с плоскостью входного зрачка. Очевидно, если диаметр входного зрачка больше диаметра  $DD_1$ , то объектив будет изображать также и боковые поверхности C и  $C_1$  конического тела, изображения которых исчезают при диафрагмировании объектива соответственно до апертурного угла  $\alpha$ .

Такое явление, в частности, наблюдается при портретных съемках с близкого расстояния очень светосильными объективами: знакомые лица становятся неузнаваемыми вследствие появления искажений.

**Глубина пространства, резко изображаемого объективом.** Установленные выше закономерности изображения пространственных предметов остаются справедливыми и в том случае, когда введенное ограничение в отношении весьма малых размеров входного зрачка снимается, т. е. когда зрачок объектива имеет конечные размеры. И в этом случае точки объекта, расположенные в плоскости наведения, остаются точка-

ми; усложняются условия образования проективных изображений точек, расположенных вне плоскости наведения: конусы лучей, исходящих из этих точек и заполняющих зрачок объектива конечных размеров, образуют в сечении с плоскостью наведения кружки рассеяния лучей, являющиеся проективными изображениями точек объемных объектов в плоскости наведения. Размеры этих кружков, в частности, зависят от расстояния точек объекта до плоскости наведения: эти размеры возрастают по мере удаления точек предмета от плоскости наведения.

Если размеры кружков рассеяния увеличиваются настолько, что при данном способе наблюдения изображения они уже выглядят точками, то соответствующая часть пространства предметов изображается

нерезко. Это обстоятельство ограничивает протяженность по глубине резко изображаемых объектов — ограничивает глубину резко изображаемого пространства. Эта глубина зависит от относительного отверстия (или апертуры) объектива и от допустимых величин кружков рассеяния лучей в плоскости наведения; тип объектива никакого влияния не оказывает. Заметим, что указанная предпосылка



Рис. I, 37. Определение глубины резко изображаемого пространства предметов

справедлива в полной мере лишь для идеальных объективов. Реальные объективы, обладая аберрациями, дополнительно уменьшают резкость изображения даже точек предметов, расположенных в плоскости наведения. Возможная дефокусировка изображения  $\delta x'$  относительно плоскости приемника будет существенно зависеть от качества коррекции.

Определение геометрической глубины изображения. Точки предметов, расположенных вне плоскости наведения, изображаются достаточно резко, если диаметры соответствующих кружков рассеяния лучей в плоскости приемника изображения не превышают определенных величин. Эти величины обычно устанавливаются, исходя из условий наблюдения изображений, принимая во внимание, что угловой предел разрешения  $\psi'$  (т. е. предельно малый угол, под которым изображения двух близко расположенных точек наблюдаются глазом раздельно) у среднего глаза составляет около 1'.

Если это рассмотрение ведется с расстояния наилучшего ви́дения (или условного расстояния зрения, как его также называют), равного 250 мм, то допустимые диаметры кружков рассеяния могут достигать величин  $Z' = 250 \psi'$  мм. К вопросу установления допустимых размеров кружков рассеяния следует подходить с учетом требуемого качества изображения, часто зависящего не только от личных ощущений наблюдателя, но и от изображаемого сюжета.

Пусть объектив изображает плоскость A (рис. I, 37) в плоскости A' некоторого приемника изображений или отражающего экрана. Возьмем другую плоскость —  $A_1$  — в том же пространстве предметов; лучи, выходящие из центральной точки этой плоскости, образуют в плоскости A' нерезкое изображение этой точки в виде кружка рассеяния диаметром z'. В пространстве предметов найдется и третья плоскость —  $A_2$ , расположенная по другую сторону от плоскости A и на таком расстоянии, что изображение центральной точки плоскости  $A_2$  образует в плоскости A' кружок рассеяния того же диаметра z'.

Если угловая величина этого кружка при определенном расстоянии глаза наблюдателя от изображения будет соизмерима с величиной углового предела разрешения глаза  $\psi'$ , то кружок рассеяния будет восприниматься в виде точки и, следовательно, изображения всех точек пространства предметов, расположенных между плоскостями  $A_1$  и  $A_2$ , будут восприниматься в виде точек приблизительно одинаковой резкости. Расстояние между плоскостями  $A_1$  и  $A_2$  называется *глубиной резко изображаемого пространства*, величина которого  $\Delta$  равна алгебраической сумме расстояний плоскости  $A_1$  (переднего плана) и плоскости  $A_2$  (заднего плана) от плоскости наведения A:

$$\Delta = \Delta_1 - \Delta_2.$$

Обозначив через  $\overline{\beta}$  линейное увеличение в сопряженных плоскостях *A* и *A*', определим диаметр кружка *z* в плоскости наведения *A*, соответствующий диаметру *z*' кружка рассеяния лучей в плоскости изображения *A*' (иногда называемой также картинной плоскостью):

$$z=\frac{z'}{\overline{\beta}}.$$

Из подобных треугольников (см. рис. I, 37), получающихся в сечении гомоцентрических пучков в пространстве предметов, находим:

$$p_1 = \frac{pD_0}{D_0 + z}; \quad p_2 = \frac{pD_0}{D_0 - z},$$
 (1,96)

где  $D_0 = 2a_0$  — диаметр входного зрачка объектива. Отсюда имеем:

$$\Delta_{1} = -\frac{pz}{D_{0} + z}; \quad \Delta_{2} = \frac{pz}{D_{0} - z}.$$
 (1,96')

Расстояния  $\Delta_1$  и  $\Delta_2$  определяют те крайние положения плоскостей  $A_1$  и  $A_2$ , расположенных соответственно впереди и сзади плоскости наведения A, при которых точки этих плоскостей изображаются в картинной плоскости A' кружками рассеяния с диаметрами  $z' = z\beta$ , не превышающими некоторых наперед заданных значений, устанавливаемых, исходя из указанных выше факторов.

Из последних выражений определяем глубину резко изображаемого пространства:

$$\Delta = \Delta_1 - \Delta_2 = -\frac{2D_0 pz}{D_0^2 - z^2},$$
 (I,96")

или, воспользовавшись, что  $z = \frac{z}{\beta}$ , имеем:

$$\Delta = -\frac{2p\overline{\beta}D_0 z'}{\overline{\beta}^2 D_0^2 - {z'}^2} \cdot$$

Обратив внимание, что  $\beta^{\overline{2}}D_0^2 >> z^2$ , находим приближенное, но вполне пригодное для практики выражение:

$$\Delta = -\frac{\rho z'}{\overline{\beta} a_0} = -\frac{\rho z}{a_0}. \qquad (1,96''')$$

Из этой формулы особенно отчетливо вытекает хорошо известный фотографам факт: для повышения глубины следует либо удалиться от изображаемых объектов (увеличить p), либо уменьшить диафрагму  $a_0$ .

Наибольшая возможная глубина резкого изображения; гиперфокальное расстояние. Формулы (1,96) можно преобразовать, если предположить, что расстояние до плоскости наведения значительно больше фокусного расстояния объектива. При таком предположении имеем:

$$\overline{\beta} = -\frac{f}{x} = -\frac{f}{p-f} \approx -\frac{f}{p} = \frac{f'}{p}$$

После замены в (1, 96) величины  $z = \frac{2'}{\beta}$  и принятия во внимание последнего соотношения, получим:

$$p_1 = \frac{\varepsilon f'^2 p}{\varepsilon f'^2 - z'p}; \quad p_2 = \frac{\varepsilon f'^2 p}{\varepsilon f'^2 + z'p}. \tag{I,97}$$

Анализ этих формул показывает, что глубину резко изображаемого пространства можно существенно расширить, если установить объектив на так называемое гиперфокальное расстояние — такое расстояние  $\overline{p}$  плоскости наведения от объектива, при котором задний план бесконечно удален ( $p_2 = \infty$ ). В этом случае, положив во второй формуле (1, 97) знаменатель равным нулю, определим гиперфокальное расстояние  $\overline{p}$ :

$$\overline{\rho} = -\frac{\varepsilon^{f^2}}{z'}.$$
 (1,97')

После подстановки в первую формулу (I, 97) находим положение переднего плана:

$$p_{i} = -\frac{1}{2} \cdot \frac{\epsilon f'^{2}}{\epsilon'} = \frac{1}{2} \overline{p}.$$
 (I, 97")

Таким образом, если фокусировать объектив на гиперфокальное расстояние  $\overline{p}$  (а не на бесконечность), то в картинной плоскости резко изобразятся все предметы, начиная от бесконечности и кончая расстояние  $p_1$ , вдвое меньшим, чем гиперфокальное расстояние  $\overline{p}$ . Такая установка объектива называется также ближней установкой на бесконечность.

Формулы (I, 97) можно представить, введя в них параметр  $\overline{p}$ :

$$p_1 = \frac{\overline{p} p}{\overline{p} + p}; \quad p_2 = \frac{\overline{p} p}{\overline{p} - p}. \tag{I.97''}$$

Задавая различные значения величине p, определяющей положение плоскости наведения, мы из этих формул вычисляем расстояния переднего  $p_1$  и заднего  $p_2$  планов от объектива.

В проведенных здесь рассуждениях не был учтен ряд факторов, влияющих и на глубину изображаемого пространства и на качество перспективных изображений. В частности, при увеличении мелкомасштабных фотонегативов — это аберрации объектива, зернистость светочувствительных слоев любых приемников изображений, особенности субъективных восприятий пространственных изображений и т. п.

Мы ограничились здесь лишь геометрией формирования световых пучков.

В заключение приведем элементарно получаемую формулу метражной (дистанционной) шкалы, применяемую для определения расстояний *x*′ плоскости приемника изображений (например, фотослоя) от заднего фокуса объектива при различных расстояниях *L* между плоскостями предмета и изображения:

$$x' = -\frac{1}{2} m - \sqrt{\frac{1}{4} m^2 - {f'}^2},$$

где  $m = L - 2f' - \overline{\delta}; f' - \phi$ окусное расстояние объектива;  $\overline{\delta}$  - расстояние между главными плоскостями объектива.

Приближенно задача решается формулой Ньютона:

$$x' = -\frac{f'}{x},$$
$$x \approx 2f' - L.$$

где

### § 8. ОСВЕЩЕННОСТЬ ИЗОБРАЖЕНИЯ, ОБРАЗУЕМОГО ОБЪЕК-ТИВОМ, И РАСЧЕТ ЭКСПОЗИЦИЙ

Вопрос о распределении освещенности в плоскости изображений представляет как теоретический, так и прикладной интерес. Изображение элемента конечных размеров является результатом наложения изображений отдельных точек. По представлениям физической (волновой) оптики даже совершенная, безаберрационная, оптическая система изображает точку в виде светлого пятна малых размеров со сложным распределением освещенности в пределах этого пятна. Характер распределения освещенности в этом пятне определяется двумя принципиальными факторами: волновой природой света и наличием аберраций. В результате действия этих факторов изображение точки оказывается размытым, мелкая структура предметов не полностью воспроизводится оптической системой, изображения близко расположенных точек предмета сливаются в сплошное серое пятно. Задача расчета распределения освещенности в изображении точек решается по-разному: в зависимости от величин аберраций в системе, а следовательно, в зависимости от необходимости учета или возможности игнорирования явления дифракции света.

К этим вопросам в главе III мы вернемся. Здесь ограничимся рассмотрением освещенности в изображении элемента ∆S конечных размеров, когда изображение является результатом наложения изображений отдельных светлых пятен с неравномерным распределением освещенностей в каждом пятне. В результате, если элемент ∆S имеет равномер-



Рис. 1, 38. Освещенность изображения при круглом выходном зрачке

ную яркость, то и его изображение  $\Delta S'$ будет иметь также равномерную освещенность; если же элемент  $\Delta S$  имеет непрерывно изменяющуюся яркость, то и элемент  $\Delta S'$  будет обладать такого же характера непрерывно изменяющейся освещенностью. Лишь в непосредственной близи контура изображения  $\Delta S'$  характер распределения освещенности будет более сложным; это обстоятельство мы здесь учитывать не будем.

Освещенность элемента изображения  $\Delta S'$ , на который падает световой поток  $\Delta F'$ , выходящий из системы, определится отношением:

$$E' = \frac{\Delta F'}{\Delta S'}.$$
 (1,98)

Когда выходной зрачок системы имеет форму круга и заполнен лучами, яркость которых *B*' остается постоянной во всех направлениях, можно получить следующее выражение для светового потока:

$$\Delta F' = \pi \overline{B}' \,\Delta S' \,\sin^2 \frac{1}{2} \,\delta', \qquad (1,98')$$

где  $\delta'$  — угол между крайними лучами *BC* меридионального кругового сечения пучка, выходящего из оптической системы и собирающегося в точке *S'* (рис. I, 38);  $\overline{B'}$  — яркость пучка лучей, вышедших из оптической системы, зависящая от яркости *B* вводящих лучей и так называемого коэффициента пропускания  $\tau$  системы:

$$\overline{B'} = \tau \left(\frac{n'}{n}\right)^2 B, \qquad (1,98'')$$

где *n* и *n'* — показатели преломления сред пространства предметов и изображений.

Угол δ' может быть определен из выражения:

$$tg\,\delta' = \frac{2a_0'\rho'}{{\rho'}^2 + {l'}^2 - a_0'^2}\,,\qquad(1,98''')$$

где  $a'_0$  — радиус кругового сечения пучка (в частности, выходного зрачка); p' — расстояние между плоскостью сечения пучка и плоскостью изображений; l' — расстояние элемента  $\Delta S'$  от оптической оси. Координата l', определяющая положение элемента изображения,

Координата *l*', определяющая положение элемента изображения, определится из выражения:

$$l' = -p' \operatorname{tg} w',$$

где  $\omega'$  — угол, образованный с оптической осью лучом, соединяющим центр элемента  $\Delta S'$  с точкой пересечения оптической оси плоскостью сечения пучка лучей, формирующих изображение элемента  $\Delta S'$ .

Освещенность изображения на оптической оси системы. Если элемент изображения  $\Delta S'$  расположен на оптической оси, то l' = 0 и, следовательно:

$$\operatorname{tg} \delta' = \frac{2a'_0 p'}{{p'}^2 - {a'_0}^2}; \quad \operatorname{tg} \frac{1}{2} \delta' = \frac{a'_0}{p'},$$

т. е.  $\frac{1}{2}\delta' = u'$ , где u' — апертурный угол в пространстве изображений (см. рис. I, 38). Из (I, 98) и (I, 98') получим формулу освещенности изображений на оси:

$$E_0^{'} = \pi \overline{B}^{\prime} \sin^2 u^{\prime}. \tag{I,99}$$

Напишем эту формулу в несколько другом виде. Обратив внимание, что

$$\sin u' = \frac{a'_0}{\sqrt{p'^2 + {a'_0}^2}},$$
 (1,100)

получим:

$$E_{0}^{'} = \overline{B}^{'} \frac{\pi a_{0}^{'^{2}}}{{p'}^{2}} \left( \frac{1}{1 + \frac{a_{0}^{'^{2}}}{{p'}^{2}}} \right)^{*}$$
(I,101)

Если p' значительно больше  $a'_0$ , то выражение, стоящее в скобках, будет близко к единице; в этом случае получим:

$$E'_{0} = \overline{B'} \, \frac{\pi a'_{0}^{2}}{{p'}^{2}} \,, \tag{1,102}$$

где  $\pi a_0^{\prime 2}$  — площадь светящегося круглого выходного зрачка, заполненного лучами яркостью  $\overline{B'}$ . Как известно, произведение яркости светящейся поверхности на ее площадь равно силе света  $I'_0$  в направлении нормали к поверхности:

$$I_{0}^{'} = \overline{B}^{'} \pi a_{o}^{'^{2}};$$

$$E_{0}^{'} = \frac{l_{0}^{'}}{p^{\prime^{2}}} \cdot (\mathbf{I}, 102^{\prime})$$

Таким образом, светящийся зрачок оптической системы можно рассматривать для достаточно больших расстояний p' как источник света, имеющий силу света  $I'_0$  в направлении оптической оси.

Большой погрешности допущено не будет, если считать, что освещенность на оси будет мало изменяться при отступлении от круглой формы выходного зрачка, но при условии сохранения площади зрачка равновеликой. Приближенно

получим:

$$E_{0}^{'} = \frac{I_{0}^{'}}{p'^{2}} = \frac{\overline{B'}S_{3p}^{'}}{p'^{2}},$$
(I,102")

где S'<sub>зр</sub> — площадь выходно-го зрачка произвольной формы.

Для получения результатов с большей точностью можно рекомендовать воспользоваться следующим общим методом [4].

Обобщенное выражение Необходимо освещенности.



$$dI'_{i} = \overline{B}'_{i} dS_{i} \cos_{i}, \qquad (I,103)$$

где  $dI'_i$  — элементарная сила света в том же направлении, образующем угол *i* с нормалью к светящемуся элементу  $dS_i$ . Освещенность  $dE'_i$  в точке A', создаваемая светящимся элементом

поверхности dS<sub>i</sub>, будет равна:

$$dE'_{i} = \frac{dI'_{i}}{r^{2}} \cos i', \qquad (I,104)$$

где i' — угол падения лучей на освещаемый элемент поверхности dS'; r — расстояние источника света  $dS_i$  от освещаемой поверхности.

Отсюда находим:

$$dE'_{i'} = \overline{B}'_i \cos i' \left(\frac{dS_i \cos i}{r^2}\right).$$



Рис. I, 39. К расчету освещенности в общем случае
Обратив внимание, что выражение, стоящее в скобках, равно телесному углу  $d\Omega'_i$ , под которым светящийся элемент  $dS_i$  виден из освещаемой точки A', имеем:

$$dE'_{i'} = \overline{B}'_i \cos i' d\Omega'_{i'}. \qquad (I,105)$$

Интегрируя по всему телесному углу  $\Omega'$ , получим освещенность в данной точке от светящейся поверхности (заполненного светом выходного зрачка) произвольной формы и размеров:

$$E' = \int_{\mathfrak{D}'} \overline{B}'_{i} \cos i' \, d\Omega'_{i'}. \tag{I,106}$$

Это и будет обобщенным выражением освещенности. Оно позволяет вычислить E' при любом заданном распределении яркости  $\overline{B'}$  в пределах телесного угла  $\Omega'$ . Задача существенно упрощается, когда яркости всех пучков, заполняющих телесный угол  $\Omega'$ , одинаковы. В этих случаях выражение (I, 106) примет следующий вид:

$$E' = \overline{B}' \int_{\Omega'} \cos i' \, d\Omega'_{i'} = \overline{B}' \, \Sigma \,. \tag{1,107}$$

Задача, таким образом, сводится к определению интеграла:

$$\sum = \int_{\underline{\circ}'} \cos i' \, d\Omega'_{i'} \,, \qquad (I,108)$$

Освещенность от зрачков больших размеров. Пусть поверхность зрачка S постоянной яркости  $\overline{B}'$  освещает элемент dS' (рис. I, 40). Из центра элемента dS' проведем прямые линии к контуру, ограничивающему светящуюся поверхность зрачка S, и вокруг этой же центральной точки построим полусферу с радиусом, равным единице. Образованный конус лучей с заключенным внутри телесным углом  $\Omega'$  пересечется с поверхностью сферы и выделит часть ее, соответствующую телесному углу  $\Omega'$ . Элемент поверхности, которую выделит на сфере каждый элементарный телесный угол  $d\Omega'$ , будет численно равен  $d\Omega'$ , так как радиус полусферы равен единице. Этот элемент поверхности наклонен относительно плоскости основания полусферы под тем же углом i', который составляет падающий луч с нормалью к элементу dS'.

Таким образом, произведение соз  $i' d\Omega'$  численно равно площади ортогональной проекции элемента поверхности полусферы  $d\Omega'$  на плоскость основания полусферы, т. е. на плоскость освещаемого элемента dS'. Отсюда следует, что интеграл  $\Sigma$  (I, 108) численно равен площади проекции на плоскость основания той части поверхности полусферы (с радиусом, равным единице), которая «вырезается» телесным углом  $\Omega'$ .

Освещенность изображения на оптической оси при различных формах зрачков объектива. Применим полученные зависимости к некоторым случаям. 1. Определим освещенность элемента dS' (рис. I, 41) от бесконечно длинного щелевого зрачка, ширина которого  $2b'_0$ , а яркость  $\overline{B'}$ . Элемент dS' расположен параллельно плоскости зрачка на расстоянии p' от его середины.

Очевидно, линии, проведенные из dS' ко всем точкам прямых AA и CC, располагаются в плоскостях AAdS' и CCdS', пересекающих поверхность полусферы единичного радиуса по дугам больших кругов: DGF и DKF. Проецируя эту часть поверхности полусферы на ее основание, получим эллипс, площадь которого равна произведению его полуосей на величину  $\pi$ . Большая полуось эллипса равна единице;





Рис. І, 40. Освещенность от больших поверхностей постоянной яркости

Рис. І, 41. Освещенность от длинного щелевого зрачка

малая полуось равна sin u', где u' — угол между нормалью к элементу dS' и крайним лучом, проведенным в точку L (или M). Таким образом:

$$\sum = \pi \sin u',$$

$$E'_0 = \pi \overline{B}' \sin u',$$
(I,109)

где

и из (I, 107) находим:

$$\sin u' = \frac{b'_0}{\sqrt{b'_0^2 + p''}}.$$

2. Выходной зрачок имеет форму прямоугольника со сторонами  $2a'_0$  и  $2b'_0$  и постоянную яркость  $\overline{B'}$ . Плоский элемент изображения dS' расположен на расстоянии p' от середины прямоугольного зрачка и параллельно плоскости зрачка. Можно доказать, что в этом случае

$$\sum = 2 \left( \frac{a'_0}{\sqrt{a'_0^2 + {p'}^2}} \operatorname{arctg} \frac{b'_0}{\sqrt{a'_0^2 + {p'}^2}} + \frac{b'_0}{\sqrt{b'_0^2 + {p'}^2}} \operatorname{arctg} \frac{a'_0}{\sqrt{b'_0^2 + {p'}^2}} \right)$$
(I,110)

$$E'_0 = \overline{B'} \sum d$$

При зрачке квадратной формы имеем:

$$E'_{0} = 4\overline{B}' \frac{a'_{0}}{\sqrt{a'_{0}^{2} + {p'}^{2}}} \operatorname{arctg} \frac{a'_{0}}{\sqrt{a'_{0}^{2} + {p'}^{2}}}.$$
 (I,110')

3. Выходной зрачок формы прямоугольника, стороны которого  $2a'_0$  и  $2b'_0$  не велики по сравнению с расстоянием p' зрачка от элемента изображения dS'. Это соответствует, например, случаю светооптических систем для воспроизведения звука (читающая оптическая система).

Из (1, 110) находим приближенное выражение:

$$\sum pprox 4 \sin u_m$$
 sin  $u_s$ ,

где  $u'_m$  и  $u'_s$  — апертурные углы в меридиональном и сагиттальном сечениях:

$$\sin u'_{m} = \frac{b_{0}^{2'}}{\sqrt{b_{0}^{'^{2}} + p^{'^{2}}}}, \quad \sin u'_{s} = \frac{a'_{0}}{\sqrt{a'_{0}^{2} + p^{'^{2}}}}.$$
 (I,111)

Отсюда имеем:

$$E'_0 = 4\overline{B}' \sin u'_m \sin u'_s.$$
 (1,111')

4. Часто зрачки объектива имеют форму кольца, т. е. центральная часть зрачка оказывается экранированной. Последнее имеет место, например, у зеркальных и зеркально-линзовых объективов. Обозначив через  $A'_0$  внешний радиус выходного зрачка, а через  $a'_0$  — радиус экранированной части, получим следующее выражение освещенности на оси, вытекающее из формулы (1, 99):

$$E'_0 = \pi \overline{B}' (\sin^2 U' - \sin^2 u'), \qquad (1,112)$$

где

$$\sin^2 U' = \frac{A_0'^2}{A_0'^2 + {p'}^2}; \quad \sin^2 u' = \frac{a_0'^2}{a_0'^2 + {p'}^2}.$$

Отсюда можно рассчитать апертурный угол  $u'_{\text{экв}}$  эквивалентного объектива, имеющего сплошной выходной зрачок круглой формы и создающего такую же освещенность изображения:

$$\sin u'_{_{\mathsf{SKB}}} = \sqrt{\sin^2 U' - \sin^2 u'}.$$
 (1,113)

Если плоскость предметов бесконечно удалена, то из условия синусов (см. главу II) находим:

$$\sin u'_{\mathfrak{S}KB} = \frac{1}{2} \varepsilon_{\mathfrak{S}KB}, \quad \varepsilon_{\mathfrak{S}KB} = \frac{D_{\mathfrak{S}KB}}{f'}, \quad (\mathbf{I}, \mathbf{113'})$$

где ε<sub>экв</sub> — эквивалентное относительное отверстие объектива; D<sub>экв</sub> — эквивалентный диаметр входного зрачка; f' — заднее фокусное расстояние объектива.

5. Выходной зрачок имеет форму эллипса (например, в анаморфотных кинопроекционных объективах) с полуосями  $2a'_0$  и  $2b'_0$ .

Очевидно, для этого случая имеем:

$$\Sigma = \pi \sin u'_m \sin u'_s$$
,

где sin  $u'_m$  и sin  $u'_s$  — аналогичны (I, 111).

Отсюда находим:

$$E'_0 = \pi \overline{B}' \sin u'_m \sin u'_s, \qquad (I, 114)$$

что отличается от (1, 111') лишь коэффициентом.

Освещенность изображений при разных увеличениях объектива. Выражение (I, 99) может быть преобразовано к несколько иному виду заменой в нем величины sin u' приближенным отношением:

$$\sin u' \approx \frac{a'_0}{p'} = \frac{a'_0}{x' - x'_{P'}},$$
 (1, 115)

где x' — расстояние изображения от заднего фокуса F' объектива (см. рис. 1, 38);  $x'_{P'}$  — расстояние центра P' выходного зрачка от того же фокуса F'. Далее имеем:

$$p' = x' - x'_{p'} = f'\left(\frac{x'}{f'} - \frac{x'_{p'}}{f'}\right).$$

Так как линейное увеличение в плоскости изображений равно

$$\overline{\beta} = -\frac{x'}{f'}$$
,

находим:

$$p' = f' \left( -\overline{\beta} + \overline{\beta}_{sp} \right), \qquad (I, 116)$$

где  $\overline{\beta}_{3p}$  — линейное увеличение в зрачках объектива:

$$\overline{\beta}_{3p} = \frac{a'_0}{a_0} \,. \tag{I, 116'}$$

После подстановки (I, 115) и (I, 116) в формулу (I, 99) находим:

$$E'_{0} = \frac{1}{4} \pi \overline{B}' \frac{\overline{\beta}_{3p}^{2}}{(\overline{\beta}_{3p} - \overline{\beta})^{2}} \varepsilon^{2}, \qquad (1, 117)$$

где  $\varepsilon = \frac{2a_0}{t'}$  — относительное отверстие объектива.

Для разных расстояний плоскости предметов величина  $\overline{\beta}$  будет изменяться.

Геометрическая и физическая светосила объектива. Из формулы (1, 117) следует, что освещенность  $E'_0$  пропорциональна квадрату

относительного отверстия ε<sup>2</sup>. Величину ε<sup>2</sup> называют геометрической светосилой объектива; его фактическая светосила будет зависеть от коэффициента пропускания объектива τ:

$$\tau \varepsilon^2 = \tau \left(\frac{2a_0}{f'}\right)^2. \tag{I, 118}$$

Величину тє<sup>2</sup> называют физической светосилой объектива.

Освещенность изображения при бесконечно удаленной плоскости предмета. Если плоскость предметов расположена на большом расстоянии от объектива, то расстояние этой плоскости от переднего фокуса объектива также велико ( $x \rightarrow -\infty$ ) и, следовательно,  $\overline{\beta} \rightarrow 0$ ; формула (1, 117) принимает вид:

$$E_0' = \frac{1}{4} \overline{B}' \varepsilon^2. \tag{I, 119}$$

Освещенность изображений в этом случае не зависит от увеличения  $\beta_{3D}$  в зрачках объектива.

Освещенность изображения при репродукции. Определим освещенность изображения репродукционного объектива при фотографировании в однократном масштабе. Предмет расположен слева от объектива на расстоянии x = -f' от переднего фокуса и, следовательно:

$$\overline{\beta} = -\frac{f}{x} = -1.$$

После подстановки в (I, 117) находим:

$$E'_{0} = \frac{1}{4} \pi \overline{B}' \frac{\overline{\beta}_{3p}^{2}}{(\overline{\beta}_{3p} + 1)^{2}} \varepsilon^{2}.$$
 (I, 120)

Существующие репродукционные объективы, как увидим ниже, обычно имеют симметричную (или близкую к симметричной) оптическую схему и, следовательно, у них величина входного и выходного зрачков одинакова ( $\beta_{3p} = 1$ ). При таком допущении последнее выражение принимает вид:

$$E_0' = \frac{1}{16} \pi \overline{B}' \epsilon^2,$$
 (I, 120')

т. е. освещенность изображения оказалась в четыре раза меньшей, чем при фотографировании удаленных предметов (см. формулу I, 119). Объясняется это тем, что величина апертурного угла u', точнее sin u', стала приблизительно в два раза меньше, а следовательно, телесный угол, в пределах которого лучи из зрачка сходятся в освещаемую точку изображения, уменьшился в четыре раза.

Освещенность бесконечно удаленного изображения. Это случаи кинопроекции, эпи- и диапроекции, проекции телевизионных изображений с кинескопа на большой экран и др.

Пусть предмет (например, кинофильм) находится вблизи фокальной плоскости проекционного объектива. Его изображение окажется расположенным на весьма большом расстоянии от объектива.

Рассуждения, аналогичные проведенным выше, при получении формулы (I, 102')

$$E = \frac{I_0'}{p'^2}$$

приводят к выводу, что в отношении своего светового действия проекционный объектив, зрачок которого заполнен светом, эквивалентен излучателю с осевой силой света  $I'_0 = \overline{B'S'}_{3p}$  и яркостью  $\overline{B'} = \tau \left(\frac{n'}{r}\right)^2 B$ , где  $S'_{3p}$  — площадь выходного зрачка объектива.

Освещенность элементов изображений, расположенных вне оптической оси. Освещенность в какой-нибудь точке плоскости изображений вне оптической оси определяется из формулы (I, 98'):

$$E' = \frac{\Delta F'}{\Delta S'} = \pi \overline{B}' \quad \sin^2 \frac{1}{2} \delta'. \tag{1, 121}$$

Формулу можно несколько преобразовать для объектива с не очень большим относительным отверстием. Из рис. I, 38 приближенно имеем:

$$\sin \frac{1}{2} \delta' \approx \frac{a' \cos w'}{\overline{P}' S'}$$
,

где через a' (вместо  $a'_0$ ) обозначен в обобщенном смысле радиус кругового сечения пучка лучей, сходящихся на элементе  $\Delta S'$ .

Так как

$$\overline{P'S'} = \frac{p'}{\cos w'},$$

получим:

 $E'_{w'} = \frac{\pi a'^2 \,\overline{B'}}{{p'}^2} \,\cos^4 \omega' \,. \tag{I, 122}$ 

Освещенность  $E'_0$  в центре поля зрения определяется формулой (l, 99), в которой с той же степенью приближения можно положить, что sin  $u' \approx \frac{a'_0}{p'}$ :

$$E'_{0} = \frac{\pi a'_{0}^{2} \overline{B'}}{{p'}^{2}}, \qquad (I, 123)$$

где  $a'_0$  — радиус сечения в плоскости выходного зрачка пучка лучей, сходящихся в точке на оси A'.

Отношение освещенностей  $E'_{w'}$  и  $E'_0$  определится из (1, 122) и (1, 123):

$$\frac{E'_{\omega'}}{E'_{0}} = \frac{S'_{\rm 3p}}{S'_{\rm 3p}} \cos^{4} \omega', \qquad (1, 124)$$

где  $S'_{3p}^{(w)}$  и  $S'_{3p}^{(0)}$  — площади сечений пучков лучей, выходящих из оптической системы и собирающихся соответственно в центре элемента  $\Delta S'$  и в точке A'.

Как показали исследования этой формулы, она применима и в тех случаях, когда сечение S' <sup>(w')</sup> пучка лучей вследствие аберраций имеет вид эллипса или овала<sup>\*</sup>.

Если оптическая система имеет малые аберрации в плоскости выходного зрачка, то при отсутствии виньетирования площади  $S'_{\rm sp}^{(w')}$  и  $S'_{\rm sp}^{(0)}$  приблизительно равны для всех значений угла w'; имеем:

$$E_{w'}^{'} = E_0^{'} \cos^4 w'. \tag{I, 125}$$



Рис. I. 42. К расчету освещенности изображения вне оси

Это условие строго выполняется, вчастности, когда апертурная диафрагма установлена позади объектива и, следовательно, является одновременно и выходным зрачком. При наличии виньетирования освещенность изображения убывает к краям поля зрения быстрее, чем это следует из полученной формулы (1, 125). У реальных систем, особенно светосильных объективов. виньетирование наклонных пучков почти неизбежно. Зная конструктивные элементы оптической системы, можно определить соответственную функцию виньетирования K<sub>w</sub>:

$$E'_{w'} = K_{w'} E'_0 \cos^4 w'.$$
 (I, 126)

Удобно выразить спад освещенности изображений по полю в виде функции соответствующего показателя степени t косинуса угла поля зрения w в пространстве предметов, определив этот показатель степени из уравнения:

$$\frac{E'_{\omega'}}{E'_{0}} = \frac{S'_{\rm 3p}}{S'_{\rm 3p}} \cos^{4} \omega' = \cos^{\overline{t}} \omega.$$
 (1, 127)

В главах V и VI будут рассмотрены возможные пути создания объективов с уменьшенными показателями степени  $\overline{t}$ , т. е. с повышенной равномерностью распределения освещенности изображений по полю.

Формула непосредственного расчета распределения освещенности изображений по полю. Формулу (1,127) можно привести к виду, весьма удобному для практического применения, если известны (из аберрационных расчетов хода лучей) углы крайних лучей, ограничивающих контуры сечений пучков, проходящих через объектив и форми-

<sup>\*</sup> Если линейные размеры зрачка невелики по сравнению с величиной р'.

рующих изображения. У аксиально симметричных объективов сечение BCDG (рис. 1, 42), имеющее площадь, обозначенную через S'(w) в формуле (I, 127), можно рассматривать состоящим из двух площадей полуэллипсов, большие полуоси которых a' и a'' ориентированы в меридиональном направлении, а малые (одинаковые по величине) полуоси — в сагиттальном направлении.

Простые преобразования приводят предложенной автором Κ формуле:

$$\frac{E'_{\omega'}}{E'_{0}} = \frac{(\operatorname{tg} u'_{+m} - \operatorname{tg} u'_{-m}) \operatorname{tg} \xi'}{2 \operatorname{tg}^{2} u'_{0}} \cos^{3} \omega'.$$
(1,128)

где  $u'_{+m}$  и  $u'_{-m}$  — углы с оптической осью крайних лучей наклонного меридионального пучка, координаты которых на входном зрачке соответственно равны +m и -m;  $\xi' - угол крайнего луча в главном сагит-$ тальном сечении со своей проекцией на меридиональную плоскость;и' - апертурный угол осевого пучка. Вычислив отношение освещенностей  $E'_{w'}$ :  $E'_{0}$ , определяем показатель степени  $\overline{t}$ , входящий в формулу (1, 127):

$$\overline{t} = \frac{\lg\left(\frac{E'_{\omega'}}{E'_0}\right)}{\lg\cos\omega}.$$
 (1, 129)

Понятие экспозиции и основные свойства фотографических ма-Знание величины освещенности изображения необхотериалов. димо для правильного определения экспозиции. Под экспозицией, или количеством освещения Н, будем понимать произведение освещенности E', создаваемой объективом на фотографическом слое, на время tее лействия:

$$H = \int_{t_0}^{t} E' dt.$$
 (1, 130)

Время t называют временем экспозиции, или выдержкой. Если в течение времени t освещенность на фотослое не изменяется, то вместо (I, 130) можно написать:

$$H = E't. \tag{1,131}$$

Величина Н выражается в люкс-секундах (лк.с).

Свойства фотографических материалов характеризуются рядом параметров: светочувствительностью S, коэффициентом контрастности у, величиной фотографической вуали D<sub>0</sub>, максимальной оптической плотностью  $D_{\text{макс}}$ , фотографической широтой L, разрешающей способностью  $N_c$  и спектральной чувствительностью. Для количественной оценки почернения освещенного фотографичес-

кого слоя после его проявления пользуются величиной оптической плотности. Назовем коэффициентом пропускания т проявленного фото-графического слоя в месте его почернения отношение светового потока F, проходящего через место почернения, к световому потоку, падающему на него:

$$\overline{\tau} = \frac{F}{F_0} \,. \tag{I, 132}$$

Десятичный логарифм величины, обратной коэффициенту пропускания, называется оптической плотностью почернения D:

$$D = \lg \frac{1}{\tau} = -\lg \overline{\tau}.$$
 (I, 133)

Зависимость оптической плотности от количества освещения *Н* обычно выражают характеристической кривой (рис. I, 43), экспериментально определяемой на специаль-



Рис. I, 43. Характеристическая кривая фотографического слоя

ментально определяемой на специальном приборе — денситометре — и представляемой в прямоугольной системе координат в виде графика  $D = F(\lg H)$ .

На характеристической кривой имеется прямолинейный участок *BC* область нормальных экспозиций, где функция *D* линейно зависит от lg*H*; участок *AB* соответствует малым экспозициям — области недодержек; участок *CG* — области передержек. Характеристическая кривая имеет

максимум (точка G), после которого оптическая плотность уменьшается с увеличением количества освещения (область соляризации). Практически это означает, что при слишком длительных выдержках негативное изображение может превратиться в позитивное. Следовательно, предельной верхней точкой характеристической кривой является точка G, соответствующая максимальной плотности почернения ( $D_{\text{макс}}$ ) при данных условиях проявления; поэтому кривую  $D = F(\lg H)$  в этой точке или чуть правее ее обычно прерывают.

В проявленном фотографическом материале, не подвергавшемся освещению, все же обнаруживается некоторое почернение; оно носит название фотографической вуали. Оптическая плотность вуали выражается формулой:

$$D_0 = \lg \frac{1}{\overline{\tau}_0}$$
, (I, 134)

где  $\overline{\tau_0}$  — коэффициент пропускания фотографической вуали данного материала.

Из характеристической кривой следует, что различия в почернениях, составляющих фотографическое изображение, могут быть получены лишь при действии на фотографический слой определенных количеств освещения — различных для разных фотографических материалов. Чем больше светочувствительность материала, тем характеристическая кривая более сдвинута влево по оси абсцисс. Для каждой фотографической эмульсии существует пороговое значение количества освещения, ниже которого никакого почернения не получается; чем больше чувствительность эмульсии, тем меньше пороговое значение количества освещения. Поэтому в качестве светочувствительности фотографического слоя S (или числа светочувствительности) принимают величину, обратно пропорциональную количеству освещения H, создающему на этом слое при заданных условиях химико-фотографической обработки определенный фотографический эффект — некоторое заданное значение оптической плотности почернения, или градиент характеристической кривой. Этот эффект называют критерием светочувствительности:

$$S = \frac{k}{H_{\rm Критерия}},\qquad({\rm I},135)$$

где k — коэффициент пропорциональности.

Принимая тот или иной критерий, т. е. ту или иную точку на характеристической кривой, можно определить точку на горизонтальной оси сенситометрического графика, соответствующую принятому критерию. В различных сенситометрических системах используются различные критерии чувствительности.

В конце XIX века в результате работ Хёртера и Дриффильда в качестве критерия светочувствительности была предложена точка инерции *i* — точка пересечения продолжения прямолинейного участка характеристической кривой с осью lgH (см. рис. I, 43). Это критерий в системе X и Д.

Другим видом критерия являются определенным образом выбранные значения плотности почернения. Они выбираются либо на начальном участке кривой, либо, реже, на прямолинейном ее участке. Эти критерии используются в советских системах сенситометрии как черно-белых (ГОСТ 2817—50 и 10691—63), так и цветных многослойных (ГОСТ 9160—59) материалов, в немецкой (ДИН 4512), японской (Дж ИС к 7604) и американской (АСА РН 2.5—1960) системах сенситометрии черно-белых материалов. Подобный критерий предложен Международной организацией по стандартизации (ИСО) в проекте сенситометрического стандарта.

В отечественном ГОСТе 2817—50 в качестве критерия светочувствительности фототехнических материалов принята точка на характеристической кривой, соответствующая оптической плотности, превышающей плотность вуали на 0,2 ( $D = D_0 + 0,2$ ), а в качестве коэффициента пропорциональности — единица (k = 1):

$$S_{0,2} = \frac{1}{H_{D=D_0+0,2}}$$
, (I, 136)

где H — количество освещения белым светом, выраженное в  $n\kappa \cdot c$ . При этом указывается время проявления  $t_{\rm np}$ , необходимое для достижения определенного (рекомендуемого) значения коэффициента контрастности  $\gamma_{\rm pek}$ , выбранный источник излучения и состав примененного проявителя. Тот же принцип проявления до  $\gamma_{\text{pex}}$  принят и в стандартизованном ГОСТом 9160 — 59 методе общесенситометрического испытания многослойных цветных материалов на прозрачной подложке. Как увидим в главе VI, для определения светочувствительности аэрофотографических материалов обычно выбирается такая экспозиция, при которой получается плотность, превышающая величину плотности вуали на 0,85; причем в формуле (I, 135) принимают k = 10:

$$S_{0,85} = \frac{10}{H_{D=D_0+0,85}}.$$
 (I, 137)

За последние годы в целях упорядочения и возможности сравнения свойств кино- и фотоматериалов, в том числе и аэрофотопленок, были определены светочувствительности по обоим критериям ( $S_{0,2}$  и  $S_{0,85}$ ) для соответствующих  $t_{\pi p}$ ,  $\gamma_{pek}$  проявителей и источников освещения. К их сравнительным характеристикам вернемся в главе V. В табл. I,1 приведены значения светочувствительности  $S_{0,2}$  и плот-

ности вуали D<sub>0</sub> типичных фотографических слоев.

Таблица I.1

|                                                              | Светочувствитель-<br>ность S <sub>0,2</sub>                         | Плотность вуали D <sub>0</sub>       |                                      |                                      |                                           |                                      |                                      |                                           |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--|--|
| Степень общей<br>светочувстви-<br>тельности                  |                                                                     | ф <b>от</b> е                        | опластин                             | юк                                   | фотопленок                                |                                      |                                      |                                           |  |  |
|                                                              |                                                                     | «Изо рто»                            | «Изохром»                            | «Панхром»                            | «Ортохром»                                | «Maoxpaw»                            | «Изопан хром»                        | «Панхром»                                 |  |  |
| Низкая<br>Малая<br>Средняя<br>Высокая<br>Высшая<br>Наивысшая | 11 и 16<br>22 и 32<br>45 и 65<br>90 и 130<br>180 и 250<br>Свыше 350 | 0,12<br>0,12<br>0,12<br>0,15<br>0,22 | 0,12<br>0,12<br>0,15<br>0,18<br>0,24 | 0,15<br>0,15<br>0,18<br>0,22<br>0,30 | 0,10<br>0,10<br>0,12<br>0,15<br>0,18<br>— | 0,10<br>0,10<br>0,12<br>0,15<br>0,20 | 0,12<br>0,12<br>0,15<br>0,18<br>0,24 | 0, 15<br>0, 15<br>0, 18<br>0, 22<br>0, 30 |  |  |

Сенситометрические показатели негативных пластинок и фотопленок по общей светочувствительности S<sub>0.2</sub> и плотности вуали D<sub>0</sub>

Фотоматериалы наивысшей чувствительности имеют S<sub>0,2</sub>> 350; это значит, что количество освещения около 3·10<sup>-3</sup> лк·с окажется достаточным, чтобы создать оптическую плотность проявленного слоя на 0,2 большую, чем плотность вуали. При достаточно большом времени воздействия излучения t на светочувствительный слой освещенность на нем Е может быть создана чрезвычайно малой.

В системе X и Д критерием светочувствительности принята точка инерции i, а в качестве коэффициента пропорциональности k = 10:

$$S_i = \frac{10}{H_i}$$
, (I, 137')

где  $H_i$  — экспозиция, соответствующая точке инерции.

Критерием светочувствительности в системе ДИН (Deutsche Industrie Normen) служит оптическая плотность почернения, превышающая плотность вуали на 0,1, т. е.  $D = 0, 1 + D_0$ .

В табл. І, 2 приведены ориентировочные сравнительные значения.

Таблица I,2

Сравнительная таблица значений светочувствительности в различных системах для негативных фотоматериалов средней контрастности  $(\gamma = 0, 8 - 1, 0)$ 

| \$_0,2    | 11    | 16  | 22    | 32  | 45    | 65   | 90      | 130  | 180             | 250         | 350     |
|-----------|-------|-----|-------|-----|-------|------|---------|------|-----------------|-------------|---------|
| ХиД       | 280   | 400 | 550   | 800 | 1100  | 1600 | 2200    | 3200 | 4500            | 6500        | 9000    |
| дин       | 12—13 | 14  | 15—16 | 17  | 18—19 | 20   | 21—22   | 23   | 24-25           | 26          | 27-28   |
| ACA<br>PH | 12—16 | 20  | 2532  | 40  | 5064  | 80   | 100—120 | 160  | <b>2</b> 00—250 | <b>32</b> 0 | 400-500 |

Способность фотографического материала передавать разности яркостей различных участков фотографируемого объекта называется контрастностью. У различных фотографических материалов изменение оптических плотностей при одинаковых изменениях экспозиции различно; оно определяется степенью контрастности материала, которая численно равна градиенту оптической плотности как функции количества освещения  $\frac{dD}{dlgH}$ . В различных точках характеристической кривой (см. рис. I, 43) величина  $\frac{dD}{dlgH}$  различна и достигает при данных условиях проявления своего наибольшего значения в прямолинейном участке кривой:

$$\gamma = \frac{D_2 - D_1}{\operatorname{tg} H_2 - \operatorname{lg} H_1} = \operatorname{tg} \alpha; \qquad (I, 138)$$

величина γ называется коэффициентом контрастности, иногда ее называют фактором проявления; α — угол наклона прямолинейного участка кривой относительно оси абсцисс.

Из определения величины у, как градиента оптической плотности на прямолинейном участке характеристической кривой, следует:

$$dD = \gamma d \lg H;$$

после дифференцирования находим:

$$\frac{\Delta \overline{\tau}}{\overline{\tau}} = -\gamma \frac{\Delta H}{H},$$

так как  $D = -\lg \tau$ . Если  $\gamma = 1$ , то контраст фотографического изображения  $\frac{\Lambda H}{\tau}$  равен контрасту оптического изображения  $\frac{\Lambda H}{H}$ ; знак ми-

нус указывает, что более темной детали соответствует более светлое фотографическое изображение ее. Если  $\gamma < 1$ , то контраст у фотографического изображения меньше, чем у оптического; если  $\gamma > 1$ , имеет место обратное.

При изменении времени проявления положение и форма характеристической кривой изменяются; можно подобрать время проявления  $t_{\rm np}$  таким, чтобы у данной фотографической эмульсии величина  $\gamma$  достигла любого значения  $\gamma_{\rm pek}$ ; при дальнейшем увеличении времени проявления коэффициент контрастности достигает максимального значения  $\gamma_{\rm макс}$ . Заметим, что для фотоматериалов низкой ( $\gamma = 0,5-0,7$ ) и очень высокой ( $\gamma > 1,3-1,5$ ) контрастности соотношения, приведенные в табл. I, 2, становятся существенно иными.

В зависимости от состава светочувствительной эмульсии и метода ее изготовления, величина  $\gamma_{\text{макс}}$  оказывается различной; она обычно связана со светочувствительностью S материала и тем выше, чем ниже чувствительность материала.

Для ориентировки приводим (табл. I, 3) численные значения коэффициентов контрастности ү фотографических материалов общего назначения. В главе V эти величины будут указаны.

Существенной является способность фотоматериала правильно передавать весь интервал яркостей фотографируемого объекта, т. е. разность между наиболее светлым и наиболее темным участками объекта; эта способность характеризуется фотографической широтой *L*. Величина *L* определяется интервалом экспозиций, ограниченных точками начала и конца прямолинейного участка характеристической кривой, и обычно выражается логарифмом отношения:

$$L = \lg \frac{H_2}{H_1} = \lg H_2 - \lg H_1, \qquad (1, 139)$$

где  $H_1$  и  $H_2$  — экспозиции, соответствующие началу и концу прямолинейного участка характеристической кривой (см. рис. I, 43).

Таблица I,3

|                                                                                              | Рекомен<br>коэффицие<br>растнос                                                                | дуемый<br>ент конт-<br><sup>ги ү</sup> рек | Максималы<br>фициент кој<br>ти у <sub>р</sub> | ный коэф-<br>нтрастнос-<br>макс                            | Фотографическая<br>широта L |                                    |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------------------------|-----------------------------|------------------------------------|--|
| Стедень контрастности                                                                        | пластинок                                                                                      | пленок                                     | пластин ок                                    | пленок                                                     | пластинок                   | пленок                             |  |
| Особо мягкие<br>Мягкие<br>Нормальные<br>Контрастные<br>Особо контрастные<br>Сверхконтрастные | $ \begin{array}{c}     - \\     0,8 \\     1,2 \\     1,7 \\     2,5 \\     >3,0 \end{array} $ | 0,65<br>0,80<br>1,2<br>1,7<br>2,5          | $\begin{array}{c}$                            | 0,7 <u>0</u> ,88<br>0,9 <u>1,15</u><br>1,2 <u>1,8</u><br>_ | 1,5<br>1,2<br>0,9           | 2,1—1,8<br>1,8—1,5<br>1,5—1,1<br>— |  |

Коэффициенты контрастности и фотографическая широта негативных пластинок и фотопленок общего назначения

В табл. 1, 3 приведены величины *L* у различных типов фотоматериалов. У некоторых из них значение фотографической широты достигает

L = 2; это значит, что интервал экспозиций у данного фотоматериала  $\frac{H_2}{H_1} = 100:1.$ 

Фотографические слои являются селективными индикаторами. Максимум спектральной чувствительности бромосеребряного фотографического слоя находится в ультрафиолетовой части спектра вблизи волны  $\lambda = 350 \ \text{нм}$  при верхней границе спектральной чувствительности, простирающейся до  $\sim 500 \ \text{нм}$ . Введением в состав эмульсии небольших количеств некоторых органических красителей, сообщающих эмульсии чувствительность к тем цветным излучениям, которые эти красители поглощают, можно сенсибилизировать эмульсии искусственным очувствлением их к длинноволновым излучениям. В табл. I, 4 дана классификация фотографических материалов по спектральной чувствительности.

Таблица I,4

| Вид фотоматериалов    | Граница сенсибилизации в длинах волн                                                     |
|-----------------------|------------------------------------------------------------------------------------------|
| Несенсибилизированные | Естественная чувствительность галоидного серебра до 500 нм                               |
| Ортохроматические     | 580—600 нм; пониженная чувствительность в области излучений с длиной волны около 500 нм  |
| Изоортохроматические  | 580—600 нм                                                                               |
| Изохроматические      | 620—650 нм                                                                               |
| Панхроматические      | 660—730 нм; пониженная чувствительность в<br>области излучений с длиной волны 490—540 нм |
| Изопанхроматические   | 660—730 нм                                                                               |

Спектральная чувствительность фотографических материалов

Помимо общей S и спектральной светочувствительности фотоматериала часто необходимо знать величину эффективной светочувствительности  $S_{\varphi}$ , понимая под последней чувствительность фотослоя к свету, прошедшему через цветной светофильтр. Определяется величина  $S_{\varphi}$ с помощью характеристической кривой, получаемой при установке в сенситометре соответствующего светофильтра.

Важной эксплуатационной характеристикой фотоматериала является его способность к воспроизведению мельчайших деталей фотографического объекта — разрешающая способность.

Таблица I,5

#### Разрешающая способность фотопленок широкого назначения

| Марка пленки                                                 | «Фото-32» | «Фото-65» | «Фото-130» | «Фото-250» |  |
|--------------------------------------------------------------|-----------|-----------|------------|------------|--|
| Светочувствительность S                                      | 32        | 65        | 130        | 250        |  |
| Разрешающая способность<br>N <sub>c</sub> , мм <sup>-1</sup> | 116       | 92        | 75         | 70         |  |

Разрешающая способность фотографического материала  $N_{\rm c}$  характеризуется наибольшей частотой штрихов в изображении абсолютно контрастной миры, состоящей из ряда групп параллельных штрихов, разделенных промежутками той же ширины, что и сами штрихи, которая еще раздельно передается испытуемым материалом. Разрешающая способность определяется в строго стандартизованных условиях с помощью специального прибора — резольвометра. Как правило, разрешающая способность эмульсий высокочувствительных ниже, чем малочувствительных.

В табл. I, 5 приведены данные о разрешающей способности чернобелых негативных фотографических пленок различной светочувствительности, выпускающихся нашей промышленностью для широкого применения (по ГОСТу 5554—63).

В табл. І, 6 приведены эти данные для цветных фотографических пленок.

Общая светочувствительность S и общая разрешающая способность определены в белом свете. Исследования показывают, что экспериментально определяемая величина разрешающей способности слоя сильно зависит от величины апертуры объектива, применяемого в резольвометре; значения  $N_{\rm C}$  оказываются бо́льшими, если применять высокоапертурные объективы.

Таблица 1,6

16

| Разрешающая способность<br>и светочувствительность цветофотографических пленок<br>(по ГОСТу 5554—63) |      |      |     |  |  |  |
|------------------------------------------------------------------------------------------------------|------|------|-----|--|--|--|
| Марка пленки                                                                                         | ДС-2 | ЛН-3 | Ц0- |  |  |  |

| Светочувствительность S, не менее                                                            | 22 | 32 |  |
|----------------------------------------------------------------------------------------------|----|----|--|
| Разрешающая способность <i>N<sub>C</sub> (мм<sup>-1</sup>)</i> для<br>белого света, не менее | 45 | 45 |  |

Определение экспозиции. Пусть *B* — яркость фотографируемого объекта. При этом объект может быть самосветящимся или светящимся в отраженном свете (так называемый вторичный излучатель). В последнем случае можно определить его яркость, если известна освещенность *E*, созданная на поверхности объекта, и его коэффициент отражения  $\rho$ :

$$B = \frac{\rho E}{\pi}; \qquad (I, 140)$$

при этом предполагаем, что освещаемая поверхность — диффузнорассеивающая.

Воспользовавшись (I, 127) и (I, 117), определим освещенность изображения на краю поля:

$$E'_{w'} = \frac{\tau \rho E}{4K_{\Phi}} \frac{S'_{3p}}{S'_{3p}} \cos^4 \omega' \frac{\overline{\beta}^2}{(\overline{\beta} - \overline{\beta}_{3p})^2} \varepsilon^2.$$
(1, 141)

В числе множителей — кратность светофильтра  $K_{\phi}$ , понимая под этим отношение общей светочувствительности фотографического материала S к эффективной светочувствительности  $S_{\phi}$ , т. е. светочувствительности фотослоя к свету, прошедшему светофильтр:

$$K_{\Phi} = \frac{S}{S_{\varphi}}$$

Заметим также, что взята освещенность изображения на краю поля. Умножив величину E'w на время экспозиции t, получим:

$$H = \frac{1}{S_{0,2}} = E'_{\omega'} t = \frac{\tau \rho E}{4K_{\Phi}} \cdot \frac{S'_{3p}}{S'_{3p}} \cdot \cos^4 \omega' \frac{\overline{\beta}_{3p}}{(\overline{\beta} - \overline{\beta}_{3p})^2} \varepsilon^2 t. \quad (1, 142)$$

Ряд множителей зависит от конструктивных особенностей объектива; обозначим их произведение буквой C<sub>1</sub>:

$$\tau \frac{S_{3p}^{'(w')}}{S_{3p}^{'(0)}} \cos^4 w' = C_1.$$
 (I, 142')

Весьма часто съемка ведется с больших расстояний ( $\overline{\beta} = 0$ ) и, следовательно,  $\frac{\overline{\beta^2}_{sp}}{(\overline{\beta} - \overline{\beta}_{sp})^2} = 1$ ; имеем:

$$H = \frac{1}{S_{0,2}} = \frac{\rho E}{4K_{\Phi}} C_{i} \varepsilon^{2} t, \qquad (I, 143)$$

или

$$t = \frac{4K_{\oplus}}{\rho E S_{0,2} C_1 \varepsilon^2} \cdot \tag{I, 143'}$$

Таким образом, время экспозиции обратно пропорционально светности фотографируемых объектов  $\rho E$ , чувствительности фотоматериала S и эффективной светосиле оптики на краю поля зрения  $C_1 \varepsilon$ .

Заметим, что множителем  $C_1$  учитывается лишь пропускание объектива  $\tau$  и падение освещенности на краях изображения; целесообразно ввести множитель  $C_2$ , учитывающий полезное действие затвора фотоаппарата и отклонение фактической выдержки затвора от номинальной; получим:

$$t = \frac{4K_{\oplus}}{\rho E S_{0,2} K \varepsilon^2}, \qquad (I, 143'')$$

где  $K = C_1 C_2$ .

Время экспозиции при фотографировании движущихся объектов. Выше предполагалось, что объект фотографирования, а следовательно, его изображение неподвижны.

В ряде случаев специального (например, аэрофотосъемка), репортерского, а иногда и любительского фотографирования объекты съемки перемещаются, что может привести к нежелательному сдвигу (размытию) изображения и потере разрешающей способности. Если при этом желательно по возможности сохранить фотографическую разрешающую способность системы объектив — фотографический слой (см. главу V), время выдержки t не должно быть больше времени, в течение которого изображение может сместиться на величину  $\delta'_0$ , превышающую половину\* линейного предела разрешения  $\frac{1}{2}$   $\sigma'_0$ :

$$\delta'_0 < \frac{1}{2} \sigma'_0 = \frac{1}{2N},$$
 (I, 144)

где N — фотографическая разрешающая способность неподвижной системы объектив — фотослой при определенном контрасте объекта (см. главу V).

Очевидно, если *v* — скорость относительного перемещения объекта и фотографирующей системы; *L* — дистанция съемки; *f'* — фокусное расстояние объектива, то смещение изображения будет равно:

$$\delta' = \frac{vt}{M} = \frac{f'}{L} vt, \qquad (1, 145)$$

где  $\frac{1}{M} = \frac{f'}{L}$  — масштаб фотографирования.

Сопоставляя последние два выражения и положив  $\delta' = \delta'_0$ , получим:

$$t \ll \frac{L}{2f'vN} \,. \tag{I, 146}$$

Следовательно, при съемке движущихся объектов выдержкуt целесообразно выбирать, исходя также из оценки допустимого сдвига изображения, а затем по возможности обеспечить это время экспозиции выбором параметров, входящих в формулу (I, 143"), в частности, выбором соответствующей светосилы объектива  $\varepsilon^2$ , должной освещенности E объекта фотографирования и применением фотослоев высокой чувствительности S.

Конечно, отсутствие объективов требуемой светосилы или невозможность обеспечения высоких освещенностей объектов может привести к невыполнимости условия (I, 146). Иными словами, приходится зачастую вводить бо́льшие выдержки t и допускать смещения изображения  $\delta'$  бо́льшие, чем  $\delta'_0$ .

Если же последнее, приводящее к потере информации, неприемлемо, то в фотоаппарате предусматривают специальные устройства, компенсирующие смещение изображения. Однако любое из этих устройств

<sup>\*</sup> Условие (І. 144) требует, строго говоря, обобщенного толкования. Под N следует понимать разрешаемую пространственную частоту (см. главу III) многозвенной системы, включающей как оптическую систему и приемник изображения, так и элементы аппаратуры, влияющие на качество изображения (затвор, механизм синхронизации движения изображения и транспортировки фотопленки), устройства стабилизации и ориентации оптико-приемной аппаратуры и ее носителя (летательного аппарата, движущейся платформы).

не в состоянии полностью компенсировать относительное смещение изображения: неизбежно имеет место остаточное смещение изображения относительно синхронно движущейся фотопленки, величина которого обычно составляет некоторую долю  $\eta$  от величины скорости v' смещения изображения  $v' = \frac{f'}{L}v$ .

Таким образом, при применении компенсации сдвига изображения вместо δ в формуле (I, 145) получим:

$$\overline{\delta}' = \eta \; \frac{f'}{L} \; vt;$$

и соответственно вместо (I, 146) находим:

$$t \ll \frac{L}{2\eta f' v N} \,. \tag{I, 147}$$

Учет всех этих факторов приводит к существенному повышению качества оптического изображения в эксплуатационных условиях.

#### ГЛАВА II

# ОПТИЧЕСКИЕ АБЕРРАЦИИ ОБЪЕКТИВОВ

Не существует идеальных оптических систем с увеличением, отличным от единицы. Исключение составляют лишь определенным образом установленные пары сопряженных точек в сочетании со специальными преломляющими или отражающими поверхностями, которые обеспечивают их аберрационность для определенных положений. Оптические системы, представляющие практический интерес, как правило, обладают аберрациями, т. е. отступлениями от свойств идеальной системы. Лишь в весьма узкой области — параксиальной системы. Лишь в весьма узкой области — параксиальной сисв которой изображения точек осуществляются пучками лучей малой апертуры и в пределах весьма узкого поля зрения, свойства реальной системы тождественны таковым в идеальной системе. Однако при этом исчезающе малы как яркость образуемого изображения, так и размеры изображаемого поля.

Всякая реальная оптическая система, пригодная для практического применения, должна иметь зрачки конечных, а подчас и весьма больших размеров, обладать большим углом поля зрения. Возможностями создания подобных оптических систем занимается т е о р и я о пт и ч е с к и х п р и б о р о в. На основе практического использования развитого в ней раздела — т е о р и и а б е р р а ц и й — создаются оптические системы различных оптических характеристик и разного назначения. Достигается это путем определения оптических конструктивных элементов системы — радиусов кривизны преломляющих или отражающих поверхностей, толщин и диаметров линз, расстояний между линзами, оптических постоянных стекол, а в некоторых случаях применением оптических поверхностей асферической формы.

Определение конструктивных элементов оптической системы производится в первом приближении на основе применения общих теоретических предпосылок, в частности на основе использования теории аберраций третьего порядка и последующего точного расчета хода лучей, позволяющего определить точные значения аберраций, и внесения соответствующих коррективов конструктивных элементов системы с целью более совершенной коррекции остаточных аберраций. За последние годы исследования и расчеты осуществляются с большой экономией времени и труда с помощью ЭВМ, которые по определенной логической схеме выполняют процесс автоматической коррекции аберраций системы заданной оптической схемы.

Существует мнение, что при разработке сложных современных объективов не рационально применять аналитические методы расчета, так как они обеспечивают лишь приближенные решения. Это мнение породилось двумя обстоятельствами: во-первых, тем, что сама техника решения задачи оказывается не простой, и, во-вторых тем, что в результате определения вариантов возможных решений приходим лишь к предварительным конструктивным элементам объектива.

Если и раньше эти доводы представлялись неубедительными, то теперь они даже могут привести к заблуждениям методологического порядка: для последующей автоматической коррекции аберраций, в ЭВМ должна быть введена исходная система (отправная точка), при разработке которой рационально руководствоваться хотя бы приближенной теорией. Тем более для некоторых классов современных сложных объективов (например, объектив с переменным фокусным расстоянием) вообще немыслимы другие пути решений.

В этой главе излагаются лишь некоторые результаты теории аберраций в объеме, необходимом для понимания свойств объективов. Ряд промежуточных выкладок, естественно, опущен; заинтересовавшегося читателя мы отсылаем к книгам А. И. Тудоровского [18], Г. Г. Слюсарева [16] и автора [3]; последняя специально посвящена методам расчета сложных фотографических систем.

### § 1. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

Аберрации характеризуют различного вида нарушения гомоцентричности в структуре пучков лучей, выходящих из оптической системы. В реальной системе нарушаются все свойства, присущие системе идеальной (см. главу I, § 2). В частности, изображением предметной плоскости, перпендикулярной к оптической оси, не является также плоскость, а изображение предмета, расположенного в плоскости, перпендикулярной оси, не остается геометрически подобным предмету.

Величины аберраций могут быть получены сравнением координат лучей, вышедших из оптической системы и определенных путем непосредственного расчета хода лучей по точным геометро-оптическим формулам со значениями тех же координат, определенными по формулам параксиальной оптики.

Однако эта же задача приближенно решается с помощью формул теории аберраций. При этом возможно характеризовать эти аберрации как критериями лучевой оптики, так и на основе представлений волновой оптики: в первом случае выражаем отступления от гомоцентричности пучков лучей, введя представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек; во втором случае оцениваем деформацию прошедшей через оптическую систему сферической световой волны, вводя представления о волновых аберрациях.

Очевидно, оба способа описания аберрационных свойств оптической системы взаимосвязаны и являются лишь разными формами описания одного и того же состояния, так как световые лучи пучков являются нормалями к поверхностям световых волн. Однако, в зависимости от анализируемой задачи, оказывается удобным применять те или иные критерии. Например, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций; в присутствии малых аберраций задачу успешно можно решить на основе представлений волновой оптики.

Ќачество изображения объекта пучками монохроматических лучей зависит от совершенства коррекции монохроматических аберраций. Возникновение этих аберраций объясняется тем, что преломляющие поверхности не собирают в точку сколько-нибудь широкие гомоцентрические пучки лучей, падающих на них под большим углами. Эти погрешности изображений принципиально неустранимы.

Изображение объекта в белом свете может оказаться окрашенным (хроматичным), что будет зависеть от хроматических аберраций оптической системы; их возникновение объясняется дисперсией оптических сред, из которых образована оптическая система.

Ко многим оптическим системам, работающим в условиях переменной температуры окружающей среды, предъявляют требования исправления термооптических аберраций. Температурные колебания вызывают изменения оптических постоянных стекол (показателей преломления и дисперсий), изменения геометрических параметров оптических и механических деталей (кривизны преломляющих поверхностей, толщин линз и т.п.). Последнее приводит к смещению плоскости изображения или к изменению линейных размеров изображения.

## § 2. МОНОХРОМАТИЧЕСКИЕ АБЕРРАЦИИ ОБЪЕКТИВОВ

Объектив по своим аберрационным свойствам относится к группе наиболее сложных оптических систем, так как в нем присутствуют одновременно аберрации всех видов в пределах широкого поля и большой апертуры.

Геометрические аберрации луча. Рассмотрим аберрацию некоторого луча широкого монохроматического пучка. В целях общности предположим, что луч не лежит в меридиональной плоскости, понимая под последней плоскость, проходящую через оптическую ось системы и точку пространства предметов.

Такой внемеридиональный (косой) луч, выходящий из точки A плоскости предметов, представлен на рис. II, 1. Положение косого луча в пространстве можно определить заданием координаты точки пересечения луча с меридиональной плоскостью (точка A имеет координатту  $l_1$ ) и координат точки пересечения луча с некоторой вспомогательной плоскостью, перпендикулярной оси системы (точка Q с координатами  $M_1$  и  $m_1$ ). В качестве такой вспомогательной плоскости обычно выбирают плоскость P входного зрачка, а для всех последующих преломленных лучей — соответственные изображения плоскости входного зрачка. На рис. II,1 точки O и O' — вершины первой и последней преломляющих поверхностей системы, оптическая ось OO' которой принята за ось x-в.

Внемеридиональный луч AQ проходит через точку A, лежащую в плоскости рисунка и определяемую двумя координатами:  $l_1$  — расстоянием точки A от оптической оси и  $s_1$  — расстоянием проекции S точки A на ось от вершины O первой преломляющей поверхности. Координаты  $s_1$  и  $l_1$  определяют положение точки A. Другая точка Q определяется пересечением луча с плоскостью входного зрачка P. Положение плоскости зрачка определяется расстоянием  $x_1$  центра входного зрачка P от точки O. Тогда Q в плоскости входного зрачка фиксируется двумя кординатами:  $m_1$  — по оси y-в и  $M_1$  — по оси z-в. Итак, внемеридиональный луч AQ определяется четырьмя величи-



Рис. II, 1. Аберрация внемеридионального луча

нами:  $l_1$ ,  $s_1$ ,  $m_1$  и  $M_1$  при заданном  $x_1$ . Иногда вместо  $l_1$  пользуются углом  $w_1$  между осью и главным лучом, проведенным из точки A в центр P входного зрачка:

$$tg w_1 = \frac{l_1}{x_1 - s_1} . \tag{II, 1}$$

На том же рис. II, 1 представлен ход луча в пространстве изображений. Плоскость изображения проходит через точку S', являющуюся гауссовым (параксиальным) изображением точки S на оси системы. Плоскость выходного зрачка P' определяется расстоянием x' центра выходного зрачка P' от вершины последней преломляющей поверхности O'. Точка  $A'_0$  — есть гауссово изображение точки A, т. е.  $A'_0$  — изображение, какое имели бы, если бы реальную оптическую систему OO' заменили идеальной. Тогда  $P'A'_0$  — есть луч, сопряженный главному лучу PA в случае идеальной системы; угол w' удовлетворяет соотношению:

$$\operatorname{tg} w' = \frac{l'_0}{x' - s'},$$
 (II, 1')

где  $l'_0$  — идеальное изображение отрезка *l*. Если бы система была идеальной и изображала с увеличением  $\overline{\beta}_0$ , то мы должны были бы иметь  $l'_0 = \overline{\beta}_0 l$ . Отступления  $l' - \overline{\beta}_0 l = \delta g'$  и  $\delta G'$  представляют собой проекции на оси координат поперечной аберрации  $A'_0 A'$ , т. е. расстояния между идеальным изображением  $A'_0$  точки A и реальной точкой пере-

сечения A' луча с плоскостью изображения; эти проекции обычно принято обозначать символами  $\delta g'$  и  $\delta G'$ .

При заданном положении плоскостей предмета и входного зрачка они являются функциями от координат падающего луча:  $l_1$ ,  $m_1$  и  $M_1$ и зависят также от конструктивных элементов оптической системы от радиусов ее поверхностей, толщин и показателей преломления линз и воздушных промежутков между линзами.

Теория аберраций устанавливает функциональную зависимость составляющих аберраций  $\delta g'$  и  $\delta G'$  от координат луча  $l_1, m_1, M_1$ :

$$\delta g' = f(l_1; m_1; M_1); \quad \delta G' = F(l_1; m, M_1).$$

Вследствие симметрии системы относительно оптической оси можно априори утверждать, что функции f и F не могут содержать членов четных порядков, т. е. таких, как ml,  $M^2$ , mM,  $Mm^2$  и др.; иными словами, функции f и F должны удовлетворять условиям нечетности:

$$\begin{array}{c}f(-l_{1}; -m_{1}; -M_{1}) = -f(l_{1}; m_{1}; M_{1});\\F(-l_{1}; -m_{1}; -M_{1}) = -F(l_{1}; m_{1}; M_{1}).\end{array}$$

Таким образом, если функции f и F разложить в ряд, то последний будет содержать члены лишь нечетных порядков относительно величин  $l_1, m_1$  и  $M_1$ , т. е. сумма показателей степени  $a + \beta + \gamma = *$  произведений вида  $K_j l_1^a m_1^\beta M_1^\gamma$ , являющихся членами этого ряда, равна нечетному числу. Теория аберраций третьего порядка ограничивается приближенным представлением составляющих аберраций  $\delta g'$  и  $\delta G'$  в виде ряда, члены которого содержат некоторые коэффициенты  $K_j$ , зависящие только от конструктивных элементов оптической системы и от положений плоскостей объекта  $s_1$  и входного зрачка  $x_1$ , но не зависящие от координат луча; последние определяются величинами  $l_1, m_1$  и  $M_1$ , входящими в качестве сомножителей членов ряда со степенями  $l_1^a$ ,  $m_1^\beta, M_1^r$ , сумма которых  $a + \beta + \gamma = * = 3$ . Если эта сумма равна пяти, семи и т. д., приходим соответственно

Если эта сумма равна пяти, семи и т. д., приходим соответственно к рядам, выражающим аберрации пятого, седьмого и т. д. порядков.

Анализ показывает, что число независимых коэффициентов  $K_j$  аберраций третьего порядка равно пяти; число коэффициентов аберраций пятого порядка равно девяти. В общем случае число независимых коэффициентов аберраций ×-го порядка равно:  $\frac{1}{8}(x + 1)$  (x + 7).

Таким образом, составляющие аберраций бg' III и бG' III третьего порядка могут быть представлены рядом:

$$\delta g'_{\text{III}} = A_{1}m_{1}(m_{1}^{2} + M_{1}^{2}) + A_{2}l_{1}(3m_{1}^{2} + M_{1}^{2}) + A_{3}l_{1}^{2}m_{1} + A_{5}l_{1}^{3};$$

$$\delta G'_{\text{III}} = A_{4}M_{1}(m_{1}^{2} + M_{1}^{2}) + 2A_{2}l_{1}m_{4}M_{1} + A_{4}l_{1}^{2}M_{1},$$
(II, 2)

где  $A_1$ ,  $A_2$ , ...,  $A_5$  — пять коэффициентов аберраций, зависящих только от конструктивных элементов оптической системы и от положений плоскостей предметов и входного зрачка.

При желании можно заменить координаты  $m_1$  и  $M_1$  в плоскости входного зрачка координатами m' и M' точки пересечения луча с плоскостью выходного зрачка, пользуясь соотношениями гауссовой оптики:

$$m' = \overline{\beta}_{\mathfrak{sp}}m; \quad M' = \overline{\beta}_{\mathfrak{sp}}M,$$

где  $\overline{\beta}_{\mathfrak{sp}}$  — увеличение в зрачках системы. Приходим к формуле, аналогичной по форме выражению (II, 2):

$$\delta g'_{\rm III} = A'_{\rm 1}m' \left(m'^{2} + M'^{2}\right) + A'_{\rm 2}l_{\rm 1} \left(3m'^{2} + M'^{2}\right) + A'_{\rm 3}l_{\rm 1}^{2}m' + A'_{\rm 5}l_{\rm 1}^{3}; \\ \delta G'_{\rm III} = A'_{\rm 1}M' \left(m'^{2} + M'^{2}\right) + 2A'_{\rm 2}l_{\rm 1}m'M' + A'_{\rm 4}l_{\rm 1}^{2}M'.$$
(II, 2')

Как было сказано выше, рядом, содержащим девять коэффициентов, могут быть представлены меридиональная и сагиттальная составляющие аберраций бg'v и бG'v пятого порядка:

$$\delta g'_{V} = 6B'_{3}m' (m'^{2} + M'^{2})^{2} + B'_{5} (m'^{2} + M'^{2}) (5m'^{2} + M'^{2}) l_{1} + + [4B'_{4}m' (m'^{2} + M'^{2}) + 2B'_{8}m' (2m'^{2} + M'^{2})] l_{1}^{2} + + [B'_{9} (3m'^{2} + M'^{2}) + 3B'_{6}m'^{2}] l_{1}^{3} + + 2 (B'_{1} + B'_{7}) m' l_{1}^{4} + B'_{2} l_{1}^{5});$$

$$\delta G'_{V} = 6B'_{3}M' (m'^{2} + M'^{2})^{2} + 4B'_{5} (m'^{2} + M'^{2}) M' m' l_{1} + + [4B'_{4}M' (m'^{2} + M'^{2}) + 2B'_{8}m'^{2} M'] l_{1}^{2} + 2B'_{9}m' M' l_{1}^{3} + + 2B'_{1}M' l_{1}^{4}.$$
(II, 3)

Члены ряда здесь расположены по возрастающим степеням l<sub>1</sub>.

Точные значения составляющих аберраций δg' и δG', очевидно, могут быть представлены суммой составляющих аберраций третьего. пятого и более высоких порядков:

$$\delta g' = \delta g'_{\mathrm{III}} + \delta g'_{\mathrm{V}} + \cdots;$$

$$\delta G' = \delta G'_{\mathrm{III}} + \delta G'_{\mathrm{V}} + \cdots$$

$$(II,3')$$

Заметим, что здесь отсутствуют составляющие аберраций  $\delta g'$  и  $\delta G'$  первого порядка, хотя из формулы  $\frac{1}{2}$  (x + 1) (x + 7) следует, что при x = 1 получаем две аберрации первого порядка: это аберрации параксиальной области и их, очевидно, может быть только две аберрация положения изображения (дефокусировка) и аберрация величины изображения.

Волновая аберрация луча и ее связь с аберрациями геометрическими. Пусть из некоторой точки А предмета, расположенной в меридиональной плоскости вне оптической оси, поступает в оптическую систему гомоцентрический пучок лучей, которому, следовательно, соответствует сферическая световая волна. По выходе из оптической системы эта волна вследствие аберраций системы больше не является сферической. Ее отступление от сферической формы может быть характеризовано отрезком L — расстоянием между реальной и сферической волновыми поверхностями, отсчитываемым по нормали к сферической поверхности с центром в точке  $A'_0$ , являющейся идеальным изображением точки A (рис. II, 2).

Пусть P'X' — оптическая ось системы; XP'Y — меридиональная плоскость, содержащая гауссово изображение  $A'_0$  точки, расположен-



Рис. II, 2. К определению волновой аберрации

зображение  $A'_0$  точки, расположенной на расстоянии  $l'_0 = A'_0 S'$  от оптической оси. Пусть S — идеальная сферическая волновая поверхность радиуса r'. Пусть B — некоторая точка этой поверхности; BC — нормаль к реальной волновой поверхности; L — волновая аберрация.

Уравнение идеальной волновой поверхности имеет вид:

$$(x-x_0)^2 + (y-l_0')^2 + z^2 - r'^2 = 0,$$

где  $x_0 = p'$  — абсцисса точки пересечения S' плоскости изображения с осью P'X, равная расстоянию между плоскостью изображения и выходного зрачка, в центре P' которого расположена вершина сферической волны. Можно представить уравнение реальной волновой поверхности в окрестности точки C также в виде сферы радиуса  $r' + \delta r'$ :

$$F(x; y; z) = (x - x_0)^2 + (y - l_0')^2 + z^2 - (r' + \delta r')^2 = 0,$$

где волновая аберрация *L* является некоторой функцией от *y* и *z*. Уравнение нормали *BC* к реальной волновой поверхности в точке

у равнение нормали ВС к реальной волновой поверхности в точке (x; y; z) имеет вид:

$$\frac{X-x}{\frac{\partial F}{\partial x}} = \frac{Y-y}{\frac{\partial F}{\partial y}} = \frac{Z-z}{\frac{\partial F}{\partial z}};$$

отсюда получим, пренебрегая величиной δr' по сравнению с r':

$$\frac{X-x}{x-x_0} = \frac{Y-y}{y-l'_0-r'\frac{\partial L}{\partial y}} = \frac{Z-z}{z-r'\frac{\partial L}{\partial z}}$$

Положив  $X = x_0$ , получим значения координат  $Y = l'_0 + \delta g'$ ,  $Z = \delta G'$  точки A' пересечения луча (т. е. нормали CA' к реальной поверхности волны) с плоскостью изображения S'; впрочем последней может быть любая выбранная так называемая плоскость установки:

$$\partial g' = r' \frac{\partial L}{\partial y}; \quad \delta G' = r' \frac{\partial L}{\partial z}.$$
 (II, 4)

Эти уравнения связывают поперечные геометрические аберрации  $\delta g'$  и  $\delta G'$  с производными волновой аберрации по переменным y и z на поверх-

ности волны; выразим последние через координаты m' и M' в плоскости выходного зрачка.

Предположим, что аберрации системы невелики и направление реального луча, проходящего через точку *B* идеальной волновой поверхности с координатами *x*, *y*, *z*, мало отличается от направления нормали  $BA'_0$  (на рисунке не указанной), проходящей через точку  $A'_0$  с координатами  $x_0$ ,  $l'_0$ , *O*. Пусть плоскость YP'Z совпадает с плоскостью выходного зрачка и, следовательно, координаты пересечения луча с этой плоскостью *O*, *m'*, *M'*. Очевидно, эти координаты должны удовлетворять уравнению прямой, проходящей через точки *B* и  $A'_0$ :

$$m' = \frac{x_0 y - x l_0'}{x_0 - x}; M' = \frac{x_0}{x_0 - x} z,$$

где

$$x = x_0 \sqrt{r'^2 - z^2 - (y - l'_0)^2}.$$

Допустим дальнейшее приближение, а именно, что  $x_0 = r'$  и что величины  $l'_0$ , y и z невелики по сравнению с величиной  $x_0 = p'$ ; обычным приемом разложения корня квадратного получим:

$$x = \frac{1}{2} x_0 \frac{z^2 + (y - l_0')^2}{x_0^2}$$

и далее представим выражения для *m*' и *M*' приближенно:

$$m' = y + \frac{x}{x_0} (y - l'_0); \quad M' = z \left(1 + \frac{x}{x_0}\right).$$

После подстановки сюда последнего выражения для величины *х* находим:

$$M' = z \left( 1 + \frac{1}{2} \frac{y^2 + z^2 - 2yl'_0}{x_0^2} \right);$$
  
$$m' = y + \frac{1}{2} \frac{y^2 + z^2 - 2yl'_0}{x_0^2} (y - l'_0),$$

или, наоборот, выразим у и z через координаты m' и M':

$$y = m' - \frac{{M'}^2 + {m'}^2 - 2m' l_0'}{x_0^2} (m' - l_0');$$
  
$$z = M' \left(1 - \frac{{M'}^2 + {m'}^2 - 2m' l_0'}{x_0^2}\right).$$
(11, 5)

Сопоставив полученные формулы с выражениями (II, 4), убеждаемся, что практическое их применение сулит мало удобств и пользоваться ими рационально только в тех случаях, когда нужна высокая точность. Для повседневной практики можно принять, что y = m'и z = M' и вместо (II, 4) написать:

$$\delta g' = r' \frac{\partial L}{\partial m'}; \quad \delta G' = r' \frac{\partial L}{\partial M'}.$$
 (II, 6)

Волновая аберрация L представлена здесь как функция координат m' и M'; она зависит также от ординаты  $y_0 = l_1$  точки A предмета, от конструктивных элементов оптической системы и от положения плоскости предметов.

Общие выражения волновой аберрации. Формулы (11,6) применяются для вычисления величины волновой аберрации L. Если меридиональная и сагиттальная составляющие геометрических аберраций  $\delta g'$  и  $\delta G'$  представлены в виде функций от m' и M', то волновая аберрация L может быть определена путем интегрирования системы уравнений (II, 6).

Если составляющие геометрической аберрации  $\delta g'_{111}$  и  $\delta G'_{111}$  заданы рядами (II, 2'), то выражение волновой аберрации третьего порядка  $L_{111}$  будет иметь следующий вид:

$$r'L_{\rm III} = \frac{1}{4} (m'^2 + M'^2)^2 A'_{\rm 1} + (m'^2 + M'^2) m'l_{\rm 1}A'_{\rm 2} + \frac{1}{2} m'^2 l_{\rm 1}^2 A'_{\rm 3} + \frac{1}{2} M'^2 l_{\rm 1}^2 A'_{\rm 4} + m'l_{\rm 1}^3 A'_{\rm 5}.$$
(II, 7)

Обращаем внимание, что при интегрировании мы опустили постоянный член ряда, так как предполагается, что волновая поверхность соприкасается в ее вершине с идеальной сферической поверхностью (сферой сравнения). Кроме того, в выражении (II, 7) отсутствуют члены, содержащие нечетные степени координаты M', что является следствием наличия в аксиально симметричных центрированных оптических системах плоскости симметрич для наклонных пучков. Наконец, последний член ряда (II, 7) содержит координату m' в первой степени; как будет ясно в дальнейшем, линейная зависимость аберрации от некоторого аргумента (в данном случае от m') не влияет на структуру изображения точки; последний член характеризует аберрацию главного луча.

Можно воспользоваться выражениями аберраций пятого порядка  $\delta g'_{v}$  и  $\delta G'_{v}$ , написанными выше (II, 3), и, проинтегрировав систему уравнений (II, 6), получить следующее выражение волновой аберрации  $L_{v}$  пятого порядка:

$$r'Lv = B'_{3} (m'^{2} + M'^{2})^{3} + B'_{5} (m'^{2} + M'^{2})^{2} m'l_{1} + \left[ (B'_{4} + B'_{8}) m'^{2} + B'_{4} M'^{2} \right] (m'^{2} + M'^{2}) l_{1}^{2} + \left[ (B'_{9} + B'_{6}) m'^{2} + B'_{9} M'^{2} \right] m'l_{1}^{3} + \left[ (B'_{1} + B'_{7}) m'^{2} + B'_{1} M'^{2} \right] l_{1}^{4} + C'. \quad (II, 8)$$

Члены ряда здесь также расположены по возрастающим степеням  $l_1$ . И здесь, конечно, отсутствуют члены, содержащие нечетные степени параметра M'; C' — постоянная интегрирования.

Как увидим в дальнейшем, графическое представление аберраций в нашей практике принято проводить по аргументам u' и U' — апертурным углам в меридиональном и сагиттальном сечениях, которые при определенном расстоянии между плоскостями выходного зрачка и изображения (x'—s') пропорциональны величинам m' и M':

$$u' = -\frac{m'}{x'-s'}; \quad U' = -\frac{M'}{x'-s'}.$$
 (II, 9)

Волновую аберрацию L<sub>III</sub> можно написать в следующем виде:

$$r'L_{\rm III} = A_1^{"} \left( {u'}^2 + {U'}^2 \right)^2 + A_2^{"} \left( {u'}^2 + {U'}^2 \right) u' \, \mathrm{tg} \, \omega + + A_3^{"} {u'}^2 \, \mathrm{tg}^2 \, \omega + A_4^{"} \, {U'}^2 \, \mathrm{tg}^2 \, \omega + A_5^{"} \, u' \, \mathrm{tg}^3 \, \omega, \qquad (\mathrm{II}, 10)$$

где w — угол поля зрения, определяемый из (II, 1).

Аналогично можно представить волновую аберрацию пятого порядка  $L_V$  (II, 8) как функцию апертурных углов u' и U':

$$r'L_{v} = B_{3}^{"} \left( {u'}^{2} + {u'}^{2} \right)^{3} + B_{5}^{"} \left( {u'}^{2} + {U'}^{2} \right)^{2} u' \operatorname{tg} w + \\ + \left[ \left( B_{4}^{"} + B_{8}^{"} \right) {u'}^{2} + B_{4}^{"} {U'}^{2} \right] \left( {u'}^{2} + {U'}^{2} \right) \operatorname{tg}^{2} w + \\ + \left[ \left( B_{9}^{"} + B_{6}^{"} \right) {u'}^{2} + B_{9}^{"} {U'}^{2} \right] u' \operatorname{tg}^{2} w + \left[ \left( B_{1}^{"} + B_{7}^{"} \right) {u'}^{2} + \\ + B_{1}^{"} {U'}^{2} \right] \operatorname{tg}^{4} w + C''.$$
(II, 10')

Переменные Ланге, используемые в теории аберраций. Следуя Ланге, обозначим через  $a_k$  угол между оптической осью системы и первым вспомогательным параксиальным лучом, проходящим через центр предмета до преломления луча через k-ю поверхность; такой же угол после преломления — буквой  $a'_k$ . Соответственно углы с осью второго вспомогательного параксиального луча, проходящего через центр входного зрачка, назовем буквами  $\beta_k$  и  $\beta'_k$ .

Обозначения  $\dot{u}_k$  и  $\dot{u'}_k$ ,  $w_k$  и  $w'_k$  соответственно сохраним для конечных значений углов тех же лучей с оптической осью.

Введем также высоты пересечения с k-й преломляющей поверхностью обоих вспомогательных параксиальных лучей —  $h_k$  и  $y_k$ . Эти формулы имели следующий вид (см. I, 31 и I, 32):

$$n'_k \alpha'_k - n_k \alpha_k = h_k \frac{n'_k - n_k}{r_k}$$
,

где углы а и а' указаны на рис. I, 17:

$$\frac{h_k}{s_k} = \alpha_k; \quad \frac{h_k}{s'_k} = \alpha'_k. \tag{II, 11}$$

Для перехода от высоты  $h_k$  на преломляющей поверхности k к высоте на поверхности с номером k + 1, разделенных промежутком  $d_k$ , можно воспользоваться простой зависимостью:

$$h_{k+1} = h_k - d_k \alpha_{k+1},$$
 (II, 12)

где  $\alpha_{k+1} = \alpha_k$ .

Аналогичные соотношения можно написать и для второго вспомогательного параксиального луча (см. I, 91):

$$n_{k}^{'}\beta_{k}^{'}-n_{k}\beta_{k}=y_{k}\frac{n_{k}^{'}-n_{k}}{r_{k}},$$
 (II, 13)

$$y_{k+1} = y_x - d_k \beta_{k+1},$$
 (II, 14)

где  $\frac{u_k}{x_k} = \beta_k$ ;  $\frac{y_k}{x'_k} = \beta'_k$ ; через  $x_k$  и  $x_k'$  обозначены сопряженные отрезки, определенные из формулы преломления второго вспомогательного луча через *k*-ю поверхность:

$$\frac{n_k}{x_k} - \frac{n_k}{x_k} = \frac{n_k - n_k}{r_k}$$

Таким образом, расчет обоих вспомогательных лучей последовательно производится по рекуррентным формулам (II, 10)—(II, 14):

$$\Delta_k n\alpha = h_k \frac{\Delta_k n}{r_k}; \quad \Delta_k h = -d_k \alpha'_k; \quad (11, 15)$$

$$\Delta_k n\beta = y_k \frac{\Delta_k n}{r_k}; \quad \Delta_k y = -d_k \beta'_k$$
(II, 16)

Символом  $\Delta$  здесь обозначены разности соответствующих величин.

Углы  $a_k$  и  $\beta_k$  и высоты  $h_k$  и  $y_k$  могут при этом задаваться в любых произвольных единицах; важно лишь, чтобы при выборе этих единиц были удовлетворены следующие соотношения:

$$h_{k} = s_{k} \alpha_{k} = s'_{k} \alpha_{k}'; \quad y_{k} = x_{k} \beta_{k} = x'_{k} \beta'_{k}.$$
 (II, 17)

Если предмет или входной зрачок находятся на бесконечно далеком расстоянии, то соответственно одно из выражений (II, 17) заменяется одним из следующих:

$$s_1 = -\infty; \quad h_1 = f' \alpha'_k;$$
  

$$x_1 = -\infty; \quad y_1 = f' \beta'_k, \quad (II, 18)$$

где f' — фокусное расстояние оптической системы.

Имея четыре совокупности величин, рассчитанных при любых начальных значениях:  $h_k$  и  $y_k$  с индексом от 1 до p (p — число преломляющих поверхностей оптической системы) и  $a_k$ ,  $\beta_k$  с индексами от 1 до p + 1, — вычисляем их так называемые приведенные значения; для этого делим каждую из величин  $a_k$ ,  $\beta_k$ ,  $h_k$ ,  $y_k$  на одно из значений каждой совокупности; эти величины назовем приведенными значениями переменных Ланге.

Можно перечислить несколько систем приведенных значений переменных Ланге, или, что то же самое, систем выбора начальных значений переменных Ланге, при пользовании рекуррентными формулами (II, 15) и (II, 16).

Например, если плоскости предметов и входного зрачка находятся на конечных расстояниях соответственно s<sub>1</sub> и x<sub>1</sub>, можно принять одно из следующих условий нормировки:

a) 
$$\alpha_{1} = 1, \quad h_{1} = s_{1}, \\ \beta_{1} = 1, \quad y_{1} = x_{1}; \end{cases}$$
 (II, 19)

6) 
$$\alpha' = 1\left(\alpha_{1} = \frac{1}{\gamma}\right), \quad h_{1} = s_{1}\alpha_{1}, \\ \beta_{1} = 1, \quad y_{1} = x_{1}, \end{cases}$$
 (I1, 20)

где у — угловое увеличение системы.

Если переменные α<sub>k</sub>, h<sub>k</sub> и β<sub>k</sub>, y<sub>k</sub> вычислены при какой угодно системе возможного выбора их единиц, то можно соответственным делением значений этих величин привести их и к такой применяемой иногда нормировке:

$$\begin{array}{c} \alpha_1 = 1, \quad h_1 = 1, \\ \beta_1 = 1, \quad y_1 = 1. \end{array}$$
 (I1, 21)

Если плоскость предметов бесконечно удалена ( $\alpha_1 = 0$ ), удобнее всего выполнять вычисления, полагая f' = 1, т. е. выражая все длины в долях фокусного расстояния системы; при этом приведенные значения переменных Ланге вычисляются при следующих условиях:

$$\dot{\alpha_{\rho}} = 1, \quad h_1 = 1, \\ \beta_1 = 1, \quad y_1 = x_1. \end{cases}$$
 (II, 22)

Если задан линейный элемент предмета  $l_1$ , перпендикулярный оптической оси и расположенный на расстоянии  $s_1$  от вершины первой преломляющей поверхности, имеем:

$$h_1 = s_1 \alpha_1; \quad l_1 = (x_1 - s_1) \beta_1.$$
 (II, 23)

В дальнейшем для краткости обозначаем в этой главе элемент dl через l.

Определив с помощью формул (II, 15) координаты выхода луча из оптической системы  $h_p$  и  $\alpha_p'$ , находим положение параксиального изображения:

$$s'_p = \frac{h_p}{\sigma'_p} \cdot \tag{I1, 24}$$

Из расчета второго вспомогательного луча, выполненного с помощью формул (II, 16), находим координаты выхода  $y_p$  и  $\beta_p'$ ; отсюда определяем величину параксиального изображения:

$$l'_{p} = (x'_{p} - s'_{p}) \beta'_{p}.$$
 (II, 25)

Линейный элемент изображения  $l_p'$  может быть и непосредственно определен из инварианта Лагранжа—Гельмгольца (I, 29):

$$n_1 l_1 \alpha_1 = n'_p l'_p \alpha'_p,$$
 (II, 26)

и, следовательно, расчет второго вспомогательного луча оказывается, необходим, как увидим ниже, для удобного представления коэффи-циентов аберраций третьего порядка через переменные  $\alpha_k, h_k, \beta_k, y_k$ ; контролем правильности выполненных вычислений обоих параксиальных лучей, как нетрудно видеть, явится тождественность следующих выражений:

$$n_{i}\left(\alpha_{i}y_{i}-\beta_{i}h_{i}\right)=n_{p}'\left(\alpha_{p}'y_{p}-\beta_{p}'h_{p}\right), \qquad (\text{II},27)$$

где n<sub>1</sub> и n'<sub>p</sub> — показатели преломления сред пространства предметов и изображений.

Во многих случаях предварительных, в частности, габаритных расчетов можно считать оптическую систему состоящей из нескольких бесконечно тонких линз, расположенных на некоторых расстояниях друг от друга; иногда вместо простой линзы встречается сложный компонент, состоящий из нескольких бесконечно тонких соприкасающихся простых линз.

Назовем оптическую силу одного из таких компонентов с номером *і* буквой ф<sub>*i*</sub>; оптическая сила компонента может быть определена в результате следующего суммирования по всем р преломляющим поверхностям:

$$\varphi_i = \sum_{k=1}^{k=p} \frac{n'_k - n_k}{r_k}$$
 (II, 28)

При расчете хода параксиальных лучей через подобную систему, со-стоящую из тонких линз или компонентов, для всех линз *i*-го компонента высоты  $h_i$  и  $y_i$  пересечения вспомогательных лучей, очевидно, будут одинаковы; применяя формулы (II, 11)—(II, 14) последовательно ко всем поверхностям компонента, получим:

$$\begin{array}{c} \alpha_i' - \alpha_i = h_i \varphi_i, \\ h_{i+1} = h_i - d_i \alpha_i'; \end{array}$$
 (II, 29)

$$\begin{cases} \beta'_i - \beta_i = y_i \varphi_i, \\ y_{i+1} = y_i - d_i \beta'_i, \end{cases}$$
(II, 30)

где **a**<sub>i</sub>, **β**<sub>i</sub> и **a**'<sub>i</sub>, **β**'<sub>i</sub> — углы с оптической осью вспомогательных парак-сиальных лучей до и после преломления через *i*-й компонент, а *d*<sub>i</sub> — расстояние между компонентами *i* и *i* + 1. Формулы (II, 29) и (II, 30) могут применяться и в системе, состоя-щей из простых линз или сложных компонентов конечной толщины,

но при этом под  $h_i$  и  $y_i$  следует понимать высоты пересечения вспомогательных лучей с главными плоскостями толстой линзы или компонента; кроме того, оптическая сила ф; уже не может быть вычислена по формуле (II, 28), а должна быть получена точным расчетом.

Определение фокусных расстояний оптической системы и положений ее кардинальных точек (фокусов и главных точек) проще всего выполнить путем расчета хода двух параксиальных лучей, входящих в систему параллельно оптической оси: одного - в положительном направлении (прямой ход луча), другого — в противоположном направлении (обратный ход луча). Расстояния  $s'_{F'} = O'F'$  (см. рис. 1, 19) и  $s_F = OF$  определяют по-

ложение фокусов — заднего F' и переднего F:

$$s'_{F''} = \frac{h'_p}{\alpha'_p}; \quad s_F = \frac{\overleftarrow{h_p}}{\overleftarrow{\alpha_p}}; \quad (II, 31)$$

где  $h_p$  и  $a_p$  — координаты преломленного параксиального луча после первой поверхности в обратном ходе; нумерация преломляющих поверхностей, оптических сред и т. п. ведется также в обратном ходе; знаки радиусов поверхностей меняются на противоположные:

Здесь взяты бесконечно малые углы а и а' вместо конечных углов и и и', указанных на рис. I, 19 для идеальной системы. Величины фокусных расстояний определятся из расчета тех же

лучей (см. I, 38):

$$f' = \frac{h_1}{\alpha'_p}; \quad f = \frac{\overleftarrow{h_1}}{\overleftarrow{\alpha'_p}}. \tag{II, 32}$$

Положения главных точек Н и Н' соответственно относительно последней и первой преломляющих поверхностей системы определяются отрезками  $t'_{H'}$  и  $t_H$  (см. рис. I, 26):

$$t'_{H'} = s'_{F'} - f'; \quad t_H = s_F - f,$$
 (II, 33)

где величины  $t_H$  и  $t'_{H'}$  считаются положительными, если главная точка расположена справа от соответственной вершины поверхности. Формулы аберраций третьего порядка. Как увидим ниже, уже ко-

эффициенты аберраций третьего порядка имеют довольно сложное алгебраическое выражение; несравнимо более сложными представляются коэффициенты аберраций пятого порядка. Поэтому применение в методических исследованиях и в конкретных разработках оптических схем пока получила лишь теория аберраций третьего порядка. За последние годы, в связи с появлением ЭВМ, начинает возрождаться интерес к совершенствованию методики применения теории аберраций пятого порядка в практике расчета оптических систем.

Однако не ясны пока пути применения теории аберраций пятого порядка для рационализации процесса выбора оптической схемы и анализа ее аберрационных свойств. Развитие методики и приемов проектирования оптических систем до сих пор базировалось на теории аберраций третьего порядка.

Практическая значимость теории аберраций третьего порядка не столько в возможности использования ее в качестве аппарата для коррекции аберраций, сколько в качестве вспомогательного аппарата для логического анализа аберрационных свойств оптической схемы и потенциальных возможностей последней. Именно поэтому теорию аберраций третьего порядка следует знать не менее совершенно, чем оптику гауссову, роль которой в процессе проектирования оптических систем для всех неоспорима.

Использование тех же ЭВМ для автоматизации коррекции аберраций оптических систем заданных оптических схем, выбор и предварительный анализ которых на основе теории аберраций третьего порядка в общем оказывается достаточно действенным в смысле «выдачи» ЭВМ исходной оптической схемы.

Не приводя здесь промежуточных выкладок, довольно громоздких, но элементарных, приведем выражения аберраций третьего порядка, имеющиеся во всех достаточно полных курсах геометрической оптики [18], [16]:

$$2n' \delta g'_{111} \alpha' = \frac{m_1 \left(m_1^2 + M_1^2\right)}{(x_1 - s_1)^3} \left(\frac{s_1}{h_1}\right)^3 S_1 - \frac{3m_1^2 + M_1^2}{(x_1 - s_1)^3} l_1 \left(\frac{s_1}{h_1}\right)^2 \frac{x_1}{y_1} S_{11} + \frac{m_1 l_1^2}{(x_1 - s_1)^3} \left(\frac{s_1}{h_1}\right) \left(\frac{x_1}{y_1}\right)^2 (3S_{111} + l^2S_{1V}) - \frac{-\left(\frac{x_1}{y_1}\right)^3 \frac{l_1^3}{(x_1 - s_1)^3} S_V;}{(x_1 - s_1)^3} S_V;$$

$$2n' \delta G'_{111} \alpha' = \frac{M_1 \left(m_1^2 + M_1^2\right)}{(x_1 - s_1)^3} \left(\frac{s_1}{h_1}\right)^3 S_1 - \frac{-\frac{2m_1 M_1}{(x_1 - s_1)^3} l_1 \left(\frac{s_1}{h_1}\right)^2 \frac{x_1}{y_1} S_{11} + \frac{M_1 l_1^2}{(x_1 - s_1)^3} \left(\frac{s_1}{h_1}\right) \left(\frac{x_1}{y_1}\right)^2 (S_{111} + l^2S_{1V}).$$
(II, 34)

Здесь по-прежнему предполагается, что точка предмета A расположена в меридиональной плоскости (см. рис. II, 1);  $x_1 - s_1 = -p_1 - p_2$  стояние между плоскостями предметов и входного зрачка.

Все члены выражений содержат так называемые коэффициенты аберраций третьего порядка, обычно обозначаемые в отечественной литературе буквами  $S_1$ ,  $S_{11}$ , ...,  $S_V$ ; эти коэффициенты при заданном положении плоскостей предмета и входного зрачка зависят от конст-

руктивных элементов оптической системы и выражаются в переменных Ланге следующим образом:

$$S_{1} = \sum_{k=1}^{k=p} h_{k} P_{k}^{*};$$

$$S_{11} = \sum_{k=1}^{k=p} h_{k} P_{k}^{*} \frac{\Delta \beta_{k}}{\Delta \alpha_{k}};$$

$$S_{111} = \sum_{k=1}^{k=p} h_{k} P_{k}^{*} \left(\frac{\Delta \beta_{k}}{\Delta \alpha_{k}}\right)^{2};$$

$$S_{1V} = \sum_{k=1}^{k=p} \frac{1}{h_{k}} \cdot \frac{\Delta \alpha_{k} n_{k}}{n_{k} \alpha_{k}^{'}};$$

$$S_{V} = \sum_{k=1}^{k=p} \left[ h_{k} P_{k}^{*} \left(\frac{\Delta \beta_{k}}{\Delta \alpha_{k}}\right)^{2} + \frac{I^{2}}{h_{k}} \cdot \frac{\Delta \alpha_{k} n_{k}}{n_{k} n_{k}^{'}} \right] \frac{\Delta \beta_{k}}{\Delta \alpha_{k}}.$$
(II, 35)

где

$$P_k^* = \left(\frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}}\right)^2 \Delta \frac{\sigma_k}{n_k} \quad \text{if } l = n_1 \alpha_1 l_1 = n_k \alpha_k l_k = \text{const.}$$

Величина *I* зависит от нормировки начальных значений переменных Ланге, а именно, ордината *l*<sub>1</sub> точки пересечения второго вспомогательного луча с плоскостью предметов равна:

 $l_1 = (x_1 - s_1) \frac{y_1}{x_1}$ ; при нормировке (II, 19)  $I = n_1(x_1 - s_1)$ ; при нормировке (II, 20)  $I = n_1 \alpha_1 (x_1 - s_1)$ . В теории сложных анастигматов, в частности при проектировании

В теории сложных анастигматов, в частности при проектировании и разработке светосильных широкоугольных систем, иногда нельзя оставлять без внимания аберрации в зрачках объектива. Выражения для коэффициентов аберраций в плоскости выходного зрачка  $\overline{S}_{1x}$ ,  $\overline{S}_{11x}$ ,  $\overline{S}_{111x}$  и т. д. по виду аналогичны выражениям (II, 35), но в последних должна быть произведена следующая замена переменных:

$$\alpha_{\kappa} \rightarrow \beta_{\kappa}; \quad h_{\kappa} \rightarrow y_{\kappa}; \quad P_{k}^{*} \rightarrow P_{k,x}^{*}; \quad l_{1} \rightarrow m_{1}.$$

Если переменные  $a_k$ ,  $\beta_k$ ,  $h_k$  и  $y_k$  вычислены при какой угодно системе возможного выбора их единиц, а затем соответственным делением значений этих величин произведено приведение последних к нормировке (II, 21), то аберрации третьего порядка в плоскости изображений выразятся следующим образом:

$$\begin{split} \delta g_{111}^{'} &= l' - \frac{l}{\gamma} = \frac{1}{2n'\gamma (x_{1} - s_{1})^{3}} \left[ m_{1} \left( m_{1}^{2} + M_{1}^{2} \right) s_{1} \overline{S}_{I} - \right. \\ &\left. - \left( 3l_{4}m_{1}^{2} + l_{1}M_{1}^{2} \right) s_{1} \overline{S}_{II} + 3l_{1}^{2} m_{1}s_{1} \overline{S}_{III} + \right. \\ &\left. + \frac{n_{1}^{2}m_{1}}{f'} \left( x_{1} - s_{1} \right)^{2} \overline{S}_{IV} - l_{1}^{3}s_{1} \overline{S}_{V} \right]; \\ &\left. \delta G_{III}^{'} &= \frac{1}{2n'\gamma (x_{1} - s_{1})^{3}} \left[ M_{1} \left( m_{1}^{2} + M_{1}^{2} \right) s_{1} \overline{S}_{I} - \right. \\ &\left. - 2l_{4}m_{4}M_{4}s_{1} \overline{S}_{II} + M_{4}l_{1}^{2} s_{1} \overline{S}_{III} + \frac{n_{1}^{2}M_{1}}{f'} \left( x_{1} - s_{4} \right)^{2} \overline{S}_{IV} \right]. \end{split}$$
 (II, 36)

Выражения для аберраций системы в плоскости выходного зрачка  $\delta m'_{111}$  и  $\delta M'_{111}$  по виду аналогичны выражениям (II, 36), но в последних должна быть произведена следующая замена:

$$\begin{split} \delta g'_{\mathrm{III}} &\to \delta m'_{\mathrm{III}} ; \quad \delta G'_{\mathrm{III}} \to \delta M'_{\mathrm{III}} ; \quad \gamma \to \gamma_x ; \\ x_1 &\to s_1; \quad s_1 \to x_1; \quad l_1 \to m_1; \quad m_1 \to l_1; \\ \overline{S}_1 &\to \overline{S}_{1x} ; \quad \overline{S}_{\mathrm{II}} \to \overline{S}_{\mathrm{IIx}} ; \quad \overline{S}_{\mathrm{III}} \to \overline{S}_{\mathrm{IIIx}} ; \\ \overline{S}_{\mathrm{IV}} &= \overline{S}_{\mathrm{IV}x} ; \quad \overline{S}_{\mathrm{V}} \to \overline{S}_{\mathrm{V}x} , \end{split}$$

причем коэффициенты аберраций вычисляются при нормировке (II,21).

Аберрации бесконечно удаленной плоскости предметов. В весьма распространенном случае бесконечно удаленной плоскости предметов  $(s_1 \rightarrow -\infty, (x_1 - s_1) \rightarrow -\infty)$  формулы (II, 34) теряют смысл. Обратив внимание, что

$$\lim \left(\frac{s_1}{x_1-s_1}\right) s_1 \to -\infty = -1 \quad \text{if } \frac{h_1}{\alpha'_p} = f',$$

из (II, 34), предварительно заменив в этих формулах

$$l_{\mathbf{i}} = (x_{\mathbf{i}} - s_{\mathbf{i}}) \operatorname{tg} w_{\mathbf{i}} \approx (x_{\mathbf{i}} - s_{\mathbf{i}}) w_{\mathbf{i}},$$

и при нормировке (II, 22) находим:

$$\delta g'_{111} = -\frac{1}{2n'f'^2} \left[ m_1 \left( m_1^2 + M_1^2 \right) S_{1\infty} + \left( 3m_1^2 + M_1^2 \right) w_1 f' S_{11\infty} + \right. \\ \left. + m_1 w_1^2 f'^2 \left( 3S_{111 \infty} + n_1^2 S_{1V} \right) + w_1^3 f'^3 S_{V\infty} \right]; \\ \left. \delta G'_{111} = -\frac{1}{2n'f'^2} \left[ M_1 \left( m_1^2 + M_1^2 \right) S_{1\infty} + \right. \\ \left. + 2m_1 M_1 w_1 f' S_{11 \infty} + M_1 w_1^2 f'^2 \left( S_{111 \infty} + n_1^2 S_{1V} \right) \right], \right\}$$
(II, 37)

где  $w_1$  — угол поля зрения, а f' — фокусное расстояние системы; в выражении коэффициентов аберраций (II, 35) инвариант I при этом следует принять равным  $I = -n_1$  — показателю преломления среды пространства предметов.

Выражение аберраций луча в разных координатах, его определяющих. Не нарушая общности, будем считать, что точка предмета A (рис. II, 3) расположена в меридиональной плоскости. В этом случае внемеридиональный луч AQ определится тремя координатами: координатой, определяющей положение точки A в плоскости предметов, и двумя координатами, определяющими положение точки Q в какой-либо плоскости, расположенной на определенном расстоянии от плоскости предметов, например в плоскости входного зрачка.

Выше были написаны выражения аберраций, в которых положение луча определялось координатами  $l_1$ ,  $m_1$  и  $M_1$  при расстоянии  $x_1 - s_1$  между плоскостями предметов и входного зрачка.



Иногда может оказаться более удобным координату точки A определить углом  $w_1$ , образуемым с оптической

Рис. II, 3. Начальные координаты внемеридионального луча

осью лучом, проходящим через точку предмета A и центр P входного зрачка; координату точки Q определить углами  $u_1$  и  $U_1$  соответственно в меридиональной и экваториальной плоскостях. В пределах действенности теории аберраций третьего порядка, очевидно, можно принять:

$$u_1 = -\frac{m_1}{x_1 - s_1}; \quad U_1 = -\frac{M_1}{x_1 - s_1}; \quad w_1 = \frac{l_1}{x_1 - s_1};$$
 (II, 38)

ввиду малости углов тангенсы углов заменены дугами.

Формулы (II, 34) и (II, 35) при нормировке (II, 19) примут вид:

$$- 2n'\delta g'_{111} \alpha' = u_{1} \left( u_{1}^{2} + U_{1}^{2} \right) S_{1} + \left( 3u_{1}^{2} + U_{1}^{2} \right) w_{1} S_{11} + + u_{1} w_{1}^{2} \left[ 3S_{111} + n_{1}^{2} \left( x_{1} - s_{1} \right)^{2} S_{1V} \right] + w_{1}^{3} S_{V} ; - 2n'\delta G'_{111} \alpha' = U_{1} \left( u_{1}^{2} + U_{1}^{2} \right) S_{1} + 2u_{4} U_{4} w_{4} S_{11} + + U_{4} w_{1}^{2} \left[ S_{111} + n_{1}^{2} \left( x_{1} - s_{1} \right)^{2} S_{1V} \right] .$$
 (II, 39)

Согласно инварианту Лагранжа—Гельмгольца можно также написать:

$$n \alpha \delta g_{111} = n' \alpha' \delta g'_{111}; \quad n \alpha \delta G_{111} = n' \alpha' \delta G'_{111},$$

где составляющие аберраций бg и бG отнесены к плоскости предметов.

В некоторых случаях удобно иметь выражения аберраций  $\delta g'_{111}$  и  $\delta G'_{111}$  как функции координат u' и U', относящихся к пространству изображений.

По аналогии с (II, 38) введем углы и' и U':

$$u' = -\frac{m'}{x' - s'}; \quad U' = -\frac{M'}{x' - s'},$$
 (II, 40)

где x'-s' — расстояние между плоскостями выходного зрачка и параксиального изображения S' (см. рис. II, 1).
Обозначив через β<sub>1</sub> и β'<sub>р</sub> углы с оптической осью второго параксиального луча до и после его прохождения через систему, получим:

$$\beta_{i} = \frac{l_{1}}{x_{1} - s_{1}}; \quad \beta'_{\rho} = \frac{l'}{x' - s'}.$$
 (II, 41)

Углы  $\beta_1$  и  $\beta'_p$  связаны инвариантом Лагранжа — Гельмгольца, написанного для зрачков:

$$n'm'\beta'_{\rho} = n_1m_1\beta_1; \quad n'M'\beta'_{\rho} = n_1M_1\beta_1;$$

отсюда находим:

$$\frac{n'm'l'}{x'-s'} = \frac{n_1m_1l_1}{x_1-s_1}; \quad \frac{n'M'l'}{x'-s'} = \frac{n_1M_1l_1}{x_1-s_1}.$$

Разделив каждое из этих уравнений на инвариантное выражение  $n_1 a_1 l_1 = n'a'l'$ , написанное для плоскостей предмета и изображений, получим:

$$\frac{m'}{a'(x'-s')} = \frac{m_1}{a_1(x_1-s_1)}; \quad \frac{M'}{a'(x'-s')} = \frac{M_1}{a_1(x_1-s_1)}. \quad (\text{II}, 42)$$

Обратив внимание, что

$$\alpha' = \frac{h'}{s'} \quad \text{if } \alpha_1 = \frac{h_1}{s_1}$$

после подстановки в выражения (II, 42) определим:

$$\begin{pmatrix} \frac{m'}{x'-s'} \end{pmatrix} \frac{s'}{h'} = \begin{pmatrix} \frac{m_1}{x_1-s_1} \end{pmatrix} \frac{s_1}{h_1}; \\ \begin{pmatrix} \frac{M'}{x'-s'} \end{pmatrix} \frac{s'}{h'} = \begin{pmatrix} \frac{M_1}{x_1-s_1} \end{pmatrix} \frac{s_1}{h_1}.$$
 (II, 43)

Осуществив переход к углам и' и U', получим:

$$\left(\frac{m_1}{x_1-s_1}\right)\frac{s_1}{h_1} = -\frac{u'}{a'}; \quad \left(\frac{M_1}{x_1-s_1}\right)\frac{s_1}{h_1} = -\frac{U'}{a'}.$$
 (II, 44)

Подставляя эти значения в выражения (II, 34) и вводя угол  $w_1 =$  $=\frac{l_1}{x_1-x_2}$ , приходим к формулам аберраций следующего вида:

$$- 2n'\delta g'_{III} = u'(u'^{2} + U'^{2}) S_{I} + (3u'^{2} + U'^{2}) w_{4}S_{II} + + u'w_{1}^{2}(3S_{III} + l^{2}S_{IV}) + w_{1}^{3}S_{V}; - 2n'\delta G'_{III} = U'(u'^{2} + U'^{2}) S_{I} + 2u'U'w_{4}S_{II} + + U'w_{1}^{2}(S_{III} + l^{2}S_{IV}).$$
 (II, 45)

При выводе этих формул принята нормировка (II, 20), а именно, что  $a' = 1, \beta_1 = 1$  и, следовательно,  $h_1 = s_1 \alpha_1, I = n_1 \alpha_1 (x_1 - s_1)$ . Часто выражают также аберрации, как функции координат *m*' и *M*'

в выходном зрачке. Воспользовавшись заменой переменных (II, 43), после подстановки в (II, 34), получим:

$$2n'\delta g'_{\mathrm{III}} = \frac{m'(m'^{2} + M'^{2})}{(x' - s')^{3}} S_{\mathrm{I}} - \frac{(3m'^{2} + M'^{2})}{(x' - s')^{8}} l_{4}S_{\mathrm{II}} + + \frac{m'}{(x' - s')^{3}} l_{1}^{2} (3S_{\mathrm{III}} + l^{2}S_{\mathrm{IV}}) - \frac{l_{1}^{3}}{(x' - s')^{3}} S_{\mathrm{V}}; 2n'\delta G'_{\mathrm{III}} = \frac{M'(m'^{2} + M'^{2})}{(x' - s')^{3}} S_{\mathrm{I}} - \frac{2m'M'l_{1}}{(x' - s')^{3}} S_{\mathrm{II}} + + \frac{M'l_{1}^{2}}{(x' - s')^{3}} (S_{\mathrm{III}} + l^{2}S_{\mathrm{IV}}).$$

$$(11, 46)$$

При этом и здесь также принята нормировка (II, 20).

Геометрическое представление аберраций третьего порядка. Гомоцентрический пучок лучей после прохождения через оптическую систему образует в плоскости изображений размытое световое пятно — фигуру рассеяния. Формулы (II, 34) или (II, 46) позволяют определить точку пересечения с плоскостью изображений каждого луча пучка.

В целях упрощения анализа изучают фигуры рассеяния лучей в предположении, что в названных формулах только один из пяти коэффициентов аберраций не равен нулю. Каждый из пяти коэффициентов определяет соответствующую аберрацию. Аберрация, обусловленная коэффициентом  $S_1$ , называется сферической аберрацией; коэффициент  $S_{11}$  определяет кому;  $S_{111}$  — кривизну поверхности, по которой располагаются меридиональные фокусы астигматического элементарного (бесконечно тонкого) пучка;  $S_{1V}$  — кривизну поверхности, по которой располагаются сагиттальные фокуса того же пучка;  $S_V$  — дисторсию изображения.

Из формул (II, 39) или (II, 45) непосредственно видно, что величина поперечной сферической аберрации пропорциональна третьей степени апертуры; аберрация комы пропорциональна второй степени величины апертуры и первой степени угла поля зрения; кривизна поверхности изображения астигматического элементарного пучка пропорциональна первой степени апертуры и квадрату угла поля, и, наконец, дисторсия изображения пропорциональна третьей степени угла поля зрения.

В действительности оптическая система обладает одновременно всеми аберрациями и, таким образом, анализ сложной аберрационной фигуры рассеяния лучей методом выделения отдельных видов аберраций — прием искусственный, облегчающий анализ явления.

Чтобы исследовать распределение точек пересечения с плоскостью изображения отдельных лучей гомоцентрического пучка, вершина которого расположена в точке предмета *A*, пользуются следующим приемом: рассматривают последовательно группы лучей, пересекающих плоскость выходного зрачка по окружности с центром на оптической оси системы, и сопоставляют формы «следов» пересечения лучами плоскости зрачка и плоскости изображений. Таким образом устанавливаются формы фигур рассеяния лучей в изображении точек при наличии тех или иных аберраций оптической системы. Для проведения анализа удобно вместо прямоугольных координат *m'* и *M'* в плоскости выходного зрачка перейти к полярным координатам. Принимая за полярную ось *P'Y'* (см. рис. II, 1), получим:

$$m' = \rho' \cos \theta'; \quad M' = \rho' \sin \theta',$$
 (II, 47)

где ρ' и θ' — полярные координаты точки (*m*'; *M*').

Выражения (II, 46) могут быть представлены в следующем виде:

$$\delta g'_{III} = \frac{1}{2n' (x' - s')^3} \left[ \rho'^3 \cos \theta' S_1 - \rho'^2 (2 + \frac{1}{2n' (x' - s')^3} - \rho'^2 (3S_{III} + l^2 S_{IV}) - l_1^3 S_V \right];$$

$$\delta G'_{III} = \frac{1}{2n' (x' - s')^3} \left[ \rho'^2 \sin \theta' S_I - \frac{1}{2n' (x' - s')^3} \right] \left\{ \rho'^2 \sin \theta' S_I - \frac{1}{2n' (x' - s')^3} \right],$$
(II, 48)

Выражение волновой аберрации L<sub>III</sub> третьего порядка (II, 7) после введения коэффициентов S<sub>1</sub>, S<sub>11</sub>,...,S<sub>V</sub> (см. II, 46) примет вид:

$$r'L_{111} = -\frac{1}{2n'(x'-s')^4} \left[ \frac{1}{4} (m'^2 + M'^2)^2 S_{\rm I} - (m'^2 + M'^2) m' l_1 S_{\rm II} + \frac{1}{2} m'^2 l_1^2 (3S_{\rm III} + l^2 S_{\rm IV}) + \frac{1}{2} M'^2 l_1^2 (S_{\rm III} + l^2 S_{\rm IV}) - m' l_1^3 S_{\rm V} \right], (11, 49)$$

где прежние коэффициенты  $A'_1, A'_2, ..., A'_5$  выражения (II, 7) связаны с новыми следующим образом:

$$\begin{aligned} A'_{1} &= -\frac{k'}{x'-s'} S_{I}; \quad A'_{2} &= \frac{k'}{x'-s'} S_{II}; \\ A'_{3} &= -\frac{k'}{x'-s'} \left( 3S_{III} + I^{2}S_{IV} \right); \\ A'_{4} &= -\frac{k'}{x'-s'} \left( S_{UI} + I^{2}S_{IV} \right); \\ A'_{5} &= \frac{k'}{x'-s'} S_{V}; \quad k' &= \frac{1}{2n'(x'-s')^{3}}. \end{aligned}$$

После введения полярных координат из (II, 49) получим:

$$r'L_{III} = -\frac{k'}{x'-s'} \left[ \frac{1}{4} \rho'^{4} S_{I} - \rho'^{3} \cos \theta' l_{4}S_{II} + \frac{1}{2} \rho'^{2} \cos^{2} \theta' l_{1}^{2} (3S_{III} + l^{2}S_{IV}) + \frac{1}{2} \rho'^{2} \sin^{2} \theta' l_{1}^{2} (S_{III} + l^{2}S_{IV}) - \rho' \cos \theta' l_{1}^{3} S_{V} \right]. \quad (II, 50)$$

110

## Рассмотрим следствия этих зависимостей.

Сферическая аберрация третьего порядка. Если все коэффициенты, кроме первого  $S_1$ , равны нулю ( $S_{11} = S_{111} = S_{1V} = S_V = 0$ ), то оптическая система обладает только сферической аберрацией третьего порядка.

Из (II, 46) и (II, 48) находим:

$$\delta g'_{III} = k'm' (m'^{2} + M'^{2}) S_{I} = k'\rho'^{3} \cos \theta' S_{I};$$
  

$$\delta G'_{III} = k'M' (m'^{2} + M'^{2}) S_{I} = k'\rho'^{2} \sin \theta' S_{I},$$
(II, 51)

где

$$k' = \frac{1}{2n' (x' - s')^3}.$$

Результирующая δ*R*'<sub>III</sub> поперечная аберрация выразится:

$$\delta R_{\rm III} = \sqrt{\delta g_{\rm III}^{\prime 2} + \delta G_{\rm III}^{\prime 2}} = k' \rho'^{3} S_{\rm I}; \qquad ({\rm II}, 52)$$

т. е. окружности радиуса  $\rho'$  в плоскости выходного зрачка соответствует также окружность радиуса  $\delta R'_{111}$ ; величина кружка рассеяния лучей в плоскости изображения пропорциональна третьей степени  $\rho'$ :

Как следует из (II, 50), волновая сферическая аберрация третьего порядка возрастает пропорционально четвертой степени координаты ρ'

$$r'L_{III} = -\frac{1}{4} \frac{k'}{(x'-s')} {\rho'}^4 S_{I}. \qquad (II, 53)$$

Из (II, 47) следует, что  $\frac{M'}{m'} = tg\theta'$ ; из (II, 51), находим:

$$\frac{\delta G'_{\rm III}}{\delta g'_{\rm III}} = \operatorname{tg} \theta';$$

таким образом, каждой точке пересечения луча в плоскости выходного зрачка соответствует точка пересечения того же луча в плоскости изображения; причем обе точки расположены в одной и той же плоскости, проходящей через оптическую ось.

То обстоятельство, что линейное возрастание радиуса вектора на выходном зрачке соответствует возрастанию радиуса кружка рассеяния лучей в плоскости изображения пропорционально величине  $\rho'^3$ , приводит к огромной концентрации лучей в средней части фигуры рассеяния вследствие быстрого изменения площади последней (пропорционально величине  $\rho'^6$ ). Для иллюстрации явления разделим площадь круглого выходного зрачка на пять концентрических колец, радиусы которых  $\rho'$  относятся как 0,2:0,4:0,6:0,8:1, т. е. образуют арифметическую прогрессию. Соответственно площади этих кругов будут изменяться пропорционально квадрату радиусов ( $\rho'^2$ ), т. е. в отношениях 0,04:0,16:0,36:0,64:1; площади кольцевых зон будут изменяться пропорционально разностям ( $\Delta \rho'^2$ ) этих величин.

В табл. II, I приведены относительные величины радиусов  $\delta R'$  кружков рассеяния, пропорциональные  $\rho'^3$ , и площади кольцевых зон кружков рассеяния, пропорциональные разностям  $\Delta \delta R'^2$ . В столбце 8 приведены относительные величины концентрации лучей в кольцевых зонах кружка рассеяния.

Таблица II,1

| Номер<br>колец        | ρ'                              | °2                                   | Δρ' <sup>2</sup>                     | $\delta R = \rho'^3$                     | $\delta R'^2$                                                                                                        | $\Delta \delta R'^2$                                                                                        | $\frac{{}_{\Delta\rho}'^2}{{}_{\Delta\delta}R'^2}$ |
|-----------------------|---------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1                     | 2                               | 3                                    | 4                                    | 5                                        | 6                                                                                                                    | 7                                                                                                           | 8                                                  |
| 1<br>2<br>3<br>4<br>5 | 0,2<br>0,4<br>0,6<br>0,8<br>1,0 | 0,04<br>0,16<br>0,36<br>0,64<br>1,00 | 0,04<br>0,12<br>0,20<br>0,28<br>0,36 | 0,008<br>0,064<br>0,216<br>0,512<br>1,00 | $ \begin{array}{c} 64 \cdot 10^{-6} \\ 40, 96 \cdot 10^{-4} \\ 4, 70 \cdot 10^{-2} \\ 0, 263 \\ 1, 000 \end{array} $ | $\begin{array}{c} 64\cdot 10^{-6} \\ 40,32\cdot 10^{-4} \\ 4,29\cdot 10^{-2} \\ 0,216 \\ 0,737 \end{array}$ | 625<br>29,8<br>4,7<br>1,3<br>0,5                   |

Концентрация лучей в фигуре рассеяния в плоскости Гаусса при сферической аберрации третьего порядка

Как видим, в центре фигуры рассеяния концентрация колоссальная, но создают эту концентрацию лишь 4% лучей ( $\rho'^2 = 0,04$ ). Около  $^{2}$ <sub>3</sub> площади выходного зрачка, что соответствует первым четырем построенным на нем кольцевым зонам, заполнены лучами, распределенными лишь на  $^{1}$ <sub>4</sub> площади кружка рассеяния, т. е. в пределах вдвое уменьшенного радиуса ( $\delta R' \approx 0.5$ ) кружка рассеяния.

Приведем результаты расчета концентрации лучей в кружке рассеяния, выполненного Г. Г. Слюсаревым [16], разделившим площадь кружка рассеяния пятью концентрическими кругами, радиусы которых равномерно возрастают в той же арифметической прогрессии: 0,2:0,4:0,6:0,8:1. Оказалось, что в центральном (наименьшем) круге сосредоточено 34% лучей из числа всех заполняющих выходной зрачок; во втором кольце — 20%; в третьем — 17%, в четвертом — 15% и в последнем — 14%. Таким образом, и при таком способе подсчета оказалось, что в пределах площади кружка рассеяния, соответствующей радиусу 0,6 от максимального значения ( $\delta R'$ ) сосредоточено 71% всех лучей, т. е. лучей, заполняющих 71% площади выходного зрачка. Полученные результаты близки к критерию, применяющемуся на практике: около 70% энергии формирует «ядро изображения» точки.

Размеры кружка рассеяния зависят от положения плоскости установки. Как показывают элементарные выкладки, плоскость наименьшего кружка рассеяния расположена слева от плоскости параксиального (гауссового) изображения на расстоянии  $\Delta_m$ , равном

$$\Delta_m = \frac{3}{4} \, \delta s'_{\rm kp} \,, \tag{II, 54}$$

где δs'<sub>кр</sub> — продольная сферическая аберрация крайнего луча, который образует апертурный угол *u*'<sub>кр</sub> с оптической осью:

$$\delta s'_{\rm KP} = \frac{\delta g'_{\rm KP}}{u'_{\rm KP}}$$

Воспользовавшись (II; 51) и (II, 40), получим:

$$\delta s'_{\rm kp} = -\frac{1}{2n'} u'^{2}_{\rm kp} S_{\rm I};$$
 (II, 54')

при этом радиус наименьшего кружка рассеяния ( $r'_{мин}$ ) будет в четыре раза меньше радиуса кружка рассеяния  $\delta R'$  в гауссовой плоскости:

$$r'_{\rm MH} = \frac{1}{4} \,\delta R' = \frac{1}{4} \,k' {\rho'}^3 \,S_1 \,. \tag{II, 55}$$

Точка O (рис. II, 4), определяющая графически величину радиуса наименьшего кружка рассеяния лучей, образуется пересечением двух лучей: крайнего, идущего под углом  $u'_{\rm кp}$  к оптической оси, и луча, образующего с осью угол —  $\frac{1}{2}$   $u'_{\rm кp}$ и, следовательно, обладающего сферической аберрацией, равной —  $\frac{1}{4} \delta s'_{\rm кp}$ . Как показывают исследования, световая энергия в кружке наименьшего рассеяния распреде-



Рис. II, 4. Плоскость наименьшего кружка рассеяния лучей

ляется таким образом, что и в центре и на краю кружка имеются максимумы освещенности. Очевидно, такое распределение не соответствует максимуму разрешающей силы системы: по теории дифракции наилучшая плоскость установки при наличии в системе лишь аберраций третьего порядка расположена слева от гауссовой плоскости на расстоянии —  $\frac{1}{2}\delta s'_{\rm kp}$ .

По представлениям волновой оптики существует следующая общая зависимость между волновой аберрацией *L* и продольной сферической аберрацией δs':

$$L = \int_{0}^{u'} \delta s' u' du' = \frac{1}{2} \int_{0}^{u'^{2}} \delta s' d(u'^{2}); \qquad (II, 56)$$

эта формула следует из (II, 6) и (II, 9), если обратить внимание, что r' = -(x'-s').

Продольная сферическая аберрация на оси может быть представлена многочленом, содержащим четные степени параметра m' или u':

$$\delta s' = \frac{\delta g'}{u'} = a' {u'}^2 + b' {u'}^4 + c' {u'}^6 + \cdots, \qquad (II, 56')$$

тде  $a' = \frac{1}{2n'}S_{I}$  (см. II, 45) и  $b' = 6B'_{3}(x'-s')$ . (см. II, 3)

Непосредственно можно вычислить только коэффициент  $S_1$ ; расчет коэффициента b' — задача более трудная. Поэтому проще всего, что на практике и делается, построить график зависимости функции  $\delta s'$  по аргументу  $u'^2$  и решить задачу расчета интеграла L(II, 56) графическим методом. График функции строится на основании результатов непосредственного расчета лучей через оптическую систему.

В частном случае, когда оптическая система обладает лишь аберрацией третьего порядка, из (II, 55) и (II, 55') имеем:

$$L_{\rm III} = -\frac{1}{8n'} S_{\rm I} {u'}^4, \qquad ({\rm II}, 57)$$

или из (II, 54'):

$$\frac{L_{\rm III}}{\lambda} = \frac{\delta s' {u'}^2}{4\lambda} = 450\delta s' {u'}^2, \qquad (II, 58)$$

где  $\frac{L_{\text{III}}}{\lambda}$  — волновая аберрация в длинах световых волн; при этом принято, что  $\lambda = 0,00055$  мм. В плотности установки, смещенной относительно плоскости параксиального изображения на некоторую величину  $\Delta$ , вместо ряда (II, 56') получается разложение вида  $\delta s' = \Delta + a'u'^2 + ...$ ; в выражении волновой аберрации  $\frac{L_{\text{III}}}{\lambda}$  появляется еще член, пропорциональный второй степени u':

$$\frac{L_{\text{III}}}{\lambda} = \frac{\Delta u'^2}{2\lambda} + \frac{a'u'^4}{4\lambda} = \frac{\Delta u'^2}{2\lambda} + \frac{\delta s'u'^2}{4\lambda}.$$
 (II, 59)

Этот добавочный член  $\frac{\Delta u'^2}{2\lambda}$ , вызванный дефокусировкой изображения, имеет большое значение: определенным выбором величины смещения плоскости установки ( $\Delta$ ) можно добиться перераспределения как геометрических, так и волновых аберраций, а тем самым улучшить распределение энергии в кружке рассеяния лучей.

В частности в плоскости наименьшей волновой аберрации величина  $\frac{L_{111}}{\lambda}$  будет приблизительно в четыре раза меньшей, чем в плоскости Гаусса (II, 58):

$$\left(\frac{L_{\rm III}}{\lambda}\right)_{\rm MHH} \approx 110 \,\delta \,s' \,{u'}^2. \tag{II,60}$$

По сравнению с другими монохроматическими аберрациями характерной особенностью сферической аберрации является ее независимость от положения точки-объекта в плоскости предмета; иными словами, сферическая аберрация не зависит от угла поля w (или w).

Остаточные аберрации оптической системы обычно представляются не только в виде таблиц, но и графически. Обычно приводятся графики продольной  $\delta s'$  и поперечной  $\delta g'$  сферической аберрации, представленные в виде функций координат m, u' или tgu'.

На рис. II, 5, а представлена кривая продольной сферической аберрации третьего порядка, имеющая вид обычной (квадратичной) параболы; на рис. II, 5, 6 дан график поперечной сферической аберрации третьего порядка  $\delta g'$ , которая пропорциональна третьей степени параметра u' (или m) и, следовательно, изменяет свой знак при изменении знака параметра u'; на рис. II, 5, s и II, 5, e даны графики



Рис. II, 5, Графическое представление сферической аберрации

продольной и поперечной сферической аберрации при наличии в оптической системе не только аберраций третьего порядка, но и аберраций высших порядков. Для построения этих кривых обычно вычисляется ход нескольких лучей (от двух до четырех — в зависимости от сложности кривой), пересекающих входной зрачок, на разных расстояниях  $m_1$  и обычно выбираемых так, чтобы их квадраты составляли арифметическую прогрессию; если радиус зрачка  $h_{\rm kp}$ , то берут  $m_1$  равным либо  $\sqrt{\frac{1}{2}}h_{\rm kp}$  и  $h_{\rm kp}$ , либо  $\sqrt{\frac{1}{4}}h_{\rm kp}$ ,  $\sqrt{\frac{1}{2}}h_{\rm kp}$ , и  $h_{\rm kp}$ .

Для удобства оценки величины поперечной аберрации не только в гауссовой плоскости, но в некоторой предполагаемой плоскости наилучшей установки, смещенной относительно плоскости Гаусса, рекомендуется на графике поперечной аберрации проводить некоторую вспомогательную прямую *aa*' (рис. II, 5, *г*), наклон которой относительно оси ординат будет тем больший, чем больше смещение плоскости установки относительно плоскости Гаусса. Поперечные аберрации лучей в смещенной плоскости будут теперь отсчитываться не от вертикальной оси, а от наклонной прямой *aa*'. Угол *φ* наклона прямой *aa*', проходящий через начало координат, связан с величиной смещения плоскости установки ∆ относительно плоскости Гаусса зависимостью:

$$\operatorname{tg} \varphi = \frac{\delta g'_1}{\operatorname{tg} u'_1} \approx \frac{\delta g'_1}{u'_1} = \Delta, \qquad (II,61)$$

где  $\delta g'_1$ ,  $u'_1$  — координаты любой точки, взятой на прямой aa'. Применением этого способа исключается необходимость специальных построений графиков аберраций для нескольких плоскостей установок для суждения о распределении кружков рассеяния лучей в этих плоскостях; ориентировочная же оценка влияния смещения плоскости

установки оказывается вместе с тем необходимой, поскольку положение плоскости наилучшего изображения возможно предвычислить лишь весьма приближенно. Например, если сферическая аберрация для края зрачка корригирована, как показывает опыт, величина  $\Delta$ достаточно точно может быть определена формулой:

$$\Delta = \overline{k} \delta s'_{\text{3OHAI}}, \qquad (\text{II}, 61')$$

где  $\delta s'_{30Hb}$  — продольная сферическая аберрация для луча на зоне зрачка  $m = \sqrt{\frac{1}{2}} h_{\rm kp}$ ; коэффициент  $\overline{k} = 0,7-0,8$ .

В заключение укажем, что даже идеальная в представлении физической оптики оптическая система имеет геометрические аберрации, величинам которых соответствуют волновые аберрации, не превышающие четверти волны. По мере возрастания сферической аберрации яркость центрального дифракционного пятна (см. главу III) уменьшается и световая энергия переходит в окаймляющие его кольца, увеличивая их яркость; при больших аберрациях дифракционное изображение точки размывается и приобретает вид фигуры рассеяния: пригодность такого изображения зависит от величины этой фигуры и от назначения оптической системы.

Кома; условие синусов. Исправление сферической аберрации является необходимым условием для получения удовлетворительных изображений точек, расположенных как на оси, так и вне оси оптической системы. Однако исправление этой аберрации еще не достаточно для обеспечения хорошего изображения даже точек, расположенных вблизи оптической оси, если при этом не корригирована аберрация кома.

Если все коэффициенты, кроме второго  $S_{11}$ , равны нулю, то оптическая система обладает только комой третьего порядка. Из (II, 46) и (II, 48) находим составляющие аберрации комы:

$$\delta g'_{\rm III} = -k' \left( 3m'^2 + M'^2 \right) l_4 S_{\rm II} = -k' \rho'^2 \left( 2 + \cos 2\theta' \right) l_4 S_{\rm II};$$
  
$$\delta G'_{\rm III} = -k' 2m' M' l_4 S_{\rm II} = -k' \rho'^2 \sin 2\theta' l_4 S_{\rm II}. \qquad (II,62)$$

Таким образом, кома пропорциональна квадрату отверстия и первой степени удаления точки-предмета от оптической оси. Для изучения комы снова рассмотрим совокупности лучей, определяемых окружностями в плоскости выходного зрачка.

Можно показать, что каждой окружности в плоскости выходного зрачка соответствует окружность в плоскости изображения; действительно, из (II, 64) находим:

$$\delta g'_{III} + 2k \rho'^{*} l_{1} S_{II} = -k \rho'^{*} l_{1} \cos 2\theta' S_{II}; \delta G'_{III} = -k' \rho'^{*} l_{1} \sin 2\theta' S_{II};$$
 (II,62')

отсюда следует:

$$\delta g'_{\rm III} + 2k' \rho'^{2} l_{\rm I} S_{\rm II} )^{2} + \delta G'^{2}_{\rm III} = (k' \rho'^{2} l_{\rm I} S_{\rm II} )^{2} . \qquad ({\rm II}, 63)$$

Таким образом, точка ( $\delta g_{111}$ ;  $\delta G'_{111}$ ) описывает окружность, радиус которой  $\delta R' = k' \rho'^2 l_1 S_{11}$  пропорционален квадрату радиуса вектора о' в плоскости выходного зрачка; центр ее находится на расстоянии  $2k'\rho'^2 l_1 S_{11} = 2\delta R'$  от положения гауссова изображения, причем этот центр расположен в меридиональной плоскости; его расстояние от гауссова изображения, таким образом, пропорционально квадрату ρ'. Например, если ρ' — радиусы окружностей в плоскости зрач-ка возрастают по закону арифметической прогрессии, то радиусы  $\delta R'$  — окружностей в плоскости изображения растут в геометрической прогрессии (пропорционально р'2), а расстоõç'

яния между центрами окружностей растут

в арифметической прогрессии. Пусть  $\rho'_1: \rho_2': \rho_3': \rho_4': \rho_5' = 0, 2: 0, 4: 0, 6:$ 0,8 : 1; тогда  $\delta \bar{R'}_1$ :  $\delta \bar{R'}_2$ :  $\delta \bar{R'}_3$ :  $\delta \bar{R'}_4$ :  $\delta \bar{R'}_5 = 1^2$ :  $2^2: 3^2: 4^2: 5^2;$  расстояния между центрами окружностей возрастают в отношениях  $\delta R'_1$ :  $(\delta R'_2 - \delta R'_1) : (\delta R'_3 - \delta R'_2) : (\delta R'_4 - \delta R'_3)$  $(\delta R'_{5} - \delta R'_{4}) = 1:3:5:7:9$ , т. е. в арифметической прогрессии. Рис. II, 6 изображает фигуру рассеяния при аберрации комы третьего порядка.

Когда луч вычерчивает окружность на выходном зрачке, точка его пересечения с плоскостью Гаусса описывает окружность дважды; это следует из выражений (II, 62'), в которые входит удвоенный угол 20' в аргументы косинуса и синуса. Если луч движется



Рис. II, 6. Фигура рассеяния при аберрации комы третьего порядка

вдоль радиуса ρ' в плоскости выходного зрачка (т. е. угол θ' не изменяется), соответствующая точка пересечения луча с плоскостью изображения также описывает прямую. Все эти прямые проходят через гауссово изображение точки.

Огибающими всех окружностей, образующих фигуру рассеяния на рис. II, 6, является пара прямых, составляющих углы 30° с осью симметрии изображения. Это следует из (II, 63), если представить семейство окружностей, образованных при переменном параметре о'. Дифференцируя это уравнение, находим:

$$2(\delta g'_{\rm III} + 2k' \rho'^2 l_{\rm I} S_{\rm II}) 4k' \rho' l_{\rm I} S_{\rm II} - 2(k' \rho'^2 l_{\rm I} S_{\rm II}) 2k' \rho' l_{\rm I} S_{\rm II} = 0,$$

отсюда

$$k' \rho'^{2} l_{1} S_{IJ} = -\frac{2}{3} \delta g'_{III}$$
.

После подстановки в (II, 63) имеем:

$$\frac{1}{3}\delta g_{111}^{'^2} - \delta G_{111}^{'^2} = 0$$

или

$$\left(\frac{1}{\sqrt{3}}\,\delta g'_{111}-\delta G'_{111}\,\right)\left(\frac{1}{\sqrt{3}}\,\delta g'_{111}+\delta G'\right)=0.$$

Таким образом, огибающие к окружностям представляют прямые, уравнения которых

$$\delta g'_{III} = \sqrt{3} \delta G'_{III}$$
 и  $\delta g'_{III} = -\sqrt{3} \delta G'_{III}$ , (II,64)

т. е. прямые образуют с осью  $\delta g'_{111}$  углы  $+30^{\circ}$  и  $-30^{\circ}$ .

Распределение энергии в фигуре рассеяния при коме несимметрично; вся энергия сосредоточена в пределах угла 60°, направленного, в зависимости от знака коэффициента  $S_{II}$ , или в сторону оптической оси (при  $S_{II} < 0$ ), или в противоположную сторону (при  $S_{II} > 0$ ); при этом освещенность изображения убывает в направлении от вершины угла приблизительно обратно пропорционально расстоянию от вершины. Таким образом, фигура рассеяния имеет вид яркого пятна с постепенно расширяющимся «хвостом», напоминающим хвост кометы.



Рис. II, 7. Структура широкого меридионального пучка, обладающего комой

Обобщая представление об аберрации комы на широкий пучок лучей, формирующих изображение точки, расположенной вне оптической оси, назовем комой в широком смысле асимметрию широкого наклонного пучка лучей, вышедших из точки предмета вне оси, по отношению к главному лучу пучка.

На рис. II, 7 представлен простейший случай меридиональной комы, т. е. асимметрии пучка лучей, лежащих в меридиональной плоскости.

Из точки A плоскости предметов выходит пучок лучей, симметричный относительно главного луча AP. В пространстве изображений этот пучок лучей оказывается несимметричным по отношению к главному лучу P'A'.

Боковые лучи пучка AB и AC с координатами на зрачке +m и -m образуют по отношению к среднему (главному) лучу AP приблизительно такие же апертурные углы  $\pm u = \mp \frac{m}{x-s}$ , какие образует с осью луч, идущий из точки на оси. Мерой меридиональной комы может служить величина K, определяемая формулой:

$$K = \frac{1}{2} \left( l'_{+m} + l'_{-m} \right) - l'_{0}, \qquad (II,65)$$

где  $l'_0$  — высота, на которой главный луч с координатой в плоскости входного зрачка m = 0 пересекает плоскость изображения;  $l'_{+m}$  и

 $l'_{-m}$  — такие же высоты для двух других лучей с координатами + m и —m.

Нетрудно видеть, что при изменении знака величины l' (или  $w_1$ ) кома K останется по величине неизменной, но изменит свой знак.

Возможны различные случаи коррекции комы в сочетании со сферической аберрацией. На рис. II, 8, а схематически представлена



Рис. II, 8. Различные случаи меридиональной комы в сочетании со сферической аберрацией

структура пучка лучей в пространстве изображений при исправленной коме (K = 0) и исправленной сферической аберрации: лучи  $B'A'_0$ и  $C'A'_0$  пересекаются в точке  $A'_0$ , расположенной в плоскости изображения. Рис. II, 8, 6 соответствует также исправленной коме, так как лучи B'B''и C'C'' расположены симметрично относительно главного луча  $P'A'_0$ , но сферическая

луча *Р А*<sub>0</sub>, но сферическая аберрация не исправлена: точка пересечения лучей *B'B"* и *C'C"* расположена вне плоскости изображения. На рис. II, 8, *в* представлена кома при исправленной сферической аберрации.

Весьма удобно описывать Рис. II, 9. Графическое представление аберрации структуру пучка лучей графически, откладывая по оси абсцисс величины l' (или  $\delta l' = l' - l'_0$ ), а по оси ординат — соответ

абсцисс величины l' (или  $\delta l' = l' - l'_0$ ), а по оси ординат — соответственные значения u', tg u' или m'. Подобные графики, характеризующие аберрации лучей широкого наклонного меридионального пучка, строятся для нескольких углов поля  $w_1$  или для нескольких значений  $l_1$ .

На рис. II, 9, *а* представлен график аберраций лучей широкого наклонного пучка, имеющего структуру, изображенную на рис. II, 8, *а*. Графики на рис. II, 9, *б* и II, 9, *в* соответствуют структурам пучков, представленных на рис. II, 8, *б* и II, 8, *в*. График типа II, 9, *б* указывает на присутствие полевой сферической аберрации, так как кома пучка корригирована. Кривая II, 9, *в* симметрична относительно абсциссы Ol', что указывает на то, что аберрация  $\delta l' = l' - l'_0$  сохраняет

свою величину и лишь изменяет знак при изменении знака у величины *m* (или *u'*); это случай чистой комы.

Аберрации лучей широкого наклонного пучка будут изменяться при изменении положения плоскости установки. На графиках рис. II, 9 представлены аберрации лучей в плоскости параксиального изображения (гауссовой плоскости).

Можно воспользоваться кривой аберрации, построенной для гауссовой плоскости для суждения о распределении фигур рассеяния лу-



Рис. II, 10 Аберрация широкого наклонного пучка в произвольной плоскости установки

чей в других плоскостях, если по оси асбцисс откладывать значения l' (или  $\delta l' = l' - l'_0$ ), определенные относительно плоскости Гаусса, а по оси ординат — углы u' луча с оптической осью (а еще лучше — величины tgu'); в такой системе координат наклон  $\varphi$  прямой aa' (рис. II, 10, a) относительно оси ординат связан с величиной смещения плоскости установки ( $\Delta$ ) относительно плоскости Гаусса следующей зависимостью:

$$\operatorname{tg} \varphi = \frac{l'_1 - l'_2}{\operatorname{tg} u'_1 - \operatorname{tg} u'_2} = \Delta,$$
 (II,66)

где  $(l'_1; tg u'_1)$  и  $(l'_2; tg u'_2)$  — суть координаты любой пары точек, взятых на прямой aa'. Аберрации в смещенной плоскости могут быть непосредственно определены, если отсчитывать величины абсцисс l' не от вертикальной оси, а от наклонной прямой aa'.

Геометрический смысл формулы (II, 66) поясняется рис. II, 10, б. Если сместить плоскость установки на величину —  $\Delta$  относительно плоскости Гаусса, то ординаты пересечения этих же лучей со смещенной плоскостью изменятся на величины

$$l'_2 - l' = \Delta \operatorname{tg} u'_2; \quad l'_1 - l' = \Delta \operatorname{tg} u'_1,$$

где *l'* — ординаты точки пересечения лучами новой плоскости установки; из этих выражений находим:

$$l'_{2} - l'_{1} = \Delta (\operatorname{tg} u'_{2} - \operatorname{tg} u'_{1});$$

отсюда получаем (II, 66).

Такая ориентировочная оценка влияния смещения плоскости установки на изменение аберраций необходима для оценки качества оптических систем, поскольку положение плоскости наилучшего изображения можно вычислить ускоренным способом лишь весьма приближенно.

Теория аберраций третьего порядка ограничивается областью малых апертур оптических систем и небольших углов поля зрения. Если апер-

тура пучков велика, то аберрации изображения точки, расположенной даже в непосредственной близости от оптической оси, оказывается возможным определить только путем непосредственного расчета хода нескольких лучей через систему.

Однако в оптике известно весьма простое по форме, но глубокое по смыслу условие синусов, являющееся критерием качества изображения точек, лежащих весьма близко к оптической оси. Условие синусов является необходимым и достаточным условием существования совершенного изображения элементарного отрезка dl, перпендикулярного оптической оси (а следовательно, и всего элемента площади), сколь угодно широкими пучками лучей, если точка этого элемента на оси имеет совершенное изображение, т. е. изображается без сферической аберрации.

Условие синусов имеет простую формулировку:

$$n' \, dl' \sin u' = n dl \sin u, \tag{II,67}$$

где dl и dl' — элементы предмета и изображения, расположенные пер-пендикулярно оптической оси; u и u' — апертурные углы лучей, проходящих соответственно через осевые точки предмета и изображения; *п* и *п'* — показатели преломления сред пространства предметов и изображений.

Пара сопряженных точек на оси оптической системы, для которых вполне исправлена сферическая аберрация и, кроме того, выполнено условие синусов, называется парой апланатических точек.

Реальные оптические системы с большими зрачками не дают таких совершенных изображений: даже для точки на оси удается исправить сферическую аберрацию только для двух, редко для трех лучей; остальные лучи широкого пучка имеют неустранимую сферическую аберрацию. В этом случае, если условие синусов выполнено, качество изображений точек элемента плоскости, перпендикулярного оптической оси, будет одинаковым с качеством изображения точки на оси. Такое изображение элемента плоскости называют изопланатическим, т. е. имеющим одинаковые погрешности или недостатки. В геометрической оптике уже в 1919 году одновременно и независимо Штебле и Лигоцким было сформулировано необходимое и достаточное условие существования изопланатического изображения элемента плоскости, перпендикулярной оптической оси системы.

Формула Штебле-Лигоцкого имеет следующий вид:

$$\delta_{\sin} = \frac{n \sin u}{\overline{\beta}_0 n' \sin u'} - 1 = -\frac{\delta s'}{x' - s'}, \qquad (II,68)$$

где  $\delta s'$  — продольная сферическая аберрация;  $\overline{\beta}_0 = \frac{dl'}{dl}$  — параксиальное увеличение. Эта формула является обобщением условия сину-сов и превращается в формулу (II, 67) при  $\delta s' = \delta_{sin} = 0$ . Выражение  $\delta_{sin}$  может быть представлено также в следующей форме:

$$\delta_{\sin} = \frac{n \sin u}{\overline{\beta}_0 n' \sin u'} - 1 = \frac{\overline{\beta}_u - \overline{\beta}_0}{\overline{\beta}_0} = \frac{\delta \overline{\beta}}{\overline{\beta}_0}, \quad (II, 68')$$

где

$$\overline{\beta}_u = rac{n\sin u}{n'\sin u'}$$
 и  $\overline{\beta}_0 = rac{an}{a'n'}$ .

Формулам (II, 68) и (II, 68') может быть придана обобщенная запись

$$\eta = \frac{\delta \overline{\beta}}{\overline{\beta}_0} + \frac{\delta s'}{x' - s'}, \qquad (II,69)$$

где п — характеризует отступление от условия изопланатизма, так как при  $\eta = 0$  приходим к условию Штебле-Лигоцкого.

Из теории аберраций третьего порядка вытекает приближенная зависимость между аберрацией меридиональной комы К (II, 65), бg' III (II, 62) и величиной η:

$$K = \delta g'_{\rm III} = 3l' \,\eta, \tag{II,70}$$

где  $l' = \overline{\beta_0} l_1$  — расстояние изображения точки от оси системы. Ограничившись областью аберраций третьего порядка, из (II, 69), (II, 70) и (II, 46) и при нормировке (II, 20) получим:

$$\frac{\delta \overline{\beta}}{\overline{\beta}_0} = -\frac{m'^2}{2I (x' - s')^2} (\gamma_p S_{\mathrm{I}} - S_{\mathrm{II}}), \qquad (\mathrm{II}, 71)$$

где  $I = n'l'a' = -n'(x'-s')\beta'$  и  $\gamma_p = \frac{\beta'}{\beta_1} =$  угловое увеличение в зрачках системы.

Автором [4] была получена простая и удобная для практического применения формула, связывающая меридиональное поперечное увеличение  $\overline{\beta}_m = \frac{dl'_m}{dl_m}$ , сагиттальное увеличение  $\overline{\beta}_s = \frac{dl'_s}{dl_s}$  и параксиальное увеличение  $\overline{\beta_0} = \frac{n\alpha}{n'\alpha'}$  :

$$\overline{\beta}_m = 3 \,\overline{\beta}_s - 2 \,\overline{\beta}_0. \tag{II,72}$$

Заметим, что если условие синусов выполнено, то  $\overline{\beta}_m = \overline{\beta}_s = \overline{\beta}_0 =$ = const.

Эта формула справедлива в пределах аберраций третьего порядка. Из (II, 72) и (II, 71) находим:

$$-\frac{m'^{2}}{2I(x'-s')^{2}}(\gamma_{p}S_{1}-S_{11})=\frac{\overline{\beta}_{m}-\overline{\beta}_{0}}{3\overline{\beta}_{0}}.$$
 (II,73)

Таким образом, выражение, стоящее в правой части (II, 71), оказывается возможным определить из расчета меридионального и параксиального лучей, направленных соответственно под углами и и а к оптической оси. Для сагиттальной комы Конради [24] была выведена следующая формула, приводимая в принятых нами обозначениях:

$$K_{s} = \left[\delta_{\sin} + (1 + \delta_{\sin}) \frac{\delta s'}{x' - x'}\right] l_{s}, \qquad (II, 74)$$

где *l<sub>s</sub>* — линейный элемент предмета в сагиттальном направлении. Заметим, что если сферическая аберрация полностью устранена (δs'=0) и условие синусов выполнено (δ<sub>sin</sub> = 0), то сагиттальная кома *K<sub>s</sub>* = 0. Таким образом, исправление комы связано с выполнением условия

Таким образом, исправление комы связано с выполнением условия синусов; эта связь имеет место как в меридиональном, так и в сагиттальном сечении. Для бесконечно удаленной плоскости предметов условие синусов принимает вид:

$$\frac{h_1}{\sin u'} = f' = \text{const} = f'_0.$$
(II,75)

Относительное отступление от условия синусов выразится в этом случае формулой:

$$\delta_{\sin} = \frac{1}{f'_0} \left( \frac{h_1}{\sin u'} - f'_0 \right) = \frac{\delta f'}{f'_0}, \qquad (11,76)$$

где  $\delta f' = f' - f'_0$ .

Условие изопланатизма Штебле—Лигоцкого (II, 68) запишется в виде:

$$\delta_{\sin} = \frac{\delta f'}{f'_0} = -\frac{\delta s'}{x' - s'}, \qquad (II, 76')$$

или

$$\eta_{\infty} = \frac{\delta f'}{f'_0} + \frac{\delta s'}{x' - s'} \,. \tag{II,77}$$

Во многих системах выходной зрачок совпадает с их задней главной плоскостью или расположен близко к ней; тогда  $x' - s' = -f'_0$  и формула (II, 77) принимает более простой вид:

$$\eta_{\infty} = \frac{\delta f' - \delta s'}{f'_0}; \qquad (II,78)$$

отсюда для поперечной комы получим:

$$\delta g'_{\rm III} = 3l' \eta_{\infty} = -3 \operatorname{tg} w_{\mathbf{i}} (\delta f' - \delta s'), \qquad (II,79)$$

где  $w_1$  — угол с оптической осью главного луча, пересекающего заднюю фокальную плоскость системы на высоте l'.

Астигматизм и кривизна поверхности изображения. Если все коэффициенты, кроме  $S_{III}$  и  $S_{IV}$ , равны нулю ( $S_I = S_{II} = S_V = 0$ ), то оптическая система обладает астигматизмом и кривизной поверхности изображения третьего порядка:

Из (II, 46) и (II, 48) находим:

$$\delta g'_{\rm III} = k' m' l_1^2 (3S_{\rm III} + l^2 S_{\rm IV}) = = k' \rho' \cos \theta' l_1^2 (3S_{\rm III} + l^2 S_{\rm IV}); \delta G'_{\rm III} = k' M' l_1^2 (S_{\rm III} + l^2 S_{\rm IV}) = = k' \rho' \sin \theta' l_1^2 (S_{\rm III} + l^2 S_{\rm IV}).$$
(II,80)

Возведя в квадрат обе части этих выражений и сложив их, находим:

$$\frac{\delta g_{111}^{\prime 2}}{\left[k' \, \rho' \, l_1^2 \left(3S_{111} + l^2 \, S_{1V}\right)^2\right]} + \frac{\delta G_{111}^{\prime 2}}{\left[k' \, \rho' \, l_1^3 \left(S_{111} + l^2 \, S_{1V}\right)\right]^2} = 1. \quad (II.81)$$

Получили уравнение эллипса с полуосями  $a = k' \rho' l_1^2 (3S_{111} + l^2 S_{1V})$  и  $b = k' \rho' l_1^2 (S_{111} + l^2 S_{1V})$ .

Величины *a* и *b* растут пропорционально первой степени параметра ρ' и второй степени *l*<sub>1</sub>. На рис. II, 11 представлена фигура рассеяния для некоторой точки предметов (величина *l*<sub>1</sub> фиксирована). Световая



Рис. II, 11. Фигура рассеяния при астигматизме



Рис. 11, 12. Изменение аберрации δg' при перемещении плоскости установки

энергия в этой фигуре распределена равномерно, так как площади эллипсов ( $\pi ab$ ) фигуры рассеяния возрастают пропорционально площади кругов  $\pi \rho'^2$  на зрачке.

Рассмотрим сечение того же пучка лучей некоторой плоскостью установки, параллельной гауссовой плоскости, но смещенной на величину —  $\Delta$  (рис. II, 12). В гауссовой плоскости, проходящей через точку  $S'_0$  параксиального изображения, аберрация равна  $\overline{\delta g'}_{111}$ ; в плоскости S' аберрация равна  $\overline{\delta g'}_{111}$ . Из элементарных геометрических построений можно получить:

$$\delta \overline{g}'_{\mathrm{III}} = \left(1 + \frac{\Delta}{p'}\right) \delta g'_{\mathrm{III}} - \frac{m'}{\nu'} \Delta g'_{\mathrm{III}}$$

где p' = -(x' - s'); аналогично для сагиттальной составляющей

$$\delta \overline{G}'_{\mathrm{III}} = \left(1 + \frac{\Delta}{p'}\right) \delta G'_{\mathrm{III}} - \frac{M'}{p'} \Delta$$

Пренебрегая величинами второго порядка,  $\frac{\Delta \delta g'}{\rho'}$  и  $\frac{\Delta \delta G'}{\rho'}$ . находим:

$$\delta \overline{g}'_{111} = \delta g'_{111} - \frac{m'}{p'} \Delta; \quad \delta \overline{G}'_{111} = \delta G'_{111} - \frac{M'}{p'} \Delta. \quad (II,82)$$

Рассмотрим некоторые типичные случаи выбора величины смещения плоскости установки.

1. Выберем положение плоскости установки, при котором  $\delta g' = 0$ . Из (II, 82) и (II, 80) находим:

$$\Delta = \frac{p'}{m'} \,\delta g'_{\rm III} = k' \, p' \, l_1^2 \left( 3S_{\rm III} + \, l^2 \, S_{\rm IV} \right); \tag{II,83}$$

сагиттальная составляющая  $\delta \overline{G'}_{III}$  в этой плоскости будет равна:

$$\delta \overline{G}'_{\mathrm{III}} = -2k' M' l_1^2 S_{\mathrm{III}},$$



Рис. II, 13. Структура астигматического пучка

т. е. фигура рассеяния эллиптической формы вырождается в линию *M*, перпендикулярную меридиональной плоскости; длина этой линии (рис. II, 13):

$$2\delta G'_{\rm III} = 4k' M' l_1^2 S_{\rm III} = 4k' \rho' l_1^2 S_{\rm III}, \qquad ({\rm II}, 83')$$

где  $\rho' = M'$  при  $\theta = 90^{\circ}$ .

2. Выберем положение плоскости установки, при котором  $\delta \overline{G}' = 0$ . Из тех же выражений (II, 82) и (II, 80) находим:

$$\Delta = \frac{p'}{M'} \delta G'_{\rm III} = k' p' l_1^2 (S_{\rm III} + l^2 S_{\rm IV}). \tag{II,84}$$

Меридиональная составляющая  $\overline{\delta g'}_{111}$  в этой плоскости будет равна:

$$\delta \overline{g}'_{\mathrm{III}} = 2k' \, m' \, l_1^2 \, S_{\mathrm{III}} \, ,$$

т. е. фигура рассеяния вырождается в линию S, перпендикулярную оси (рис. II, 13) и лежащую в меридиональной плоскости; длина этой линии равна:

$$2\delta g'_{\rm III} = 4k' \, m' \, l_1^2 \, S_{\rm III} = 4k' \, \rho' \, l_1^2 \, S_{\rm III} \, ; \qquad ({\rm II}, 84')$$

как видим, эта длина пропорциональна радиусу выходного зрачка.

3. Выберем положение плоскости установки между двумя предыдущими, т. е.

$$\Delta = \frac{p'}{2} \left( \frac{\delta g'_{\rm III}}{m'} + \frac{\delta G'_{\rm III}}{M'} \right).$$

Из (II, 80) получим:

$$\Delta = k' p' l_1^2 \left[ 2S_{\rm III} + l^2 S_{\rm IV} \right]. \tag{II,85}$$

После подстановки в (II, 82) и учета (II, 80) находим:

$$\delta \overline{g}'_{111} = k' m' l_1^2 S_{111}; \qquad \delta G'_{111} = -k' M' l_1^2 S_{111}.$$

Возведя в квадрат эти выражения и сложив их, получим:

$$\delta \overline{g}_{\rm III}^{\prime^{*}} + \delta \overline{G}_{\rm III}^{\prime^{*}} = \left(k' \ l_1^2 \ S_{\rm III}\right)^2 \left(m'^{*} + M'^{*}\right) = \left(k' \ l_1^2 \ \rho' \ S_{\rm III}\right)^2. \quad ({\rm II}, 85')$$

Таким образом, фигура рассеяния в этой плоскости установки будет иметь вид окружности (см. рис. II, 13), радиус которой  $\delta \overline{R}'$  равен:

$$\delta \overline{R}' = k' l_1^3 \rho' S_{III}; \qquad (II,86)$$

т. е. величина  $\delta \overline{R}'$  пропорциональна радиусу выходного зрачка  $\rho'$ .

4. Особый интерес представляет предыдущий случай применительно к объективу, у которого корригирован третий коэффициент аберраций ( $S_{III} = 0$ ); в этом случае  $\delta \overline{R'} = 0$  (см. II, 86). Фигура рассеяния, имевшая в этой плоскости установки форму круга, выродилась в точку, т. е. пучок лучей является гомоцентрическим, а вершина его расположена на расстоянии  $\Delta = k' p' l_1^2 l^2 S_{IV}$  (см. II, 85) от плоскости Гаусса. Как видим, это расстояние  $\Delta$  растет пропорционально  $l_1^a$ , т. е. по простому параболическому закону. Кривизна поверхности этого параболоида, как следует из (II, 85) и (II, 85'), будет равна:

$$\frac{1}{R'_m} = \frac{1}{R'_s} = 2k' \, p' \, I^2 \, S_{\rm IV}, \qquad (II,87)$$

где  $R'_m = R'_s = R'$  — радиусы кривизны поверхности изображения, по которой располагаются вершины (центры) гомоцентрических пучков лучей, вышедших из объектива; каждая из этих вершин пучков является изображением соответственной точки предмета. В плоскостях установок, смещенных на произвольные величины, изображения точек будут иметь вид круглых светлых пятен.

Воспользовавшись общим выражением волновой аберрации (II, 50) третьего порядка и положив  $S_1 = S_{II} = S_{III} = 0$ , можем написать:

$$r' L_{\rm III} = -\frac{1}{2} \frac{k' \, {\rho'}^{*} \, l_1^2}{2 \, (x' - s')} \left[ \cos^2 \theta' \left( 3S_{\rm III} + l^2 \, S_{\rm IV} \right) + \\ + \sin^2 \theta' \left( S_{\rm III} + l^2 \, S_{\rm IV} \right) \right], \qquad ({\rm II},88)$$

где  $k' = \frac{1}{2n'(x'-s')^2}$ , т. е. волновая аберрация при астигматизме в центре поля отсутствует и растет пропорционально квадрату линейного поля предмета  $l_1$  или изображения  $l' = \overline{\beta l_1}$ .

При рассмотренном выше случае, когда  $S_{111} = 0$ , находим:

$$r' L_{\rm III} = -\frac{1}{2} \frac{k' \, \rho'^{*} \, l_1^2}{(x' - s')} \, I^2 S_{\rm IV} \,. \tag{II,88'}$$

Отсюда очевидно, что волновая аберрация будет отсутствовать в точках изображения, смещенных пропорционально квадратам их расстояний от оптической оси  $(l'^2 = \bar{\beta}^2 l_1^2)$ ; этим определится кривизна (II, 87) поверхности, по которой расположатся центры сферических волн, вышедших из оптической системы.

На основании изложенного можно дать общее определение астигматизма как аберрации, при которой изображение точки-предмета,

находящейся вне оси и образуемое узким пучком лучей (в теории аберраций третьего порядка предполагается, что *m*' и *M*' малы), оказывается в виде двух линий, расположенных перпендикулярно друг другу и на разных расстояниях от плоскости Гаусса. Это явление возникает вследствие того, что лучи наклонного пучка, расположенные в меридиональном и сагиттальном сечениях, имеют различные точки сходимости точки меридионального и сагиттального фокусов бесконечно тонкого наклонного пучка.

Определим расстояния этих астигматических фокусов от плоскости Гаусса. На рис. II, 14 представлено меридиональное сечение пучка лучей, выходящих из эрачка системы  $P'_1P'_2$ .



Рис. II, 14. Определение положения меридионального фокуса астигматического пучка

Определим линию рассеяния  $A'_{1}A'_{2}$  пучка в гауссовой плоскости  $S'_{0}$ . Обозначив расстояние гауссова изображения A' от оси буквой l', получим:

$$S_0'A_1' = l' + \delta g_1'$$
 и  $S_0'A_2' = l' + \delta g_2';$ 

линия рассеяния A'<sub>1</sub>A'<sub>2</sub> определится формулой:

$$A_{1}'A_{2}' = \delta g_{2}' - \delta g_{1}';$$

из подобия треугольников находим:

$$\frac{\delta g_2' - \delta g_1'}{-x_m'} = \frac{-2m'}{p' + x_m'}$$

Пренебрегая х'т в знаменателе правой части, получаем:

$$x'_{m} = \frac{p'}{2m'} \left( \delta g'_{2} - \delta g'_{1} \right). \tag{II,89}$$

Вычисляем разность  $\delta g'_2 - \delta g'_1$ , дважды применяя первую из формул (II, 46):

$$x'_{m} = -\frac{1}{2n'} \frac{l_{1}^{2}}{(x'-s')^{2}} (3S_{111} + l^{2}S_{1V}). \qquad (II,89')$$

Аналогично получим для расстояния x's сагиттального фокуса:

$$x'_{s} = -\frac{1}{2n'} \frac{l_{1}^{2}}{(x'-s')^{2}} \left( S_{111} + I^{2} S_{1V} \right).$$
(II,90)

Проекция астигматической разности на ось, характеризующая астигматизм системы, пропорциональна коэффициенту S<sub>III</sub>:

$$x'_{\rm s} - x'_{m} = \frac{l_1^2}{n' (x' - s')^2} S_{\rm III}$$
 (II,90')

Для фотографического объектива, когда плоскость предметов бесконечно удалена, положив

$$\lim \left(\frac{m'}{x'-s'}\right) = \alpha' = \frac{h}{f'}$$
$$s' \to -\infty$$

и  $I = -n_1$ , получим:

$$\begin{aligned} x'_{m} &= -\frac{1}{2n'} f' \, \omega_{1}^{2} \left( 3S_{111} + n_{1}^{2} S_{1V} \right); \\ x'_{s} &= -\frac{1}{2n'} f' \, \omega_{1}^{2} \left( S_{111} + n_{1}^{2} S_{1V} \right); \\ x'_{s} &- x'_{m} = \frac{1}{n'} f' \, \omega_{1}^{2} \, S_{111}. \end{aligned}$$
(II.91)

Эти формулы определяют кривые — геометрические места меридиональных и сагиттальных фокусов с различными углами наклона к оптической оси; обе кривые имеют форму парабол с различными параметрами, касающиеся одна другой в точке на оси системы. Радиусы кривизны  $R'_m$  и  $R'_s$  в вершинах парабол определятся из соотношений:

$$R'_{m} = \frac{l'^{2}}{2x'_{m}}$$
  $H$   $R'_{s} = \frac{l'^{2}}{2x'_{s}}$ , (II,92)

где  $l' = \overline{\beta}_0 l; \overline{\beta}_0$  — линейное увеличение системы.

Выше были рассмотрены виды фигур рассеяния лучей в изображении точки, образуемые астигматическим пучком (см. рис. 11, 13). Пучок формирует изображение точки *B* в виде двух астигматических фокальных линий: линии меридиональных фокусов *M* и линии сагиттальных фокусов *S*. Сечение пучка плоскостью, расположенной между линиями *M* и *S*, образует фигуры рассеяния лучей, имеющие вид эллипсов, с различной ориентацией их осей.

Расстояние SM между меридиональным и сагиттальным изображениями точки B, отсчитанное по главному лучу, называется астигматической разностью; проекцию отрезка SM на оптическую ось называют проекцией астигматической разности. Очевидно, если астигматическая разность равна нулю, то астигматический пучок «вырождается» в гомоцентрический. При изображении протяженного объекта необходимо последний рассматривать как совокупность светящихся точек, каждая из которых изображается астигматическими пучками. Например, если объектом является отрезок AB прямой линии, расположенной в меридиональной плоскости (рис. II, 15), то для каждой из точек этой линии находим сагиттальные и меридиональные изображения соответствующих точек предмета и отмечаем на каждом главном луче положение этих изображений. Соединяя все эти точки, получим геометрическое место SA' и MA' сагиттальных и меридиональных изображений элементов прямой AB; при этом каждая точка отрезка AB изобразится меридиональными пучками в виде сагиттально расположенных отрезков,



Рис. II, 15. Поверхности изображений, образуемые астигматическими пучками



Рис. II, 16. Изображение отрезка прямой астигматическими пучками

длина которых возрастает пропорционально квадрату расстояния от центра (рис. II, 16, a); это и будет меридиональным изображением MA'объекта AB. Каждая точка отрезка AB изобразится сагиттальными пучками в виде элементарных отрезков, расположенных в меридиональной плоскости; накладываясь друг на друга, они дадут резкое изображение (рис. II, 16,  $\delta$ ) SA' прямой AB.

Противоположную картину получим, если объектом будет прямая, проходящая через точку, лежащую вне оси и расположенную сагиттально. Очевидно, наиболее резкое изображение этой прямой будет образовано меридиональными пучками лучей, расположенными на кривой меридиональных фокусов.

Сложнее будет картина, если объектом является двумерная фигура, например, система кругов с центром на оптической оси и их радиусов (рис. II, 17, a). Объектив, имеющий астигматизм, не может дать одновременно резкого изображения обеих систем линий. Изображения, образованные элементарными меридиональными пучками, будут иметь вид, представленный на рис. II, 17,  $\delta$ , т. е. окружности изобразятся резко, так как элементарные астигматические фокальные линии, налагаясь одна на другую, не исказят рисунка; изображения радиусов будут размытыми; вместо точек получатся элементарные линии, длина которых возрастает при удалении от центра изображения. Изображения, образованные элементарными сагиттальными пучками лучей, показаны на рис. II, 17,  $\theta$ . Равномерное распределение резкости изображений колец и радиусов получится на поверхности изображений, которая имеет форму поверхности вращения кривой K (см. рис. II, 15), проходящей между меридиональной и сагиттальной кривыми. На поверхности изображения такой формы каждая точка объекта изобразится в виде кружка. Средняя кривизна поверхности  $\frac{1}{R'}$  вблизи центра поля, как следует из (II, 92), определится формулой:



Рис. II, 17. Изображение плоской фигуры астигматическими пучками

Астигматизм оптической системы обычно характеризуют графически — на основании результатов расчета положений астигматических фокусов x'<sub>s</sub> и x'<sub>m</sub> элементарных пучков.

Откладывая по оси ординат углы наклона *w* главных лучей, выходящих из различных точек объекта *l*, а по оси ординат — расстояния *x'*<sub>s</sub> и *x'*<sub>m</sub> астигматических фокусов от плоскости Гаусса, получим различные возможные случаи астигматических кривых. Рис. II, 18, *a* 



Рис. II, 18. Графическое представление астигматизма

соответствует случаю, когда система имеет астигматизм и кривизну поверхности изображения, понимая под последней поверхность K (см. рис. II, 15), расположенную между обеими астигматическими поверхностями M и S; вследствие наличия этой аберрации даже при отсутствии астигматизма ( $x'_s - x'_m = 0$ ) изображение по полю окажется

нерезким на плоском экране. Рис. II, 18, б соответствует случаю, когда кривизна поверхности изображения исправлена  $(x'_s = -x'_m)$ , но астигматизм весьма значителен.

Имеются сложные оптические системы, так называемые а на с т и гматы, обладающие исправленным астигматизмом ( $x'_s - x'_m = 0$ ) для некоторого угла поля w и значительно уменьшенным астигматизмом и кривизной поверхности в пределах всего поля; изображение по всему полю имеет достаточно хорошую резкость. На рис. II, 18, *в* представлены астигматические кривые широко распространенного объектива — анастигмата «Индустар», астигматизм которого полностью исправлен для угла w около 25° и невелик в пределах поля зрения  $2w \approx 55 - 56^{\circ}$ .

Если фотографический объектив не имеет аберраций высших порядков (идеализированный случай) и астигматизм третьего порядка корригирован ( $S_{\rm III} = 0$ ), то, как следует из (II, 91) и (II, 92), обе астигматические позерхности изображения сливаются и радиус кривизны R' поверхности определится из выражения:

$$\frac{1}{R'} = -\frac{n'}{f'} S_{\rm IV}.$$
 (II,94)

Итак, коэффициент  $S_{1V}$  определяет кривизну поверхности изображений, если система исправлена в отношении астигматизма ( $S_{111}=0$ ).

Дисторсия. Последняя из монохроматических аберраций третьего порядка — дисторсия — определяется выражением (II, 46):

$$\delta g'_{\rm III} = -k' l_1^3 S_{\rm V}.$$
 (II,95)

При определении коэффициента S<sub>V</sub> принята нормировка (II, 20).

Эта аберрация не зависит от координат пересечения луча с выходным зрачком m' и M'; это значит, что при отсутствии других аберраций все лучи пучка, выходящие из некоторой точки объекта, собираются в одну точку в плоскос ти Гаусса, отстоящую от оси на расстоянии l', не совпадающем с расстоянием  $l'_0 = \overline{\beta_0}l_1$ , соответствующим случаю изображения объекта  $l_1$  идеальной системой, обладающей линейным увеличением  $\overline{\beta_0}$ . Разность величин  $l' - l'_0 = \delta g'$  является линейной мерой дисторсии, если:  $\delta g' = 0$ , то  $l' = l'_0$  при всех значениях  $l' = \overline{\beta l_1}$ , т. е. увеличение  $\overline{\beta}$  для всех отрезков  $l_1$  остается неизменным:

$$\overline{\beta} = \frac{l'}{l_1} = \frac{(x' - s') \operatorname{tg} w'}{(x_1 - s_1) \operatorname{tg} w_1} = \operatorname{const} = \overline{\beta}_0.$$
(II,96)

Изображения, удовлетворяющие этому условию, называют о р т оскопически и ми; свойство оптической системы давать ортоскопические изображения называется о р т о с к о пией. Таким образом, аберрация дисторсия является мерой искажения изображений вследствие недостаточной ортоскопии; если  $\delta g' \neq 0$ , имеем:

$$l'=l'_0+\delta g',$$

или, разделив обе части выражения на l<sub>1</sub>, получим:

$$\overline{\beta} + \overline{\beta}_0 + \frac{\delta g'}{l_1}$$
. (II,97)

Из (II, 95) и (II, 97) следует:

$$\overline{\delta\beta} = -k' l_1^2 S_{\rm V}, \qquad (II,98)$$

т. е. изменение увеличения пропорционально второй степени  $l_1$  или тангенсу угла  $w_1$  поля зрения.

Оптическая система дает неискаженное ортоскопическое изображение, если  $\delta \bar{\beta} = 0$ ; необходимым и достаточным условием этого:

$$S_v = 0. \tag{II,98'}$$

При бесконечно удаленной плоскости предметов выражение (II, 98) теряет смысл. Величину линейной дисторсии  $\delta g' = l' - l'_0$  находим из (II, 37):

$$\delta g'_{\rm III} = -\frac{f'_0}{2n'} \, \mathrm{tg}^3 \, \omega_1 \, S_{\rm V\infty}, \qquad ({\rm II}, 99)$$

или так как  $l'_{1} = -\frac{n_{1}}{n'}f'_{0}$ tg $w_{1}$ , получим:

$$\frac{\delta g_{\rm III}}{l'_{\rm 0}} = \frac{{\rm tg}^2 \, w_{\rm 1}}{2n_{\rm 1}} \, S_{\rm V\,\infty} \,. \tag{II,99'}$$

Очевидно, если  $S_{V\infty} = 0$ , то  $\delta g_{III} = 0$  и, следовательно,  $l_1 = l'_0$ ; это значит, что для всех углов поля  $w_1$  при выполнении условия ортоскопии для бесконечно удаленной плоскости предметов должно соблюдаться постоянство отношений:

$$\frac{l'}{\operatorname{tg} \omega_1} = \operatorname{const}; \tag{II,100}$$

причем, если это отношение остается равным параксиальному фокусному расстоянию  $f'_0$ , то исправлена оптическая дисторсия; это же отношение может с достаточной степенью точности оставаться неизменным для всех углов  $w_1$ , но не быть равным  $f'_0$ , что соответствует исправлению так называемой ф о т о г р а м м е т р и ч е с к о й д и ст о р с и и, когда, например, применяют фотографию в геодезии, аэросъемке и т. д. и фотографическими снимками пользуются для измерения координат точек изображений.

Присутствие аберрации дисторсии приводит к нарушению подобия между предметом и его изображением. Как следует из (II, 99), в зависимости от знака коэффициента  $S_V$ , величина  $\delta g$  может быть положительной или отрицательной; первый случай ( $\delta g' > 0$ ) приводит к так называемой подушкообразной дисторсии, в результате которой вместо квадрата (рис. II, 19, *a*) изображается фигура, приведенная на рис. II, 19, *b*; второй случай ( $\delta g' < 0$ ) приводит к бочкообразной дисторсии (рис. 19, *b*).

В числе графиков аберраций приводятся также и кривые дисторсии. При их построении по оси абсцисс откладывают линейную дисторсию  $(l' - l_0)$  или относительную дисторсию  $\frac{l' - l_0}{l'_0}$ , которую обычно выражают в процентах; по оси ординат наносят величины углов поля зрения w.

Рассмотренными пятью аберрациями заканчивается перечень монохроматических аберраций третьего порядка. В реальных системах отдельные виды монохроматических аберраций третьего порядка почти никогда не встречаются: обычно наблюдаются комбинации всех аберраций вместе и, кроме того, на

них налагаются аберрации высших порядков.

Наличие аберраций высших порядков сильно усложняет картину распределения лучей в плоскости изображения; это распределение быстро меняется с изменением положения точки объекта  $l_1$  и отверстия системы  $m_1$  и  $M_1$ . Величины аберраций

Рис. II, 19. Искажение изображений дисторсией

высших порядков учитываются на основании точного расчета хода лучей через оптическую систему с последующим «отделением» известных величин аберраций третьего порядка. Следует думать, что возможности в этом направлении существенно расширятся в ближайшие годы в связи с появлением электронных цифровых счетных машин.

Представление аберраций пятого порядка. Ќак было указано выше, число независимых монохроматических аберраций пятого порядка равно девяти. Общее выражение составляющих аберраций  $\delta g'_v$  и  $\delta G'_v$ представлено рядами (II, 3), в которых m', M' и  $l_1$  являются параметрами, определяющими положение луча. Волновая аберрация пятого порядка  $L_v$  представлена рядом (II, 8) или рядом (II, 10') — в координатах u', U' и w, связанных с первыми координатами формулами (II, 9).

Таким образом, коэффициенты аберраций рядов (II, 10') и (II, 8) пропорциональны друг другу:

$$B_{3}^{"} = (x' - s')^{6} B_{3}^{'}; \quad B_{9}^{"} = (x' - s')^{3} (x_{1} - s_{1})^{3} B_{9}^{'};$$

$$B_{5}^{"} = -(x' - s')^{5} (x_{1} - s_{1}) B_{5}^{'};$$

$$B_{9}^{"} + B_{6}^{"} = -(x' - s')^{3} (x_{1} - s_{1})^{3} (B_{9}^{'} + B_{6}^{'});$$

$$B_{4}^{"} = (x' - s')^{4} (x_{1} - s_{1})^{2} B_{4}^{'};$$

$$B_{1}^{"} = (x' - s')^{2} (x_{1} - s_{1})^{4} B_{1}^{'};$$

$$B_{4}^{"} + B_{8}^{"} = (x' - s')^{4} (x_{1} - s_{1})^{2} (B_{4}^{'} + B_{8}^{'});$$

$$B_{1}^{"} + B_{7}^{"} = (x' - s')^{2} (x_{1} - s_{1})^{4} (B_{1}^{'} + B_{7}^{'}).$$
(II,101)

Проведем классификацию аберраций пятого порядка. Сферическая аберрация пятого порядка. Положив в выражении (II, 3) все коэффициенты, кроме B'<sub>3</sub>, равными нулю, получим:

$$\delta g'_{\rm V} = 6B'_{3}m' (m'^{2} + M'^{2})^{2} = 6B'_{3}\rho'^{5}\cos\theta';$$
  
$$\delta G'_{\rm V} = 6B'_{3}M' (m'^{2} + M'^{2})^{2} = 6B'_{3}\rho'^{5}\sin\theta', \qquad (\text{II}, 102)$$

где по-прежнему  $m' = \rho' \cos \theta'$ ;  $M' = \rho' \sin \theta'$ .

Отсюда находим:

$$\delta R'_{\mathrm{V}} = \sqrt{\delta g'^{2}_{\mathrm{V}} + \delta G'^{2}_{\mathrm{V}}} = 6B'_{3}\rho'^{5}.$$

Таким образом, окружности радиуса  $\rho'$  в плоскости выходного зрачка соответствует окружность радиуса  $\delta R'_V$  в плоскости фигуры рассеяния; однако размеры кружков рассеяния чрезвычайно быстро возрастают — пропорционально пятой степени  $\rho'^5$ , что приводит к весьма быстрому падению освещенности от центра к краям кружка рассеяния.

Как следует из (II, 8), волновая сферическая аберрация пятого порядка чрезвычайно возрастает — пропорционально шестой степени величины радиуса  $\rho'^{6}$ :

$$r'L_{\rm V} = B'_3(m'^2 + M'^2)^3 = B'_3 {\rho'}^6.$$
 (II,103)

Практический интерес представляет определение положения плоскости установки, в которой волновая аберрация объектива имеет минимальное значение и определение величины этой минимальной волновой аберрации.

Предположим, что объектив обладает сферической аберрацией третьего и пятого порядков:

$$\delta s' = \delta s'_{\rm III} + \delta s'_{\rm V} = -\frac{1}{2n'} S_{\rm I} {u'}^2 - 6 (x' - s')^5 B'_3 {u'}^4 =$$
$$= A {u'}^2 + B {u'}^4. \tag{II,104}$$

Пусть, как это часто бывает на практике, сферическая аберрация на краю зрачка корригирована:

$$\delta s' = A u'_{\kappa p}^{2} + B u'_{\kappa p}^{4} = 0;$$
  
 $A = -B u'_{\kappa p}^{2}.$  (II,105)

отсюда:

Воспользовавшись (II, 58) и (II, 103), напишем выражение волновой сферической аберрации третьего и пятого порядков:

$$L = \frac{1}{4} \, \delta s'_{\rm III} \, {u'}^2 + \frac{1}{6} \, \delta s'_{\rm V} \, {u'}^2.$$

В плоскости установки, смещенной на величину ∆ относительно плоскости Гаусса, последнее выражение примет вид (см. II, 59):

$$L = \frac{1}{4} \delta s'_{\rm III} \, u'_{\rm \kappa p}^{2} + \frac{1}{6} \, \delta s'_{\rm V} \, u'_{\rm \kappa p}^{2} + \frac{1}{2} \, \Delta \, u'_{\rm \kappa p}^{2}. \tag{II,106}$$

Определим величину смещения плоскости установки  $\Delta_m$ , при котором волновая аберрация на краю зрачка обращается в нуль:

$$L = \frac{1}{4} \, \delta s'_{\rm III} \, {u'}_{\kappa p}^{*^2} + \frac{1}{6} \, \delta s'_{\rm V} \, {u'}_{\kappa p}^{*^2} + \frac{1}{2} \, \Delta_m \, {u'}_{\kappa p}^{*^2} = 0;$$

отсюда, воспользовавшись (II, 104) и (II, 105), имеем:

$$\Delta_m = \frac{1}{2} B u_{\kappa p}^{\prime 2} \,. \tag{II,107}$$

В этой плоскости установки выражение волновой аберрации (II, 106) при учете (II, 104) и (II, 105) примет вид:

$$L = \frac{1}{12} B \left( -3u_{\rm kp}^{\prime 2} x^2 + 2x^3 + u_{\rm kp}^{\prime 4} x \right), \qquad (\text{II}, 108)$$

где  $x = u'^2$ .

Определим наибольшее значение волновой аберрации  $L_m$  в этой плоскости установки, рассматривая L как функцию параметра u'.

Определив производную функцию L (II, 108) и положив ее равной нулю, находим:

$$\overline{x} = \frac{1}{2} u_{\rm kp}^{\prime 2} \left( 1 \pm \frac{1}{\sqrt{3}} \right). \tag{II,108'}$$

Подставив это значение x в (II, 108), получим:

$$L_m = \pm \frac{\sqrt{3}}{216} B u_{\kappa p}^{,e}.$$
 (II,109)

Эту формулу можно преобразовать, воспользовавшись известным свойством: при исправленной на краю зрачка сферической аберрации третьего и пятого порядков максимальное значение аберрации имеет место на зоне отверстия

$$u'=\frac{\sqrt{2}}{2}u'_{\rm kp}.$$

Из формул (II, 104) и (II, 105) находим:

$$\delta s'_{\text{30Hbl}} = -Bu'_{\text{kp}} \left(\frac{\sqrt{2}}{2} u'_{\text{kp}}\right)^2 + B\left(\frac{\sqrt{2}}{2} u'_{\text{kp}}\right)^4 = -\frac{1}{4} Bu'^4_{\text{kp}} . (\text{II}, 110)$$

После подстановки в (II, 109) имеем:

$$L_{m} = \pm \frac{\sqrt{3}}{54} \, \delta s'_{30Hb} \, u'^{2}_{Kp}, \qquad (II,111)$$

или, выразив волновую аберрацию L<sub>m</sub> в длинах волн  $\lambda$ , получим:

$$L_m \approx 60 \, \delta s'_{30\text{HM}} \, u'^2_{\text{Kp}};$$
 (II,111')

при этом принято  $\lambda = 0,00055$  мм. Эта формула применяется нами на практике для предварительных подсчетов. На рис. II, 20, а приведен график продольной сферической аберрации, на котором пунктиром

показано положение плоскости установки, смещенной на величину —  $\Delta_m$  (см. II, 107) относительно плоскости Гаусса; из сопоставления с (II, 110) следует:

$$\Delta_m = -\frac{2}{3} \delta s'_{30HJ}. \qquad (II,112)$$

На рис. II, 20, б приведен график волновой аберрации L, представленный как функция квадрата апертурного угла  $u'^2$ .

На графике проведена линия AO под углом ф к оси ординат; тангенс угла наклона ф численно равен величине смещения плоскости установки:



Рис. II, 20. Сферическая аберрация третьего и пятого порядков

вки.

tg 
$$arphi = \Delta_m$$
 .

При таком построении отсчет остаточной волновой аберрации производится от прямой AO, как от новой оси; на графике показано также максимальное значение волновой аберрации  $L_m$  в смещенной плоскости установки, достигаемое при следующих апертурных углах  $u'^2$  (см. II, 108'):

$$u'^{2} = \overline{x} = \frac{1}{2} \left( 1 \pm \frac{1}{\sqrt{3}} \right) u'^{2}_{\text{kp}};$$
$$u'^{2}_{1} = 0,788 \, u'^{2}_{\text{kp}}; \quad u'^{2}_{2} = 0,212 \, u'^{2}_{\text{kp}}.$$

Однако не следует думать, что найденная плоскость наименьшей волновой аберрации является плоскостью наилучшего изображения. Если понимать под последней плоскость максимальной разрешающей силы, то, как показывает анализ результатов экспериментальных исследований большого количества различных объективов с исправленной на краю зрачка сферической аберрацией, у них эта плоскость расположена несколько дальше от плоскости Гаусса, чем это следует из формулы (II, 112): величина ∆ составляет 0,7—0,8 от величины  $\delta s'_{30HM}$ .

Кома высшего порядка. Из выражения (11,3) находим:

$$\delta g'_{\rm V} = B'_5 (m'^2 + M'^2) (5m'^2 + M'^2) l_1 =$$
  
=  $B'_5 \rho'^4 (3 + 2\cos 2\theta') l_1;$   
 $\delta G'_{\rm V} = 4B'_5 (m'^2 + M'^2) M' m' l_1 = 2B'_5 \rho'^4 \sin 2\theta' l_1;$  (II,113)

кома высшего порядка пропорциональна четвертой степени отверстия и первой степени удаления l<sub>1</sub> точки-предмета от оптической оси.

Из (II, 113) находим:

$$\delta g'_{\rm V} - 3 {\rho'}^4 \, l_1 \, B'_5 = 2 {\rho'}^4 \, l_1 \, B'_5 \cos 2\theta' ;$$

$$\delta G'_{\rm V} = 2\rho'^4 \, l_4 \, B'_5 \sin 2\theta';$$

отсюда следует:

$$\left(\delta g'_{\rm V} - 3\rho'^{4} l_{\rm I} B'_{\rm 5}\right)^{2} + \delta G_{\rm V}^{\prime 2} = \left(2\rho'^{4} l_{\rm I} B'_{\rm 5}\right)^{2} \delta R_{\rm V}^{\prime 2}, \qquad ({\rm II}, 114)$$

т. е. фигура рассеяния при коме высшего порядка, как и при коме третьего порядка, представляет систему окружностей, радиусы которых  $\delta R_{v}' = 2\rho'^4 l_1 B_5'$  пропорциональны четвертой степени радиуса-вектора  $\rho'^4$ ; центры окружностей расположены на расстоянии  $3\rho'^4 l_1 B'_5$  от положения гауссового изображения, причем эти центры расположены в меридиональной плоскости. Если луч вычерчивает окружность на выходном зрачке, точка его пересечения с плоскостью Гаусса описывает окружность дважды, так как в выражения (II, 113) входит удвоенный угол  $2\theta'$  в аргументы косинуса и синуса.

Огибающими всех окружностей, образующих фигуру рассеяния, является как и при коме третьего порядка, пара прямых, составляющих угол 41°15′ с осью симметрии изображения. Действительно, из (II, 114), рассматривая это семейство окружностей при переменном р' после дифференцирования, находим:

$$-2\left(\delta g'_{V}-3\rho'^{*} l_{1} B'_{5}\right)12\rho'^{*} l_{1} B'_{5}-2\left(2\rho'^{*} l_{1} B'_{5}\right)8\rho'^{*} l_{1} B'_{5}=0.$$

Отсюда

$$\rho^{\prime^4} l_1 B_5^{\prime} = \frac{3}{5} \delta g_{\mathrm{V}}^{\prime}.$$

После подстановки в (II, 114) имеем:

$$\delta G_{\mathsf{V}}^{\prime^2} - \frac{4}{5} \delta g_{\mathsf{V}}^{\prime^2} = 0$$

или

$$\left(\delta G'_{\mathbf{V}} + \frac{2}{\sqrt{5}} \,\delta g'_{\mathbf{V}}\right) \left(\delta G'_{\mathbf{V}} - \frac{2}{\sqrt{5}} \,\delta g'_{\mathbf{V}}\right) = 0.$$

Таким образом, огибающие к окружностям представляют прямые, уравнения которых:

$$\delta g'_{\mathrm{V}} = \frac{\sqrt{5}}{2} \delta G'_{\mathrm{V}} \quad \mathrm{M} \quad \delta g'_{\mathrm{V}} = -\frac{\sqrt{5}}{2} \delta G'_{\mathrm{V}}, \qquad (\mathrm{II}, 115)$$

т. е. прямые образуют с осью  $\delta g'_5$  углы  $+41^{\circ}15'$  и  $-41^{\circ}15'$ .

Распределение энергии в фигуре рассеяния несимметричное; вся энергия сосредоточена в пределах угла 82°30'; при этом рассеяние лучей в фигуре по мере удаления от гауссова изображения происходит гораздо сильнее, чем при коме третьего порядка: фигура рассеяния имеет вид маленького яркого пятна с быстро расширяющимся «хвостом». Сферическая аберрация высшего порядка. Из выражения (II,3) имеем:

$$\delta g'_{\rm V} = 4B'_4 m' \left( m'^2 + M'^3 \right) l_1^2 = 4\rho'^3 l_1^2 B'_4 \cos \theta'; \tag{II,116}$$

$$\delta G'_{\rm V} = 4B'_4 M' \left( {m'}^2 + {M'}^2 \right) l_1^2 = 4\rho'^3 l_1^2 B'_4 \sin \theta'.$$

Таким образом, сферическая аберрация высшего порядка, в отличие от сферической аберрации третьего порядка, отсутствует в точке на оптической оси (при  $l_1 = 0$ ) и растет пропорционально квадрату координаты  $l_1^2$ .

Фигура рассеяния от этой аберрации при изображении точки имеет вид, аналогичный фигуре рассеяния при сферической аберрации третьего порядка; а именно, из (II, 116) имеем:

$$\delta g'_{\rm V}^{\,2} + \delta G'_{\rm V}^{\,2} = \left(4 {\rho'}^{^3} \, l_1^2 \, B'_4\right)^2 = \delta R'_{\rm V}^{\,2}$$
, (II,117)

Рис. II, 21. Аберрация кривизны высшего порядка

т. е. фигура рассеяния представляет систему окружностей, радиусы которых ( $\delta R'_{\rm V}$ ) пропорциональны кубу параметра  $\rho'^3$  (см.также II, 52).

Волновая аберрация, так же как и при сферической аберрации третьего порядка (II, 53), пропорциональна четвертой степени координаты  $\rho'^4$  (см. II, 8):

$$r' L_{\rm V} = B'_4 (m'^2 + M'^2) l_1^2 = B'_4 \rho'^4 l_1^2 \,. \tag{II,118}$$

Кривизна вы сшего порядка. Из (II,3) имеем:

т. е. и эта аберрация, как и только что рассмотренная, пропорциональна квадрату координаты  $l_1$ . Фигура рассеяния представляет семейство крылоподобных кривых, описываемых точкой пересечения луча с плоскостью Гаусса, если аргументу  $\theta'$  задавать значения от 0 до  $2\pi$ ; сначала точка пересечения луча при постоянном значении  $\rho'$  пробегает кривую (рис. II, 21) по верхней петле (при положительном коэффициенте  $B'_8$ ), а затем описывает зеркальное отражение петли ниже горизонтальной оси. В отличие от аберрации кривизны третьего порядка, приводящей к равномерному распределению лучей в фигуре рассеяния, эта аберрация вызывает быстрое рассеяние лучей по мере удаления от центра фигуры, так как составляющие аберрации  $\delta g'_V$  и  $\delta G'_V$  пропорциональны третьей степени параметра  $\rho'^3$ . Кома высшего порядка, определяемая теми же уравнениями (II,3):

$$\delta g'_{\rm V} = B'_{9} \left( 3m'^{2} + M'^{2} \right) l_{1}^{3} = B'_{9} \rho'^{2} \left( 2 + \cos 2\theta' \right) l_{1}^{3}; \delta G'_{\rm V} = 2B'_{9} m' M' l_{1}^{3} = B'_{9} \rho'^{2} \sin 2\theta' l_{1}^{3}.$$
 (II,120)

Из сопоставления с комой третьего порядка (II, 62) видим, что форма фигуры рассеяния не изменяется и различается лишь размерами: составляющие аберраций  $\delta g'_V$  и  $\delta G'_V$  пропорциональны кубу параметра  $l^3_1$ , а не первой степени  $l_1$ , как при аберрации комы третьего порядка. Это непосредственно видно, если написать, воспользовавшись (II, 120), уравнение кривой рассеяния:

$$(\delta g_{\rm V}^{'} - 2B_{9}^{'} {\rho'}^{*} l_{1}^{3})^{2} + \delta G_{\rm V}^{'^{*}} = (B_{9}^{'} {\rho'}^{*} l_{1}^{3})^{2} = \delta R_{\rm V}^{'^{*}},$$

т. е. радиус окружности  $\delta R'_V$ , описываемой точкой ( $\delta g'_V$ ;  $\delta G'_V$ ), возрастает пропорционально кубу  $l_1$ , а не первой степени  $l_1(II, 63)$ . И в этом случае огибающими всех окружностей, образующих фигуру рассеяния, является пара прямых, составляющих углы  $\pm 30^\circ$  с осью симметрии изображения.

Дисторсия высшего порядка (по отверстию). Аберрация дисторсии высшего порядка по отверстию определяется уравнениями:

$$\delta g'_{\rm V} = 3B'_6 m'^2 l_1^3 = 3B'_6 \rho'^2 l_1^3 \cos^2 \theta', \quad \delta G'_{\rm V} = 0, \qquad ({\rm II}, 121)$$

т. е. эта аберрация не зависит от координаты M' и пропорциональна квадрату m'. Фигура рассеяния представляет прямую линию, длина которой чрезвычайно быстро возрастает по мере удаления от оптической оси, так как аберрация  $\delta g'_{\rm v}$  пропорциональна кубу удаления точки-предмета  $l_1$ .

Боковая кривизна с астигматизмом. Эта аберрация определяется уравнениями:

$$\delta g'_{\rm V} = 2 \left( B'_1 + B'_7 \right) m' l_1^4 = 2 \left( B'_1 + B'_7 \right) \rho' l_1^4 \cos \theta';$$
  

$$\delta G'_{\rm V} = 2B'_1 M' l_1^4 = 2B'_1 \rho' l_1^4 \sin \theta'.$$
(II,121')

Из сопоставления с уравнениями (II, 80), описывающими аберрацию кривизны и астигматизма третьего порядка, следует, что в обоих случаях фигура рассеяния представляет собой семейство эллипсов:

$$\frac{\delta g_{\rm V}^{\prime\,2}}{\left[2\left(B_1^{\prime}+B_7^{\prime}\right)\rho^{\prime}\ l_1^4\right]^2}+\frac{\delta G_{\rm V}^{\prime\,2}}{\left[2B_1\,\rho^{\prime}\ l_1^4\right]^2}=1,\qquad(11,121'')$$

но в данном случае полуоси эллипса  $a = 2(B'_1 + B'_7)\rho' l_1^4$  и  $b = 2B'_1 \rho' l_1^4$  пропорциональны четвертой степени  $l_1^4$ .

**Дисторсия высшего порядка (по наклону).** Аберрация дисторсии высшего порядка по наклону (боковая) определяется уравнениями:

$$\delta g'_{\mathrm{V}} = B'_2 l'_1$$
,  $\delta G'_{\mathrm{V}} = 0$ ,

т. е. эта аберрация главного луча (не зависящая от координат m' и M'), пропорциональная пятой степени величины  $l_1^5$ , в то время как дисторсия третьего порядка пропорциональна  $l_1^3$ .

Проведенное здесь расчленение общей аберрации пятого порядка, выражающейся рядами (II, 3), на отдельные виды аберраций является искусственным математическим приемом, облегчающим анализ вида фигур рассеяния, образуемых каждым членом ряда (II, 3). В действительности перечисленные аберрации в чистом виде не встречаются: фигуры рассеяния имеют сложную структуру — результат одновременного действия всех аберраций и не только третьего и пятого, но и более высоких порядков.

Интерполяционные формулы аберраций высших порядков. Как видели выше, сравнительно просто могут быть вычислены лишь аберрации третьего порядка. Вместе с тем аберрацию любого порядка (пятого, седьмого, и т. д.) можно представить в виде ряда, члены которого содержат коэффициенты аберраций соответствующих порядков и координаты, определяющие положение луча и задаваемые обычно величинами, относящимися к пространству предметов или изображений.

Из расчета хода лучей через оптическую систему могут быть определены величины аберраций, но чрезвычайно затруднительно отделить в этой результирующей порядки аберраций, отдельные их составляющие и соответствующие коэффициенты. Желательность проведения подобного анализа мы усматриваем в двух случаях:

1) при построении аберрационных фигур рассеяния лучей широких наклонных (косых) пучков. Определение соответствующих интерполяционных формул, позволяющих быстро и просто вычислить аберрации любого количества лучей, выбранных любым образом на зрачках оптической системы, могло бы привести к экономии машинного времени. Вместе с тем исследование фигур рассеяния абсолютно необходимо при анализе прежде всего нового разработанного объектива, свойства которого еще малоизвестны;

2) при анализе состояния коррекции высококачественного объектива, аберрации которого настолько малы, что не поддаются надежному определению обычными методами лучевой оптики. Малые величины аберраций могут оказаться на пределе точности их вычислений; эти погрешности вычислений сравнительно легко обнаруживаются при аналитической обработке полученных результатов расчетов.

Величины коэффициентов интерполяционных формул зависят от выбора тех опорных лучей, для которых были определены точные значения аберраций и которые были приняты в основу для определения неизвестных коэффициентов в общих выражениях аберраций.

Нам представляется методологически ошибочным в светосильных и широкоугольных объективах, каковыми и являются современные объективы, анализировать структуру широких пучков, опираясь на формулы, коэффициенты в которых определены на основании аберраций отдельных лучей пучка, если число этих лучей мало, а иногда просто равно числу искомых коэффициентов.

Каждый тип объектива имеет свою специфическую структуру пучков лучей и, следовательно, на практике часто трудно заранее указать

на зрачке системы лучи, которые целесообразно выделить как опорные для определения коэффициентов. В процесс определения величин последних должно быть включено возможно большее число лучей. Наиболее рациональным методом для решения подобной задачи является классический метод наименьших квадратов. При применении этого метода в нашей задаче необходимо знать величины аберраций группы лучей, по которым будут определены коэффициенты интерполяционной формулы. В оптической практике с помощью таблиц или на ЭВМ определяются геометрические аберрации луча —  $\delta g'$  и  $\delta G'$ .

Интерполяционные формулы будут функционально выражать те же величины  $\delta g'$  и  $\delta G'$ . В отличие от формул (II, 2') и (II, 3), коэффициенты интерполяционной формулы будут различны для разных углов поля. Чтобы не прийти к нежелательно большому числу коэффициентов, ограничимся выражением, содержащим координаты m' и M' не выше пятой степени.

Поскольку предлагаемым ниже методом мы желаем получить не только фигуру рассеяния, но и распределение волновой аберрации по зрачку, проще начать с общего представления функции волновой аберрации для данной (фиксированной) точки поля. В отличие от выражений (II, 7) и (II, 8) интерполяционная формула не будет содержать координаты  $l_1$ . Члены ряда разложения функции L, очевидно, будут содержать сомножителями при коэффициентах ряда все возможные сочетания произведений координат m' и M', за исключением тех, в которые входят нечетные показатели степени M', что противоречило бы общему свойству аксиально-симметричной оптической системы, у которой меридиональная плоскость является плоскостью симметрии в отношении наклонных пучков лучей. Кроме того, ряд не будет содержать членов разложения первой степени, так как предполагается, что волновая поверхность и сфера сравнения соприкасаются, а не пересекаются.

Приходим к общему выражению следующего вида:

$$r'L = \frac{1}{6} A_{1} m'^{6} + \frac{1}{2} A_{2} m'^{4} M'^{2} + \frac{1}{2} A_{3} m'^{2} M'^{4} + \frac{1}{6} A_{4} M'^{6} + \frac{1}{5} B_{1} m'^{5} + B_{2} m'^{3} M'^{2} + B_{3} m' M'^{4} + \frac{1}{4} C_{1} m'^{4} + \frac{1}{2} C_{2} m'^{2} M'^{2} + \frac{1}{4} C_{3} M'^{4} + \frac{1}{3} D_{1} m'^{3} + D_{2} m' M'^{2} + E_{1} m'^{2} + \frac{1}{2} E_{2} M'^{2} + E_{1} m', \qquad (II,122)$$

где r' — константа, равная радиусу сферы сравнения волновой поверхности (II, 6), т. е. r' = -(x'-s'). Смысл введенных численных множителей при коэффициентах ста-

Смысл введенных численных множителей при коэффициентах станет ясен, если вспомнить (II, 6); взяв частные производные от функции L по m' и M', получим:

$$\delta g' = A_{1} m'^{5} + 2A_{2} m'^{3} M'^{2} + A_{3} m' M'^{4} + B_{1} m'^{4} + 3B_{2} m'^{2} M'^{2} + B_{3} M'^{4} + C_{1} m'^{3} + C_{2} m' M'^{2} + D_{1} m'^{2} + D_{2} M'^{2} + E_{1} m'^{2} + (F_{1}); \quad (II, 123)$$
  

$$\delta G' = A_{2} m'^{4} M' + 2A_{3} m'^{2} M'^{3} + A_{4} M'^{5} + 2B_{2} m'^{3} M' + A_{4} M'^{3} + 2D_{2} m' M' + E_{2} M'.$$

$$\left. \left. \right\} \quad (II, 123')$$

Таким образом, меридиональная составляющая  $\delta g'$  геометрической аберрации содержит одиннадцать коэффициентов; при этом коэффициент  $F_1$  мы из подсчета опускаем, так как при нем не содержится множителя m' и, следовательно, он не влияет на структуру пучка: он характеризует аберрацию главного луча; поскольку изучаются аберрации широкого пучка данного наклона, можно положить  $F_1 = 0$ .

Сагиттальная составляющая представлена рядом, содержащим девять коэффициентов. Общими для обоих выражений  $\delta g'$  и  $\delta G'$  — являются шесть коэффициентов:  $A_2$ ,  $A_3$ ,  $B_2$ ,  $B_3$ ,  $C_2$ ,  $D_2$ ; пять коэффициентов ( $A_1$ ,  $B_1$ ,  $C_1$ ,  $D_1$ ,  $E_1$ ) специфичны только для ряда  $\delta g'$  и три коэффициента ( $A_4$ ,  $C_3$ ,  $E_2$ ) специфичны только для ряда  $\delta G'$ . Заметим, что если бы мы ограничились четвертой степенью параметров m' и M', то число коэффициентов уменьшилось бы только на четыре ( $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ ), т. е. вместо четырнадцати коэффициентов ряда (II, 122) имели бы десять коэффициентов: восемь, определяющих функцию  $\delta g'$ ; шесть — функцию  $\delta G'$ ; среди них четыре коэффициента были бы общими. При исследовании несветосильных объективов это, по-видимому, можно делать и это рекомендует М. Герцбергер в своей книге [5], у которого интерполяционные формулы содержат двенадцать коэффициентов: по шесть коэффициентов для каждой составляющей аберрации.

Легко видеть, что размерности коэффициентов рядов (II, 123) обратны линейным в степени, равной порядку величин m' и M' соответствующих членов ряда, уменьшенному на единицу, поскольку в левых частях выражений стоят величины  $\delta g'$  и  $\delta G'$ , имеющие линейные размерности. Рационально при отыскании численных решений интерполяционных выражений (II, 123), чтобы избежать появления чрезмерно больших или малых чисел, ввести нормировку величин m' и M'; в частности, их можно выражать в долях радиуса a' выходного зрачка.

Для точки на оси, вследствие осевой симметрии оптической системы, формула не содержит четных степеней координат *m*' или *M*'; поперечная сферическая аберрация выражается формулой:

$$\delta g' = A_1 m'^{5} + C_1 m'^{3} + E_1 m', \qquad (II, 124)$$

где коэффициент  $E_1$  характеризует дефокусировку, т. е. положение плоскости установки, в которой определена аберрация  $\delta g'$ ; при определении сферической аберрации в плоскости Гаусса  $E_1 = 0$ .

Определим коэффициенты интерполяционной формулы.

Сагиттальная составляющая  $\delta G'$  выражается девятью коэффициентами ряда; все члены ряда при M' = 0 обращаются в нуль. Следовательно, для непосредственного определения (не косвенным способом) этих коэффициентов необходим расчет аберраций не менее девяти внемеридиональных лучей. Однако и этого, как показали опыты расчета, недостаточно: интерполяционная формула должна сглаживать распределение аберраций по всему зрачку, т. е. дать какое-то компромиссное (усредненное) описание распределения величин аберраций по площади зрачка. Наш опыт по изучению фигур рассеяния у объективов разных типов и различных оптических характеристик показал, что для достаточно надежного суждения о внемеридиональных аберрациях необходим расчет не менее 14—21 лучей (в зависимости от величины относительного отверстия объектива и его аберраций), координаты которых могут быть следующим образом распределены по зрачку (рис. 11, 22). Как видим, полузрачок разделен на шесть секторов по 30° каждый; координаты лучей заданы в точках пересечения радиусоввекторов с окружностями, радиусы которых равны:

$$\rho'_{1} = \sqrt{\frac{1}{4}} \rho'_{m}; \quad \rho'_{2} = \sqrt{\frac{1}{2}} \rho'_{m} \quad \text{M} \quad \rho'_{3} = \sqrt{\frac{3}{4}} \rho'_{m}$$

где  $\rho'_m = a'$  — радиус выходного зрачка. Координаты лучей m' и M' определяются из выражений:

$$m' = \rho' \cos \theta'$$
 и  $M' = \rho' \sin \theta'$ ,

где  $\theta' = 0$ ; 30; 60; 90; 120; 150 и 180°. Заметим, что, конечно, нет особой необходимости строго и во всех случаях придерживаться заданного распределения лучей; в частности, величины радиусов  $\rho'$  задавались нами в пределах:  $\rho'_1 = 0.5\rho'_m$ ;  $\rho'_2 = 0.7 \div 0.8\rho'_m$ ;  $\rho'_3 = 0.85 \div 0.87\rho'_m$ .

На основании расчета аберраций этих лучей определяем методом наименьших квадратов коэффициенты выражений бg' и бG' (II, 123).



Рис. 11, 22. Распределение координат лучей по зрачку

По полученным значениям коэффициентов составляем ряды (II, 123) и строим с любой степенью подробности фигуру рассеяния в данной плоскости установки. Обычно положение этой плоскости определяется заранее: исходя из характера сферической аберрации для точки на оптической оси, определяют положение предполагаемой плоскости наилучшего изображения. Если же окажется необходимым рассчитать эти аберрации в новой плоскости установки, смещенной на величину $\Delta$  относительно ее первоначального положения, то величины аберраций  $\delta \overline{g'}$  и  $\delta \overline{G'}$  в смещенной плоскости будут связаны с аберрациями  $\delta g'$  и  $\delta G'$  в начальной плоскости формулами (II, 82):

где

$$\delta \bar{g}' = \delta g' + \frac{(l'-m')}{p'} \Delta; \quad \delta \bar{G}' = \delta G' - \frac{M'}{p'} \Delta,$$
$$\frac{l'-m'}{p'} = -\operatorname{tg} u'; \quad \frac{M'}{p'} = \operatorname{tg} U';$$
При построении фигуры рассеяния рационально в выходном зрачке объектива выбрать большое число точек, равномерно распределенных по действующей части выходного зрачка.

Разбивку зрачка на равновеликие элементы можно произвести различными способами. Если интерполяционная формула найдена, как функция параметров m' и M', то, по-видимому, проще всего построить на зрачке квадратную сетку, стороны которой задаются равными некоторой части радиуса выходного зрачка a'. Можно площадь зрачка разделить на элементы, образованные делением площади круга на равновеликие концентрические кольцевые зоны, а последние — радиусами, делящими эти зоны на равные по площади элементы. Радиусы р' концентрических колец выбираются в геометрической прогрессии:

$$\rho'_{1} = \sqrt{\frac{1}{t}}a'; \quad \rho'_{2} = \sqrt{\frac{2}{t}}a'; \dots; \quad \rho'_{t} = a', \qquad (II,125)$$

где a' — радиус выходного зрачка. Одновременно площадь зрачка делится радиусами на n равных секторов. Радиусы, делящие круг на секторы и окружности, ограничивающие кольцевые зоны, пересекаются в tn точках; конечно, из этого числа точек выпадают лучи, виньетируемые объективом, что автоматически контролируется при расчете на ЭВМ, так как в программе расчета лучей предусмотрены определения координат пересечения лучей с каждой преломляющей поверхностью объектива, а световые диаметры линз известны.

Рассмотрим метод наименьших квадратов на примере определения функции δg' (II, 123):

$$\delta g' = f(A_1, A_2, \dots, E_1),$$
 (II,126)

при этом для k значений величины  $\delta g'_1, \delta g'_2, ..., \delta g'_k$  известны из расчета хода лучей. Требуется определить непрерывную функцию (II, 126)  $f(A_1,...,E_1)$ , для которой разности  $\delta g'_1 - f_1; \delta g'_2 - f_2; ...; \delta g_k - f_k$  были бы возможно малы. Такого рода задачи называются сглаживанием, поскольку здесь стремятся определить функцию, которая по возможности удовлетворяла бы заданным значениям  $\delta g'_1, \delta g'_2,...$  или, во всяком случае, имела минимальные отклонения от заданных значений  $\delta g'_1, \delta g'_2,...$  Конечно, такой путь решения имеет смысл только в том случае, если число известных значений функций  $\delta g'$  больше числа коэффициентов  $A_1, A_2,...,E_1$ , подлежащих определению в выражении (II, 123). При использовании метода наименьших квадратов неизвестные коэффициенты функции  $f(A_1,...,E_1)$  выбираются так, чтобы сумма квадратов разностей  $\varepsilon_k = \delta g_k' - f_k(A_1,...,E_1)$  оказалась минимальной:

$$\sum \varepsilon_i^2 = \sum_{i=1}^{i=k} \left[ \delta g'_i - f_i (A_1, \dots, E_i) \right]^2 = F(A_1, \dots, E_i). \quad (II, 127)$$

Задача имеет простое решение, если так называемые условные уравнения линейны, как это имеет место в нашем случае (см. II, 123):

или, для краткости, запишем:

$$\begin{array}{c}
A_{1}a_{1} + 2A_{2}b_{1} + A_{3}c_{1} + \dots + E_{1}l_{1} = \delta g_{1}'; \\
A_{1}a_{2} + 2A_{2}b_{2} + A_{3}c_{2} + \dots + E_{1}l_{2} = \delta g_{2}'; \\
\dots \\
A_{1}a_{k} + 2A_{2}b_{k} + A_{3}c_{k} + \dots + E_{1}l_{k} = \delta g_{k}',
\end{array}\right\}$$
(II,129)

где

Требование минимума суммы квадратов отклонений  $\Sigma \varepsilon_i^2$  приводит к системе линейных, так называемых нормальных уравнений, в которых по Гауссу введены обозначения [*aa*] вместо

$$\sum a_i^2 = a_1^2 + a_2^2 + a_3^2 + \dots + a_k^2; \quad [ab] \text{ вместо}$$

$$\sum a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_k b_k \text{ и т. п.}$$

$$[aa] A_1 + [ab] A_2 + [ac] A_3 + \dots + [al] E_1 = [a\delta g_1'];$$

$$[ba] A_1 + [bb] A_2 + [bc] A_3 + \dots + [bl] E_1 = [b\delta g_2'];$$

$$[la] A_1 + [lb] A_2 + [lc] A_3 + \dots + [ll] E_1 = [l\delta g_k'].$$
(II,131)

Нетрудно видеть, что для получения k-го нормального уравнения необходимо каждое условное уравнение умножить на величину, стоя-щую при *k*-м искомом коэффициенте, и все уравнения сложить. Из системы линейных алгебраических уравнений (II, 131) определя-

ем искомые коэффициенты  $A_1$ ,  $A_2$ ,  $A_1$ ,..., $E_1$ . Аналогично и одновременно определяются коэффициенты ряда (II, 123), выражающего аберрацию  $\delta G'(A_2, A, ..., E_2)$ . Интерполяционная формула (II, 123) определяется для каждо-го угла поля зрения: у объективов с малым углом поля зре-

ния (около 20—30°) достаточно ее определить для одного значения угла поля зрения; у нормальных объективов с полем зрения 50—60° — для двух углов поля; у широкоугольных объективов 90—120° — для трех углов поля зрения.

Найденная система интерполяционных формул и построенные по ним фигуры рассеяния лучей дают полную аберрационную характеристику объектива. Не менее интересно глубже проанализировать физические свойства объектива, построив его «физическую» модель. Мы взяли слово «физическую» в кавычки, так как речь идет не о физическом изготовлении образца объектива, а предсказании его физических свойств. Достаточно полно эти свойства описываются формой поверхности световой волны, выходящей из объектива.

Уравнение волновой аберрации представлено рядом (II, 122), все коэффициенты которого теперь уже нам известны, так как они входят в выражения (II, 123). Весь описанный процесс расчета сравнительно просто программируется и выполняется с помощью ЭВМ.

В качестве примера приведем результаты расчета коэффициентов интерполяционных формул (II, 123) для выражений  $\delta g'$  и  $\delta G'$  и для волновой аберрации L (II, 122) для объектива «Эра-7» с f' = 105 мм; 1 : 2,8;  $2\omega = 11^{\circ}$ . Этот объектив описан в главе VI; он предназначен для изготовления микроэлектронных схем и поэтому обладает предельно высоким качеством оптического изображения. В табл. II, 2 приведены значения коэффициентов интерполяционных выражений (II, 123) и (II, 122), определенные при разном числе лучей на зрачке: при 15 лучах, когда полузрачок объектива разделен на четыре равных сектора, а концентрические окружности имеют радиусы  $\rho'_1 = 0.5 \rho'_m$ ;  $\rho'_2 = 0.77\rho'_m$  и  $\rho'_3 = 0.85 \rho'_m$ ; при 21 луче, когда полузрачок разделен на шесть секторов при тех же радиусах концентрических окружностей.

Как видим, величины коэффициентов  $A_1$ ,  $A_2$ , ..., $E_2$  (увеличенные в 10<sup>3</sup> раз) имеют почти одинаковые значения как для 15, так и для 21 луча, взятых на полузрачке объектива; при этом величины самих абер-



Рис. II. 23. Кривые равных волновых аберраций объектива «Эра-7» с f'=105 мм (а): кривые равных волновых аберраций объектива «Марс-1» с f=500 мм (б)

раций  $\delta g'$  и  $\delta G'$  отличаются в третьей (и лишь иногда во второй) значащей цифре от соответствующего вычисленного точного значения.

Таблица II,2

## Численные значения коэффициентов $A_1, A_2, \ldots, E_2$ (увеличенные в 10<sup>3</sup> раз) интерполяционных формул, выражающих геометрические ( $\delta g'$ и $\delta G'$ ) и волновые (L) аберрации объективов «Эра-7» и Марс-1»

|                                                         |                                  | 1                                |                                                |                                      |
|---------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|--------------------------------------|
| Объективы                                               | «Эра-7»                          |                                  | «Mapc-l»                                       |                                      |
| Число лучей на полузрачке                               | 15                               | 21                               | 15                                             | 21                                   |
| Значения <u>р'</u><br>Р <sub>т</sub>                    | 0,50<br>0,77<br>0,85             | 0,50<br>0,77<br>0,85             | 0,50<br>0,77<br>0,85                           | 0,50<br>0,77<br>0,85                 |
| Число секторов на полуз-<br>рачке                       | 4                                | 6                                | 4                                              | 6                                    |
| $\begin{array}{c}A_1\\A_2\\A_3\\A_3\\A_4\end{array}$    | 1,097<br>1,013<br>0,949<br>0,861 | 1,097<br>1,020<br>0,941<br>0,859 | 11,000<br>11,000<br>11,000<br>11,000<br>11,000 | 11,857<br>11,740<br>11,626<br>11,507 |
| $\begin{smallmatrix} B_1\\ B_2\\ B_3 \end{smallmatrix}$ | 0,228<br>0,089<br>0,044          | 0,228<br>0,089<br>0,043          | 1,100<br>0,430<br>0,190                        | 1,161<br>0,432<br>0,199              |
| $\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}$        | 0,288<br>0,169<br>0,045          | 0,288<br>0,170<br>0,046          | 0,079<br>3,400<br>7,000                        | $0,081 \\ -3,462 \\ -7,022$          |
| $D_1 \\ D_2$                                            | 0,163<br>—0,002                  | 0,163<br>—0,001                  | -6,300<br>-2,200                               | 6,344<br>2,275                       |
| $\stackrel{E_1}{E_2}$                                   | 0,098<br>0,580                   | 0,099<br>0,579                   | 0,620<br>—3,200                                | 0,626<br>—3,294                      |

На рис. II, 23, *а* приведены кривые равных волновых аберраций *L*, определенные для объектива «Эра-7» в плоскости Гаусса для угла поля  $w = 5^{\circ}$ . Как видим, волновая аберрация фронта волны (для монохроматической спектральной линии *e*) не превышает 0,025 $\lambda$  в пределах всего зрачка. Как уже указывалось, в программу расчета на ЭВМ введена нормировка величин *m'* и *M'*, а именно, счет производится со значениями  $\frac{m'}{a'}$  и  $\frac{M'}{a'}$ , где  $\overline{a'} = \text{макс} \{[m'_{\text{H}}]; [m'_{\text{-H}}]; [M'_{\text{H}}|M_{\text{-R}}]\}$ , а  $m'_{\text{H}}$ ,  $m'_{\text{-H}}$ 

и  $M'_{\rm H}$  — наибольшие значения величин m' и M'; очевидно, при этом

$$m'^{2} + M'^{2} \leq [\text{makc}(|m'_{H}|; |m'_{-H}|; |M'_{H}|; |M'_{-H}|)]^{2}$$

В качестве второго примера приводим один из вариантов объектива «Марс-1» с  $f' = 500 \, \text{мм}$ ; 1 : 4,5;  $2w = 17^{\circ}$ . В той же табл. II, 2 даны численные значения коэффициентов  $A_1, A_2, \ldots, E_2$  (увеличенные в 10<sup>3</sup> раз) для 15 и 21 луча, распределенных на полузрачке так же, как и в предыдущем случае. Расчеты выполнены для угла поля  $w = 2^{\circ}$  в плоскости наилучшей установки по центру поля, смещенной относительно плоскости Гаусса в сторону объектива на —0,013 мм. Как видим, вследствие бо́льших аберраций объектива (по сравнению с первым примером) возросли численные значения коэффициентов, хотя при этом они имеют довольно близкие величины как для 15, так и для 21 луча, взятых на полузрачке.

На рис. II, 23, б приведены кривые равных волновых аберраций L, определенные для спектральной линии C ( $\lambda = 656, 3 \, н m$ ). Лишь вблизи края зрачка волновая аберрация возрастает до 0,25 $\lambda$  и на малом участке зрачка изменяет свой знак на  $-0,25\lambda$ , т. е. суммарная волновая аберрация достигает 0,5 $\lambda$ , хотя в выбранной плоскости установки не превышает релеевского предела 0,25 $\lambda$ .

Классификация коэффициентов интерполяционной формулы. Классификацию по видам аберраций нагляднее провести, пользуясь рядом разложения волновой аберрации L (I, 122). Так как интерполяционные формулы описывают структуру широкого пучка лучей, формирующего изображение точки для данного угла поля зрения, то содержат эти формулы лишь параметры, характеризующие апертуру пучка: апертурные углы u' и U' или координаты m' и M'.

Коэффициенты интерполяционной формулы делятся на три группы, охватывающие три основные аберрации широкого наклонного пучка. Названия этих аберраций сохраним прежними, хотя коэффициенты интерполяционной формулы отнюдь не являются коэффициентами аберраций соответствующих порядков.

Первая группа членов ряда (II, 122), содержащих шестые и четвертые порядки параметров *m'* и *M'*, описывает волновую сферическую аберрацию широкого наклонного пучка:

$$r' L_{c\phi ep} = \frac{1}{6} A_{1} m'^{e} + \frac{1}{2} A_{2} m'^{4} M'^{2} + \frac{1}{2} A_{3} m'^{2} M'^{4} + \frac{1}{6} A_{4} M'^{e} + \frac{1}{4} C_{1} m'^{4} + \frac{1}{2} C_{2} m'^{2} M'^{2} + \frac{1}{4} C_{3} M'^{4}; \qquad (II, 132)$$

соответственно коэффициенты  $A_1$ ,  $A_2$ ,  $A_3$  и  $A_4$  входят в интерполяционные формулы (II, 123) и описывают составляющие  $\delta g'$  и  $\delta G'$  геометрической сферической аберрации пятого порядка, а коэффициенты  $C_1$ ,  $C_2$  и  $C_3$  — третьего порядка широкого пучка данного наклона. Вторая группа членов ряда (II, 122), содержащих пятые и третьи

Вторая группа членов ряда (II, 122), содержащих пятые и третьи порядки параметров *m'* и *M'*, описывает волновую аберрацию комы широкого наклонного пучка:

$$r' L_{\text{xoma}} = \frac{1}{5} B_1 m'^5 + B_2 m'^3 M'^2 + B_3 m' M'^4 + \frac{1}{3} D_1 m'^3 + D_2 m' M'^2; \qquad (II,133)$$

соответственно коэффициенты  $B_1$ ,  $B_2$  и  $B_3$  описывают в формулах (II, 123) геометрическую аберрацию комы пятого порядка, а коэффициенты  $D_1$  и  $D_2$  — кому третьего порядка широкого наклонного пучка.

Третья группа членов ряда (II, 122) описывает астигматизм наклонного пучка:

$$r' L_{\text{acr}} = \frac{1}{2} E_1 m'^2 + \frac{1}{2} E_2 M'^2 . \qquad (II, 134)$$

характеризуемый коэффициентами  $E_1$  и  $E_2$ , относящимися соответственно к меридиональной  $\delta g'$  и сагиттальной  $\delta G'$  составляющим аберраций выражений (II, 123).

Практически целесообразно выделить еще группу членов, характеризующих аберрации только меридионального сечения широкого наклонного пучка; эти члены содержат только координату m':

$$r' L_{\text{Haks}} = \frac{1}{6} A_{1} m'^{*} + \frac{1}{4} B_{1} m'^{*} + \frac{1}{4} C_{1} m'^{*} + \frac{1}{3} D_{1} m'^{*} + \frac{1}{2} E_{1} m'^{*} + F_{1} m'. \qquad (\text{II}, 135)$$

Аберрацию назовем обобщающим термином «волновая аберрация широкого меридионального пучка», а коэффициенты  $A_1$ ,  $B_1$ ,  $C_1$ ,  $D_1$ ,  $E_1$  и  $F_1$  — коэффициентами интерполяционной формулы (II, 123), определяющими меридиональную составляющую наклонного пучка.

Переход от геометрических аберраций к волновым. Наибольшее внимание в силу сложившихся традиций при оценке аберрационных качеств объектива уделяется анализу коррекции широких меридиональных наклонных пучков. С особой тщательностью анализируются широкие пучки светосильных широкоугольных объективов, когда приходится определять ход нескольких меридиональных лучей. Помимо крайних лучей пучка, координаты которых в плоскости выходного зрачка равны  $\pm m'_{\rm кp}$  (или в угловой мере  $\pm u'_{\rm кp}$ ), целесообразно определять аберрации лучей с координатами  $\pm \sqrt{\frac{1}{2}}m'_{\rm кp}$  и  $\pm \sqrt{\frac{3}{4}}m'_{\rm кp}$ .

По результатам определений меридиональных составляющих аберраций  $\delta g'$  строят обычный график зависимости  $\delta g'$  от координаты m'. Воспользовавшись (II, 6) методом графического интегрирования, определяем волновую аберрацию L широкого наклонного пучка:

$$L = \frac{1}{r'} \int_{-m'_{\rm Kp}}^{+m'_{\rm Kp}} \delta g' \, dm' = -\frac{1}{x'-s'} \sum_{-m'_{\rm Kp}}^{+m'_{\rm Kp}} \delta g' \, \delta m'. \qquad ({\rm II}, 136)$$

Это самый простой применяемый на практике метод.

Можно по рассчитанным аберрациям шести лучей (не считая главного луча):  $\pm m'_{\kappa p}$ ,  $\pm \sqrt{\frac{1}{2}} m'_{\kappa p}$  и  $\pm \sqrt{\frac{3}{4}} m'_{\kappa p}$  — определить коэффициенты интерполяционной формулы для  $\delta g'$ , полученной путем нахождения частной производной ряда (II, 135) по переменной m' (см. II, 6):

$$\delta g' = r' \frac{\partial L}{\partial m'} = A_1 m'^{3} + B_1 m'^{4} + C_1 m'^{3} + D_1 m'^{2} + E_1 m' + F_1, \text{ (II, 137)}$$

т. е. по шести значениям  $\delta g'_1$ ,  $\delta g'_2$ ,..., $\delta g_6'$  — определяем коэффициенты  $A_1$ ,  $B_1$ ,..., $E_1$ , а дальше элементарным интегрированием (II,136) находим волновую аберрацию L;  $\delta g'_0 = F_1$  — аберрация главного луча, не влияющая на структуру пучка.

Наконец, можно применить следующий, существенно менее точный, но практически простой прием, если ограничиться лишь четвертой степенью разложения волновой аберрации L (II, 135) и, следовательно, третьей степенью разложения аберрации  $\delta g'$  (II, 137) и написать эти аберрации в виде сумм отдельных слагаемых:

$$L = \frac{1}{r'} \left( \frac{1}{4} C_{1} m'^{*} + \frac{1}{3} D_{1} m'^{*} + \frac{1}{2} E_{1} m'^{*} + F_{1} m' \right) =$$
  
=  $L_{C_{1}} + L_{D_{1}} + L_{E_{1}} + L_{F_{1}};$   
 $\delta g' = C_{1} m'^{*} + D_{1} m'^{*} + E_{1} m' + F_{1} =$   
=  $\delta g'_{C_{1}} + \delta g'_{D_{1}} + \delta g'_{E_{1}} + \delta g'_{0},$  (II,138)

где  $\delta g'_0 = F_1$  — аберрация главного луча.

Из сопоставления этих рядов можно написать:

$$L_{C_1} = \frac{m'}{4r'} \, \delta g'_{C_1}; \quad L_{D_1} = \frac{m'}{3r'} \, \delta g'_{D_1}; \quad L_{E_1} = \frac{m'}{2r'} \, \delta g'_{E_1}.$$

Следовательно, суммарная волновая аберрация L может быть выражена через слагаемые поперечной аберрации:

$$L = \left(\frac{1}{4}\delta g'_{C_1} + \frac{1}{3}\delta g'_{D_1} + \frac{1}{2}\delta g'_{E_1}\right) \mathrm{tg}\,u',\tag{II,139}$$

где tg  $u' = \frac{m'}{r'} = -\frac{m'}{x'-s'}$ ; аберрация главного луча  $\delta g_0'$  опущена, так как не влияет на структуру пучка лучей.

Определим слагаемые поперечной аберрации  $\delta g'c_1$ ,  $\delta g'_{D_1}$ ,  $\delta g'_{E_1}$ и коэффициенты  $C_1$ ,  $D_1$  и  $E_1$  на основании расчета хода лучей. В этом случае, очевидно, достаточен расчет меньшего числа лучей; например, как это обычно делается, расчет двух лучей  $(\pm m'_{\kappa p})$  вблизи края зрачка, двух лучей на зоне отверстия  $(\pm \sqrt{\frac{1}{2}}m'_{\kappa p})$  и главного луча (m'==0). Обозначив аберрации этих лучей соответственно через

$$\begin{split} \delta g'_{m'_{\rm KP}}, \quad \delta g'_{-m'_{\rm KP}}, \quad \delta g'_{\sqrt{\frac{1}{2}}}, \quad \delta g'_{-\sqrt{\frac{1}{2}}}, \quad \delta g'_{0}, \quad \text{получим:} \\ \delta g'_{\sqrt{\frac{1}{2}}} &= C_1 \left( \sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right)^3 + D_1 \left( \sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right)^3 + \\ &+ E_1 \left( \sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right) + \delta g'_{0}; \\ \delta g'_{-\sqrt{\frac{1}{2}}} &= C_1 \left( -\sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right)^3 + D_1 \left( -\sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right)^2 + \\ &+ E_1 \left( -\sqrt{\frac{1}{2}} m'_{\kappa_{\rm P}} \right) + \delta g'_{0}, \end{split}$$
(II,140)

сложив эти выражения, находим:

$$\delta g'_{V\frac{1}{2}} + \delta g'_{-V\frac{1}{2}} = 2D_1 \left( \sqrt{\frac{1}{2}} m'_{\kappa p} \right)^2 + 2\delta g'_0 = 2\delta g'_{D_1} + 2\delta g'_0,$$

отсюда получаем величину слагаемой аберрации  $\delta g'_{D1}$ ;

$$\delta g'_{D_1} = \frac{1}{2} \left( \delta g'_{V_1^{\frac{1}{2}}} + \delta g'_{-V_1^{\frac{1}{2}}} \right) - \delta g'_0 \qquad (II, 141)$$

и значение коэффициента:  $D_1 = \frac{2^{c}g_{D_1}}{{m'}^2}$ .

Полученное выражение имеет простое геометрическое толкование, если условиться поперечную аберрацию широкого меридионального пучка рассматривать в плоскости, перпендикулярной главному лучу: аберрация  $\delta g'_{D_1}$  — суть поперечная меридиональная кома пучка (см. формулу II, 65). Определив из (II, 138) производную  $\frac{d\delta g'}{dm'}$  и положив m' = 0, находим:

$$\frac{d\delta g'}{dm'} = E_1 = \frac{\delta g_{E_1}}{m'} ; \qquad (II,142)$$

отсюда получим выражение для слагаемой аберрации  $\delta g'_{F}$ :

$$\delta g'_{E_1} = m' \frac{d\delta g'}{dm'} \approx m' \frac{\Delta \delta g'}{\Delta m'} = m' \operatorname{tg} \varphi, \qquad (\text{II}, 142')$$

где, очевидно, отношение приращения  $d\delta g' \kappa$  приращению ординаты dm' численно равно тангенсу угла наклона tg $\varphi$  касательной AB, проведенной к кривой аберрации  $\delta g'$  (рис. II, 24, *a*) в точке  $m'_0$ , определяемой главным лучом. Из сопоставления формул (II, 142) и (II, 89) нетрудно видеть, что при  $\delta g'_2 = -\delta g'_1 = \delta g'$  (см. II, 89)

$$x'_m = rac{p'}{m'} \delta g'$$
 при  $m' 
ightarrow 0;$ 

или

$$x'_{m} = p' \frac{d\delta g'}{dm'} = \frac{\delta g'_{E_{t}}}{\operatorname{tg} u'} = \operatorname{tg} \varphi.$$
 (II,143)

Таким образом, слагаемая поперечной аберрации  $\delta g'_{E_1}$  пропорциональна продольной меридиональной астигматической кривизне изображения  $x_m'$ .

Слагаемая поперечной аберрации  $\delta g_{c_1}$ , определяемая сферической аберрацией наклонного пучка, может быть найдена из тех же выражений (II, 140), если написать их разности:

$$\delta g'_{V\frac{1}{2}} - \delta g'_{-V\frac{1}{2}} = 2C_{i} \left( \sqrt{\frac{1}{2}} m'_{\kappa p} \right)^{3} + 2E_{i} \left( \sqrt{\frac{1}{2}} m'_{\kappa p} \right) = 2 \left( \delta g'_{c_{i}} + \delta g'_{E_{i}} \right);$$

отсюда

$$\delta g'_{c_{1}} = \frac{1}{2} \left( \delta g'_{\sqrt{\frac{1}{2}}} - \delta g'_{-\sqrt{\frac{1}{2}}} \right) - \delta g'_{E_{1}};$$

$$C_{1} = \frac{\delta g'_{c_{1}}}{\left(\sqrt{\frac{1}{2}} m'_{\kappa p}\right)^{3}}.$$
(II,144)



Рис. II, 24. График поперечной аберрации широкого меридионального пучка (а) и сагиттального пучка (б)

Как видим, для определения коэффициента  $E_1$  необходим расчет величины  $x'_m$  или знание вида кривой поперечной аберрации широкого пучка для построения касательной к ней; эту кривую можно построить не менее чем по пяти точкам. Имея такой расчет, можно сопоставить аберрации этих лучей с полученными по формулам типа (II, 141) и (II, 144); если величины этих аберраций будут существенно различаться, значит, объектив обладает большими аберрациями высших порядков и нельзя ограничиваться представлением поперечной аберрации  $\delta g'$  в виде простой трехчленной формулы (II, 138).

Аналогично можно представить аберрацию широкого наклонного пучка в главном сагиттальном сечении, воспользовавшись рядами (II, 122) и (II, 123); ограничившись лишь членами третьего порядка и положив m' = 0, для волновой аберрации получим:

$$r'L = \frac{1}{4}C_3 M'^4 + \frac{1}{2}E_2 M'^2.$$
 (II,145)

Для поперечных составляющих геометрической аберрации бg' и бG' находим:

$$\delta g' = D_2 M'^2 = \delta g'_{D_2}; \delta G' = C_3 M'^3 + E_2 M' = \delta G'_{C_3} + \delta G'_{E_2},$$
 (II,146)

где  $\delta g'_{D_2} = (\delta g)'_{m \to 0}$  — поперечная сагиттальная кома. Взяв производную  $\frac{d\delta G'}{dM'}$  и положив  $M' \to 0$ , получим:

$$\frac{d\delta G'}{dM'_{M'\to 0}} = E_2 = \frac{\delta G'_{E_2}}{M'}$$

отсюда находим выражение для слагаемой аберрации  $\delta G'_{E_2}$ :

$$\delta G'_{E_2} = M' \frac{d\delta G'}{dM'} \approx M' \frac{\Delta \delta G}{\Delta M'} = M' \operatorname{tg} \varphi.$$
(II,147)

Аналогично вышеизложенному следует:

$$x'_{s} = p' \frac{d\delta G'}{dM'} = \frac{\delta G'_{E_{s}}}{\operatorname{tg} U'} = \operatorname{tg} \varphi.$$
(II,148)

Таким образом, слагаемая поперечной аберрации  $\delta G'_{E_2}$  пропорциональна продольной сагиттальной астигматической кривизне изображения  $x_s'$ .

Зная слагаемую  $\delta G'_{E_2}$  из формулы (II, 146), находим  $\delta G'_{C3} = \delta G' - \delta G'_{E_2}$ , а затем волновую аберрацию (II, 145) широкого сагиттального пучка:

На рис. II, 24, б нанесена кривая EOF аберрации  $\delta G'$  широкого пучка в главном сагиттальном сечении; эта кривая, очевидно, симметрична относительно точки O. Тангенс угла наклона касательной к кривой численно равен аберрации  $x'_s$ . На том же графике нанесена кривая COD; «стрела прогиба» этой кривой равна  $\delta g'_{D_2}$  — поперечной сагиттальной коме.

Еще раз отметим, что аберрации пучков могут быть выражены простыми формулами (II, 138) и (II, 146) довольно редко — лишь у объективов небольшого относительного отверстия. Можно, конечно, применить формулу (II, 137), содержащую пять коэффициентов, что значительно лучше соответствует действительности, но при этом понадобится провести довольно трудоемкую работу по «отделению» слагаемых поперечной аберрации  $\delta g'$  и, конечно, графическое интегрирование для меридионального пучка по формуле (II, 136) оказывается более простым и удобным.

## § 3. ХРОМАТИЧЕСКИЕ АБЕРРАЦИИ ОБЪЕКТИВОВ

При прохождении через систему белого светового пучка, состоящего из лучей различных длин волн, явление осложняется дисперсией лучей, т. е. зависимостью показателя преломления среды от длины проходящей световой волны. Это явление обнаруживается уже в области гауссовой оптики: даже в идеальной системе могут присутствовать две элементарные хроматические аберрации, поскольку положение изображения определяется двумя координатами — расстоянием изображения s' от оптической системы и расстоянием l' точки изображения от оптической системы и расстоянием l' точки изображения or оптической системы и расстояний от последней поверхности оптической системы параксиальных изображений точки, образуемых лучами различных цветов, и хроматическую аберрацию увеличения  $\delta L'_{xp}$  как разность ординат точек пересечения плоскости изображения главными лучами различных длин волн. Система, у которой исправлены хроматические аберрации для двух цветов, называется а x р о м а т и з и р о в а н н о й.

Для количественной оценки хроматических аберраций обычно берут две длины волны  $\lambda_1$  и  $\lambda_2$ , лежащие по обе стороны относительно средней длины волны  $\lambda_0$ , для которой корригированы монохроматические аберрации; например, при средней длине волны  $\lambda_0 = 589,3 \text{ нм}$ , соответствующей желтой линии D натрия берут  $\lambda_1 = 656,3 \text{ нм}$  (линия C — водорода) и  $\lambda_2 = 486,1 \text{ нм}$  (линия F — водорода). Хроматические аберрации определяются разностью координат вышедших из системы лучей, соответствующих длинам волн  $\lambda_1$  и  $\lambda_2$ :

$$\delta s'_{\mathrm{xp}} = s'_{\lambda_2} - s'_{\lambda_1}; \quad \delta L'_{\mathrm{xp}} = L'_{\lambda_2} - L'_{\lambda_1}.$$

Выбор этих лучей определяется назначением объектива (фотографирование в определенной области спектра, визуальные наблюдения, проекция и т. д.). Например, объективы фотоаппаратов широкого применения, предназначенные для применения как с черно-белыми, так и цветными фотографическими материалами, ахроматизуются для длин волн  $\lambda_{G'} = 434,1$  нм и  $\lambda_c = 656,3$  нм, а монохроматические аберрации корригируются для длины волны  $\lambda_e = 546,1$  нм — соответственно синей, красной и зеленой областей спектра, которым соответствуют максимумы монохроматических фотоактиничных потоков трехслойных цветных негативов (с учетом спектрального пропускания объективов). Аэрофотообъективы для аэросъемки, как правило, применяются со светофильтрами: желтым (ЖС), оранжевым (ОС) или красным (КС); в сочетании с панхроматическими и изопанхроматическими фотоматериалами это требует ахроматизации объективов в области спектра от ~590—620 нм до ~660—680 нм соответственно. Хроматическая аберрация положения. Эта аберрация определяется расстоянием  $\delta s'_{xp} = s_{\lambda 2} - s_{\lambda 1}$  между двумя плоскостями изображений (рис. II, 25) одной и той же плоскости предметов лучами двух длин волн:  $\lambda_1$  и  $\lambda_2$ . Как показывает теория аберраций, продольная хроматическая аберрация  $\delta s'_{xp}$ , выраженная в переменных Ланге, имеет вид:

$$\delta s'_{\rm xp} = \frac{1}{n' \alpha'^2} \sum_{k=1}^{R=P} h_k \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k}, \qquad (II, 150)$$

где  $\delta n = n_{\lambda 2} - n_{\lambda 1} - p$ азность показателей преломления, соответствующих двум длинам волн, выбранным для определения хроматической аберрации; величины *a* и *n* соответствуют некоторой средней длине вол-



Рис. II, 25. Хроматическая аберрация положения изображений

ны  $\lambda_0$  в данном спектральном интервале. В формуле (II, 150) выбор системы единиц для  $\alpha$  безразличен; необходимо лишь соблюдать нормировку  $h_1 = s_1 \alpha_1$ , где  $s_1$ — расстояние плоскости предметов от первой преломляющей поверхности системы.

Для бесконечно удаленной плоскости предметов формула (II, 150) принимает вид:

$$\delta s'_{\rm xp} = \frac{f'}{n} C_{\rm I, \ \infty}; \qquad ({\rm II}, 151)$$

величины h и  $\alpha$  нормируются здесь условием (II, 22);  $C_{I,\infty}$  — первый коэффициент хроматической аберрации, выражение которого дано в виде суммы в формуле (II, 150).

Некоторые следствия формулы (II,150) будут рассмотрены ниже.

Хроматическая аберрация увеличения. Эта аберрация определяется величиной отрезка  $\delta L'_{xp} = L'_{\lambda 2} - L'_{\lambda 1}$  — разностью ординат (рис. II, 26) точек пересечения двух лучей различных цветов (например, с длинами волн  $\lambda_1$  и  $\lambda_2$ ), идущих из одной и той же точки объекта, с плоскостью изображения некоторого основного цвета (которому соответствует длина волны  $\lambda_0$ , расположенная в середине спектральной области  $\lambda_2$ — $\lambda_1$ ), для которого ордината точки пересечения луча равна  $l'_{\lambda 0}$ . В общем случае произвольного положения плоскости предметов формула, определяющая величину  $\delta L'_{xp}$ , имеет вид:

$$\delta L'_{\rm xp} = \frac{l'_{\lambda_n}}{I} \sum_{k=1}^{R=p} y_{\kappa} \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k}, \qquad (\text{II}, 152)$$

где *I* — обозначение инварианта Лагранжа—Гельмгольца *I* = *n*<sub>1</sub>*α*<sub>1</sub>

(x<sub>1</sub>—s<sub>1</sub>)β<sub>1</sub>. Для бесконечно удаленной плоскости предметов формула (II, 152) напишется в виде:

$$\delta L'_{\rm xp} = f' \operatorname{tg} w_1 C_{11, \infty} \tag{II, 153}$$

где  $w_1$  — угол поля зрения;  $C_{11,\infty}$  — второй коэффициент хроматической аберрации, выражение которого дается в виде суммы в формуле (II, 152).

Иногда приводится относительная величина хроматической аберувеличения  $\frac{\delta L'_{xp}}{r'}$ ; она выражается обычно в процентах. рации







27 Рис. Π, График вторичного спектра

Вторичный спектр. При наличии не менее двух стекол — крона и флинта — в оптической системе всегда можно подбором фокусных расстояний отдельных линз системы совместить в одну точку в плоскости изображений два луча с длинами волн λ<sub>1</sub> и λ<sub>2</sub>, но при этом лучи других длин волн не пересекут ось в той же точке. Эту остаточную вторичную хроматическую аберрацию называют вторичным спектром.

Для характеристики положений изображений, образованных лучами различных длин волн, строят график вторичного спектра. На рис. II, 27 подобная кривая представлена. Система хроматически исправлена для длин волн  $\lambda_1$  и  $\lambda_2$ :

$$s_{\lambda_2}'-s_{\lambda_1}'=0.$$

Условимся называть мерой вторичного спектра величину

$$\Delta_{\lambda_2 \lambda_0} = s'_{\lambda_2} - s'_{\lambda_0}, \qquad (II, 154)$$

где  $\lambda_0$  — некоторая средняя в области спектра  $\lambda_2$ — $\lambda_1$  длина волны, для которой исправляются монохроматические аберрации системы и расположенная в точке перегиба (или вблизи нее) кривой вторичного спектра. Таким образом, величина  $\Delta_{\lambda_a\lambda_a}$  численно равна «стреле прогиба» кривой (рис. II, 27) вторичного спектра. Величина вторичного спектра зависит от того, для каких двух лучей устранена хроматическая аберрация положения; при этом предполагается, что конструкция оптической системы обычная, т. е. не предприняты специальные меры по уменьшению величины вторичного спектра. Выбор двух лучей, подлежащих ахроматизации, определяется назначением объектива.

Существует несколько способов ахроматизации. В объективах визуального назначения (проекционные объективы, объективы биноклей, геодезических труб и т. д.) «соединяют» лучи C ( $\lambda = 656,3$  нм) и  $F(\lambda = 486,1$  нм) и кривая s' достигает минимума для  $\lambda_0 = 560$  нм; величина вторичного спектра  $\Delta_{F\lambda_0}$  при этом равна:

$$\Delta_{F\lambda_0} = s'_F - s'_{\lambda_0} = \frac{1}{2000} \frac{{s'}^2}{f'} \,. \tag{II,155}$$

Заметим, что если плоскость предметов бесконечно удалена, то  $s' \approx f'$ , где  $f' - \phi$ окусное расстояние объектива.

В объективах для фотографирования с визуальной установкой на фокус (сюда входят «старые» фотообъективы и некоторые астрономические объективы) вторичный спектр имеет минимум s' для цвета F, а соединены лучи D и G'; это случай фотовизуальной коррекции; величина вторичного спектра  $\Delta_{G'F}$  равна:

$$\Delta_{G'F} = s'_{G'} - s'_{F} = \frac{f'}{1300} . \tag{II,156}$$

У современных объективов для цветной фотографии, ахроматизированных в области спектра от G' до C, «нормальный» вторичный спектр равен:

$$\Delta_{G'e} = s'_{G'} - s'_{e} = \frac{f'}{1200} . \tag{II,157}$$

Для всей видимой области спектра от фраунгоферовой линии  $h (\lambda = 404 \ \text{нм})$  до  $A' (\lambda = 768 \ \text{нм})$  вторичный спектр имеет величину:

$$\Delta_{hD} = s'_h - s'_D = \frac{f'}{400} ; \qquad (II, 158)$$

минимум кривой вторичного спектра при этом расположен вблизи цвета *D*.

Существуют объективы с уменьшенной величиной вторичного спектра (некоторые типы астрономических объективов, высококачественные коллиматорные объективы); они носят название апохроматов, если вторичный спектр исправлен, и полуапохроматов, если вторичный спектр существенно уменьшен. Ниже (глава IX) остановимся на возможных путях их создания.

Хроматическая разность сферических аберраций. У светосильных объективов сферическая аберрация часто оказывается различной для лучей различных длин волн: она может быть хорошо корригирована для основной длины волны  $\lambda_0$  и принимать недопустимо большие значения для длин волн  $\lambda_1$  и  $\lambda_2$ , для которых исправлена хроматическая аберрация.

Обозначив через  $\delta' s_{\lambda 1}$  и  $\delta s'_{\lambda 2}$  продольные сферические аберрации лучей для длин волн  $\lambda_1$  и  $\lambda_2$ , можно представить их как функции апертурного угла u'. Ограничившись первым членом разложения ряда, что соответствует области аберрации третьего порядка, можно написать:

$$\delta_{\lambda_{2}-\lambda_{1}} = \delta s'_{\lambda_{2}} - \delta s'_{\lambda_{1}} = (s'_{\lambda_{2}} - s'_{\lambda_{1}}) - (s'_{\lambda_{2}} - s'_{\lambda_{1}})_{o} = (S_{I\lambda_{2}} - S_{I\lambda_{1}}) u'^{2}, (II, 159)$$

где  $(s'_{\lambda 2} - s'_{\lambda 1})_0$  — разность параксиальных отрезков;  $(s'_{\lambda 2} - s'_{\lambda 1})$  — разность отрезков, образованных лучами, составляющими угол u' с оптической осью;  $(S_{1\lambda_2} - S_{1\lambda_1})$  — разность коэффициентов сферической аберрации третьего порядка для длин волн  $\lambda_2$  и  $\lambda_1$ . Величина  $\delta_{\lambda_2 - \lambda_1}$ определяет хроматическую разность сферических аберраций. аберрация приводит к тому, что если полностью корригировать хроматическую аберрацию параксиальных лучей, то разность отрезков, s'<sub>λ2</sub>—s'<sub>λ1</sub> для лучей, поступающих в объектив на краю входного зрачка окажется максимальной. Поэтому целесообразнее, как и делается на практике, корригировать разность отрезков s'  $_{\lambda 2}$ -s'  $_{\lambda 1}$  для лучей, поступающих в объектив на некоторой зоне отверстия входного зрачка. Хроматическую разность сферических аберраций, или, короче, сферохроматическую аберрацию объектива, в общем случае определяют из формулы:

$$\delta_{\lambda_{z}-\lambda_{1}} = (s_{\lambda_{z}}' - s_{\lambda_{1}}')_{\mu'_{\mathrm{KP}}} - (s_{\lambda_{z}}' - s_{\lambda_{1}}')_{\circ}, \qquad (\mathrm{II}, 160)$$

где  $u'_{\kappa p}$  — апертурный угол крайнего луча. Хроматическая разность аберраций наклонных пучков. По мере возрастания апертуры объектива и угла поля зрения начинают сказываться хроматические разности всех рассмотренных выше аберраций: комы, астигматизма, дисторсии и т. д.

Существование хроматической разности аберраций заставляет ограничиваться исправлением только тех хроматических аберраций, которые особенно вредны при пользовании объективом для определенных целей, исправляя их в пределах лишь той области спектра. в которой объектив будет преимущественно применяться. Наиболее трудно разрешимой является проблема коррекции хроматических разностей аберраций наклонных пучков. Для их характеристики обычно строят графики аберраций для трех длин волн:  $\lambda_1$  и  $\lambda_2$  — для которых объектив хроматически корригируется, и  $\lambda_0$  — для «основной» длины волны, для которой исправляются монохроматические аберрации. Наличие этого «семейства» кривых позволяет делать выводы об изменении сферической аберрации, комы, астигматизма и кривизны поверхности изображения по спектру.

В широкоугольных ортоскопических объективах, в частности предназначенных для работы со сменными светофильтрами, нельзя не считаться с хроматической разностью увеличений высших порядков. Формулы (II, 152) и (II, 153) верны лишь в параксиальной области; с возрастанием ординаты l' (или угла поля w) величина  $\delta L'_{xp}$  оказывается пропорциональной высшим нечетным степеням l':

$$\delta L'_{xp} = al' + bl'^* + cl'^*.$$

Точное значение хроматической разности увеличений может быть проще всего определено на основании расчета хода главных лучей. Возросшие за последние годы требования к качеству изображений широкоугольных объективов при одновременном условии повышения их оптических характеристик поставили перед оптиками задачу коррекции и этих аберраций.

## § 4. АБЕРРАЦИИ ОБЪЕКТИВОВ С АСФЕРИЧЕСКИМИ ПОВЕРХНОСТЯМИ

Мы рассмотрим здесь это чрезвычайно перспективное направление развития объективостроения лишь с узкой, методической, стороны. Анализ направлений рационального применения асферики в объективостроении и рассмотрение новых возможностей, появляющихся в результате применения этих технологических средств, будут даны при обсуждении результатов конкретных разработок объективов (глава IX).

Здесь мы предварительно рассмотрим некоторые свойства асферических поверхностей аксиально-симметричной формы. Свойства асферических поверхностей, имеющих плоскость симметрии, будут рассмотрены ниже, при изложении результатов наших разработок анаморфотных объективов-анастигматов (глава V).

Пусть аксиально-симметричная поверхность произвольной формы задана полиномом:

$$y^{2} + z^{2} = a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots + a_{k}x^{\kappa}; \quad (II, 161)$$

начало координат расположено в вершине поверхности; ось *х* направлена по оптической оси системы.

В области аберраций третьего порядка имеет влияние форма поверхностей вблизи ее вершины и, следовательно, ряд (II, 161) ограничивается лишь первыми двумя членами:

$$y^2 + z^2 = a_1 x + a_2 x^2. (II, 162)$$

При сферической поверхности  $a_1 = 2r$  и  $a_2 = -1$  уравнение принимает вид:

$$y^2 + z^2 = 2rx - x^2,$$

где r — радиус поверхности. У поверхностей второго порядка  $a_1 = 2r$  и  $a_2 = -(1-e^2)$  и, следовательно:

$$y^2 + z^2 = 2rx - (1 - e^2)x^2$$
, (II,163)

где е — эксцентриситет поверхности.

В общем виде уравнение (ÎI, 163) можно написать следующим образом:

$$y^{2} + z^{2} = 2rx - (1 + b)x^{2}$$
, (II,164)

159

где *b* может быть назван коэффициентом деформации. В поверхностях, имеющих профиль конических сечений:

$$b=-e^2=\pm\frac{\overline{b^2}}{\overline{a^2}}-1.$$

где  $\overline{a}$  и  $\overline{b}$  — полуоси кривой конического сечения; следовательно, если e = 0, сечение представляет собой окружность; при 0 < e < 1 — сечение эллиптическое; при e = 1 — сечение параболическое; при e > 1 — сечение гиперболическое. Конические сечения (с вещественным значением e) дают для коэффициента b только отрицательные значения и, следовательно, коническими сечениями нельзя заменить любую заданную кривую, имеющую ось симметрии, даже вблизи ее вершины.

Все написанные выше (§ 2) формулы аберраций сохраняют свой вид и в оптической системе, состоящей из асферических преломляющих поверхностей, имеющих ось симметрии. Изменяется лишь выражение коэффициентов аберраций; вместо формул (II, 35) соответственные коэффициенты будут иметь в переменных Ланге следующий вид:

$$(S_{I})_{ac\Phi} = \sum_{k=1}^{k=p} h_{k} \left[ P_{k}^{*} + b_{k} \frac{(\Delta n_{k} \alpha_{k})^{3}}{(\Delta n_{k})^{2}} \right];$$

$$(S_{II})_{ac\Phi} = \sum_{k=1}^{k=p} h_{k} \left[ P_{k}^{*} \frac{\Delta \beta_{k}}{\Delta \alpha_{k}} + b_{k} \frac{(\Delta n_{k} \alpha_{k})^{2} \Delta n_{k} \beta_{k}}{(\Delta n_{k})^{2}} \right];$$

$$(S_{III})_{ac\Phi} = \sum_{k=1}^{k=p} h_{k} \left[ P_{k}^{*} \left( \frac{\Delta \beta_{k}}{\Delta \alpha_{k}} \right)^{2} + b_{k} \frac{\Delta n_{k} \alpha_{k} (\Delta n_{k} \beta_{k})^{2}}{(\Delta n_{k})^{2}} \right];$$

$$S_{IV} = \sum_{k=1}^{k=p} \frac{1}{h_{k}} \frac{\Delta n'_{k} \alpha_{k}}{n_{k} n'_{k}};$$

$$(S_{V})_{ac\Phi} = \sum_{k=1}^{k=p} \left\{ \left[ h_{k} P_{k}^{*} \left( \frac{\Delta \beta_{k}}{\Delta \alpha_{k}} \right)^{2} + \frac{l^{2}}{h_{k}} \frac{\Delta n_{k} \alpha_{k}}{n_{k} n'_{k}} \right] \frac{\Delta \beta_{k}}{\Delta \alpha_{k}} + h_{k} b_{k} \frac{(\Delta n_{k} \beta_{k})^{3}}{(\Delta n_{k})^{2}} \right\},$$

$$(II,165)$$

где по-прежнему  $P^* = \left(\frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}}\right)^2 \Delta \frac{\alpha_k}{n_k}$ . Условия нормировки

переменных Ланге остаются те же: для формул (II, 39) — нормировка (II, 19); для формул (II, 45) — нормировка (II, 20).

Для бесконечно удаленной плоскости предметов справедливы те же формулы (II, 37), но выражения коэффициентов аберраций (II, 165) вычисляются при условии нормировки входящих в них переменных (II, 22). В выражениях коэффициентов аберраций (II, 165) четвертая сумма  $S_{IV}$  — единственная из сумм, не содержащая коэффициента деформации *b*. Кривизна изображения не зависит от формы преломляющих поверхностей, а лишь от радиусов кривизны этих поверхностей в их вершине.

При расчете оптической системы в области аберраций третьего порядка конструктивные элементы системы часто получаются в условных единицах, например при фокусном расстоянии системы, равном единице ( $f^{\ell} = 1$ ); очевидно, коэффициенты уравнения (II, 161) асферической поверхности также получатся при этом фокусном расстоянии. При переходе к некоторому другому значению фокусного расстояния (f') уравнение (II, 161) примет вид:

$$y^{2} + z^{2} = 2\bar{r} \, \bar{f}' \, x - (1+b) \, x^{2} + \frac{a_{3}}{\bar{f}'} x^{3} + \frac{a_{4}}{\bar{f}'^{2}} x^{4} + \dots + \frac{a_{k}}{\bar{f}'^{k-2}} x^{k}, \, (\text{II}, 166)$$

где  $\overline{r}$  — приведенное значение радиуса кривизны в вершине кривой асферической поверхности при f' = 1.

В общем случае, если асферическая поверхность задана уравнением (II, 161), расчет выполняется следующим образом. Прежде всего определяются координаты *x* и *y* точки *B* пересечения падающего луча с меридиональным сечением поверх-



Рис. II, 28. Преломление луча через асферическую поверхность

ности (рис. II, 28), для чего решаются совместно два уравнения — уравнение кривой и луча:

$$y^2 = F(x), \quad y = (s - x) \operatorname{tg} u;$$

из этих уравнений имеем:

$$(s - x)^{2} \operatorname{tg}^{2} u - F(x) = 0.$$
 (II,167)

Это уравнение обычно приходится решать способом постепенных приближений, определив в первом приближении координату *x* из решения квадратного уравнения:

$$(s-x)^2 \operatorname{tg}^2 u - (2rx - a_2x^2) = 0.$$
 (II,167')

Процесс итерации существенно сокращается, если воспользоваться следующей формулой, связывающей введение (или изменение величины) k-го коэффициента  $a_k$  асферической поверхности (II, 161) с изменением координаты  $\Delta x$ :

$$\Delta x = -\frac{x^k \sin \varphi \, \cos u}{2y \cos i} \, \Delta a_k \,. \tag{II,167''}$$

После определения координат точки встречи (x; y) вычисляется угол ф нормали с оптической осью:

$$tg \varphi = \frac{1}{\frac{\partial y}{\partial x}}.$$
 (II,168)

Угол падения і луча на поверхность и дальнейший расчет хода луча выполняется по формулам:

1. 
$$i = u - \varphi;$$
  
2.  $\sin i' = \frac{n}{n'} \sin i;$   
3.  $u' = u + i' - i;$   
4.  $s' = x + y \operatorname{ctg} u'.$   
(II.169)

Переход к координатам второй поверхности происходит по обычным формулам расчета луча через сферическую поверхность:

$$s_{k+1} = s'_k - d_k; \quad u_{k+1} = u'_k.$$
 (II,170)

Расчет хода луча существенно упрощается, когда меридиональные кривые поверхностей — конические сечения. Координаты *у* и *х* точки пересечения падающего луча и поверхности определяются из совместного решения уравнений:

$$y = (s - x) \operatorname{tg} u;$$
  
 $y^2 = 2rx - (1 - e^2) x^2;$ 

приходим к квадратному уравнению относительно х:

$$(\sec^2 u - e^2) x^2 - 2(r + s \operatorname{tg}^2 u) x + s^2 \operatorname{tg} u = 0.$$
 (II,171)

Уравнение проще всего решается методом введения вспомогательного угла. Обозначим для краткости:

$$\sec^2 u - e^2 = \overline{a_1};$$
  

$$r + s \operatorname{tg}^2 u = \overline{a_2};$$
  

$$s \operatorname{tg} u = \overline{a_3},$$

находим некоторый вспомогательный угол, удовлетворяющий условию:

а) если  $\overline{a_1} > 0$ , пользуемся формулами:

$$\sin \alpha = \frac{\overline{a_3} \sqrt[4]{a_1}}{|\overline{a_2}|}; \quad x = 2 \frac{\overline{a_2}}{\overline{a_1}} \sin^2 \frac{\alpha}{2};$$

б) если  $\overline{a_1} < 0$ , пользуемся формулами:

$$\operatorname{tg} \beta = \frac{\overline{a_3} \sqrt{\overline{a_1}}}{|\overline{a_2}|}; \quad x = -2 \frac{\overline{a_2}}{\overline{a_1}} \frac{\sin^2 \frac{1}{2} \beta}{\cos \beta}.$$

Знак II указывает, что нужно брать абсолютное значение величины  $\overline{a_2}$ . Если sin  $\alpha > 1$ , то луч не пересекает поверхности.

Вычислив *x*, а затем *y*, находим угол  $\phi$  по формуле:

$$\operatorname{tg} \varphi = \frac{1}{\frac{\partial y}{\partial x}} = \frac{y}{r - (1 - e^2)x}; \qquad (II, 172)$$

дальнейшие вычисления производятся по формулам (II, 169) и (II, 170).

Расчет несколько упрощается в случае параболической поверхности (e = 1); для коэффициента  $\overline{a_1}$  имеем:  $\overline{a_1} = tg^2 u$ ; угол  $\alpha$  и x определятся из формул:

$$\sin \alpha = \frac{\overline{a_3}}{\overline{a_2}} \operatorname{tg} u, \quad x = 2 \, \frac{\overline{a_2}}{\overline{a_1}} \sin^2 \frac{\alpha}{2} \, ;$$

угол φ определится из формулы:

S

$$\operatorname{tg} \varphi = -\frac{y}{r} \,. \tag{II, 172'}$$

Расчет положения фокусов бесконечно тонких сагиттальных и меридиональных пучков в системах с асферическими поверхностями производится по несколько видоизмененным формулам Юнга—Аббе. Расстояние  $t'_s$  фокуса сагиттального пучка преломленных лучей связано с расстоянием  $t_s$  до вершины пучка формулой:

$$\frac{n'}{t'_{s}} - \frac{n}{t_{s}} = \frac{n'\cos i' - n\cos i}{r_{s}}, \qquad (II, 173)$$

где  $r_s$  — длина нормали, равная отрезку  $MC_s$  (рис. II, 29). Напомним, что при сферической поверхности формула (II, 173) имеет тот же вид, но вместо  $r_s$  берется радиус r сферической поверхности. Из рисунка ясно, что  $r_s = \frac{y}{\sin\varphi}$ ; так как

$$\sin \varphi = \frac{\operatorname{tg} \varphi}{\sqrt{1 + \operatorname{tg}^2 \varphi}} = \frac{1}{\sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2}},$$

окончательно имеем:

$$r_s = y \sqrt{1 + \left(\frac{dy}{hx}\right)^2}$$
 (II, 174)

Для конических сечений, воспользовавшись (II, 172), находим:

$$r_s = r \sqrt{1 - e^2 \left[ (1 - e^2) \frac{x^2}{r^2} - \frac{2x}{r} \right]}$$
 (II, 174')

Расстояние  $t'_m$  фокуса меридионального пучка преломленных лучей следующим образом связано с расстоянием  $t_m$  до вершины пучка:

$$\frac{n'\cos^2 i'}{t'_m} - \frac{n\cos^2 i}{t_m} = \frac{n'\cos i' - n\cos i}{r_m}, \qquad (II, 175)$$

где  $r_m$  — радиус кривизны меридионального сечения поверхности в точке M (см. рис. II, 29), равный отрезку  $MC_m$ . Как известно из дифференциальной геометрии:

$$r_m = -\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}} = -\frac{1}{\frac{d^2y}{dx^2}\sin^3\varphi}.$$
 (11, 176)

Для конических сечений, воспользовавшись (II, 172) и приняв во внимание, что  $\frac{d^2y}{dx^2} = -\frac{r^2}{y^3}$ , получим:

$$r_m = r \ \sqrt{\left\{1 - e^2 \left[(1 - e^2) \ \frac{x^2}{r^2} - \frac{2x}{r}\right]\right\}^3}.$$
 (11, 176')



Рис. II, 29. К расчету астигматического пучка через асферическую поверхность



Рис. 11, 30. Определение «косой» толщины

Заметим, что если главный луч рассчитан и, следовательно, величины у и ф известны, вместо (II, 174') и (II, 176') удобнее воспользоваться формулами, пригодными для логарифмирования:

$$r_s = \frac{y}{\sin \varphi}; \quad r_m = \frac{y^3}{r^2 \sin^3 \varphi} = \frac{r_s^3}{r^2}.$$
 (II, 177)

Применение формул Аббе требует еще расчета «косой» толщины  $\overline{d}_k$ , т. е. расстояния  $\overline{M_k M_{k+1}}$  (см. рис. II, 30):

$$\overline{d}_{k} = (y_{k} - y_{k+1}) \operatorname{cosec} u_{k+1}$$
. (11, 178)

Положение вершины астигматического (меридионального или сагиттального) пучка относительно следующей (k + 1-й) поверхности определится из формулы:

$$t_{k+1} = t'_k - \overline{d}_k.$$
 (II, 179)

Расчет системы в области аберраций третьего порядка является решением задачи в первом приближении: в этой стадии расчета ряд (II, 161) обрывается коэффициентом  $a_2$ . Между тем система имеет аберрации высших порядков и для более совершенного их исправления может оказаться целесообразным ввести асферическую поверхность высших порядков, содержащую высокие степени аргумента x.

Дифференциальный метод исследований. Наибольший теоретический и практический интерес представляет разработка общей методики, позволяющей, не прибегая к подробным и весьма трудоемким расчетам хода лучей через асферические поверхности (теперь успешно выполняемым с помощью ЭВМ), уже в начальной стадии исследований решать следующие вопросы:

1. Какой из сферических поверхностей объектива рационально придать асферическую форму, исходя из анализа структуры пучков лучей как осевых, так и наклонных?

2. Как, исходя из анализа структуры пучков, определять необходимую форму несферической поверхности, не прибегая к непосредственным расчетам координат лучей, преломленных через эту асферическую поверхность?

3. Как оценивать, хотя бы и приближенно, влияние вводимой асферической поверхности на остальные (не корригируемые) аберрации системы?

Не останавливаясь на подробном изложениии разработанного автором [3] общего дифференциального метода введения асферических поверхностей в целях одновременной коррекции нескольких аберраций, ограничимся здесь лишь изложением основной идеи метода.

Имея систему сферических или асферических поверхностей второго порядка, корригированную в области аберраций третьего порядка, мы тем самым имеем фиксированными первых два коэффициента:  $a_1$  и  $a_2$ — ряда (I, 161). Обозначим через l' ординату точки пересечения некоторой плоскости установки в пространстве изображений лучом, вышедшим из объектива.

Определяя одним из излагаемых ниже способов частные производные  $\frac{\partial l'}{\partial a_k}$  от координат преломленного луча по параметрам  $a_3, a_4, \dots, a_k$ ряда (II, 161) и выражая затем вариации dl' ординаты l' в пространстве изображений через вариации  $da_3, da_4, \dots$  сферической поверхности, устанавливаем прямую зависимость между изменениями ординаты l', а следовательно, и аберрации луча (поскольку ход луча в параксиальной области остается неизменным) и изменениями коэффициентов ряда (II, 161):

$$dl'_3 = \frac{\partial l'}{\partial a_3} da_3; \quad dl'_4 = \frac{\partial l'}{\partial a_4} da_4; \ldots; dl'_k = \frac{\partial l'}{\partial a_k} da_k.$$

Определив частные производные  $\frac{\partial l'}{\partial a_k}$  для нескольких лучей пучка, подлежащих коррекции, и анализируя полученные величины производных, имеем возможность решать обратную задачу: задавая желательные изменения dl' для различных лучей в пространстве изображений, вычислять соответствующие величины коэффициентов  $a_k$  (k = -3, 4, 5) уравнения (II, 161).

Этот метод дает возможность непосредстенно получать ответы на те три основных вопроса, которые были нами сформулированы; причем выяснение их оказывается возможным в результате проведения сравнительно небольших исследований.

Дифференциальный метод исследований оказывается сравнительно мало трудоемким благодаря применению доказанной автором следую-

щей теоремы: если известны две частные производные от аберраций луча в пространстве изображений  $\frac{\partial l'}{\partial a_m}$  и  $\frac{\partial l'}{\partial a_n}$ , то, не прибегая к каким-либо специальным расчетам лучей, можно определить некоторую частную производную  $\frac{\partial l'}{\partial a_n}$  из выражения:

$$\frac{\partial l'}{\partial a_p} = \frac{n-p}{n-m} x_0^{p-m} \frac{\partial l'}{\partial a_m} + \frac{p-m}{n-m} x_0^{p-n} \frac{\partial l'}{\partial a_n}, \quad (\text{II}, 180)$$

где  $da_m$ ,  $da_h$ ,  $da_p$  — вариации *m*-го, *n*-го, *p*-го коэффициента ряда (II, 161);  $x_0$  — абсцисса точки пересечения луча с поверхностью.

Если варьируют, что практически наиболее интересно, какие-либо три соседние коэффициента ряда (II, 161), например с индексами k-1, k и k+1, то, положив m = k-1, n = k, p = k+1, из (II, 180) находим:

$$\frac{\partial l'}{\partial a_{k+1}} = 2x_0 \ \frac{\partial l'}{\partial a_k} - x_0^2 \ \frac{\partial l'}{\partial a_{k-1}}.$$
 (II, 181)

Аналитическая формулировка дифференциального метода. Пусть объектив, состоящий из сферических или других поверхностей второго порядка, исследуется для выяснения рациональности введения одной или нескольких асферических поверхностей более высоких порядков.

Пусть вводимая асферическая поверхность предназначается для изменения координат выхода определенных лучей в пространстве изображений, например лучей № 1, 2, 3 и т. д., причем эти лучи могут принадлежать различным пучкам разных углов наклона.

принадлежать различным пучкам разных углов наклона. Обозначим через  $dl'_1, dl'_2, dl'_3, ...$  и т. д. изменения координат  $l'_1, l'_2, l'_3, ...$  лучей № 1, 2, 3,... в пространстве изображений. Обозначим через  $D_1^{(1)}, D_2^{(1)}, D_3^{(1)}$  и т. д. частные производные от координаты  $l'_1$  по коэффициентам  $a_1, a_2, a_3$ , относящиеся к лучу № 1; через  $D_1^{(2)}, D_2^{(2)}, D_3^{(2)}$ ... — то же для луча № 2 и т. д.

Приходим к системе линейных уравнений:

Имея в виду, что изменения  $dl'_1$ ,  $dl'_2$ ,  $dl'_3$ ,... обычно должны быть получены не с высокой точностью, а лишь приближенно, следует считать не всегда рациональным сведение задачи определения вариаций  $da_1$ ,  $da_2$ ,  $da_3$ ,... к решению системы линейных уравнений (II, 182). Целесообразнее, исходя из оценки величин частных производных  $D_1^{(1)}$ ,  $D_2^{(1)}$ ,  $D_3^{(1)}$ ,... использовать лишь те из коэффициентов ряда (II, 161), которые являются наиболее активными параметрами для решения задачи коррекции в каждом конкретном случае, уточняя при этом выбор величин вариаций коэффициентов  $da_1$ ,  $da_2$ ,  $da_3$ ,... при которых с достаточным приближением достигаются требуемые изменения координат  $dl_1'$ ,  $dl_2'$ ,  $dl_3'$ ,... в системе уравнений (II, 182). В случае отсутствия решения при введении асферичности у данной поверхности объектива исследование продолжается для выяснения целесообразности асферизации какой-либо другой из поверхностей объектива. Сведения о том, какую из поверхностей целесообразно в первую очередь исследовать на асферичность, мы получаем уже в стадии предварительных исследований данной оптической схемы объектива. Это следует из анализа составляющих коэффициентов аберраций третьего порядка на отдельных поверхностях объектива, из анализа хода лучей различных пучков через объектив данного типа, из оценки величин углов падения и преломления лучей на поверхностях системы.

Если оказывается необходимым введение в систему более одной асферической поверхности, вместо системы уравнений (II, 182) приходим к уравнениям вида:

где через *D*, *E* и т. д. с соответствующими индексами обозначены частные производные от координат лучей в пространстве изображения, определенные соответственно по коэффициентам *a* и *b* и т. д. рядов:

$$y^{2} + z^{2} = a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots ;$$

$$y^{2} + z^{2} = b_{1}x + b_{2}x^{2} + b_{3}x^{3} + \cdots$$
(II, 184)

В предлагаемом методе сравнительно наибольшей вычислительной работы требует определение величины двух отправных частных производных от координат луча в пространстве изображений по каким-либо двум коэффициентам ряда (II, 161), поскольку частные производные по остальным коэффициентам ряда затем уже вычисляются по рекуррентной формуле (II, 181):

$$D_{k+1} = 2x_0 D_k - x_0^2 D_{k-1},$$

где через  $D_{k-1}$ ,  $D_k$  и  $D_{k+1}$  обозначены соответствующие частные производные, определенные по коэффициентам k-1-го, k-го и k+1-го членам ряда (II, 161).

Определение отправных частных производных. Остановимся здесь лишь на одном способе определения отправных частных производных  $D_{k-1}$  и  $D_k$ ; имеются различные способы их определения — применительно к разным условиям решаемой задачи [3].

Наиболее непосредственным, но и наиболее трудоемким является способ расчета хода лучей; при этом определяются вариации  $\Delta l'$  ко-

ординат l' при изменении коэффициентов  $\Delta a_k$  и приближенно принимается, что

$$\frac{\partial l'}{\partial a_k} \approx \frac{\Delta l'}{\Delta a_k};$$

координаты точек пересечения лучей с асферической поверхностью находятся способом последовательных приближений; для ускорения этого процесса рекомендуется при решении уравнения (II, 167) воспользоваться формулой (II, 167''):

$$\Delta x = - \frac{\sin \varphi \cos u}{2y \cos i} x^k \Delta a_k,$$

где  $\Delta x$  — изменение абсциссы x точки встречи луча и асферической поверхности, найденной приближенно из (II, 167'); отсюда далее находим второе приближение  $\overline{x}$  при решении уравнения (II, 167):

$$\bar{x} = x + \Delta x.$$

Однако более экономичным является способ использования данных обычной таблицы влияния изменения параметров сферического объектива на его аберрации.

Пусть для исследуемого объектива, состоящего из сферических поверхностей, составлена таблица влияния изменения его конструктивных элементов на аберрации. Обозначим через  $a_{n,k}$  k-й коэффициент ряда (II, 161), относящегося к n-й исследуемой поверхности объектива. Оказалось возможным непосредственно определить частную производную  $\frac{dl}{da_{n,k}}$ , если известны величины некоторых двух частных производных от l' по каким-либо двум параметрам объектива; в частности, такими параметрами, по-видимому, удобнее всего избрать радиус  $r_n$  исследуемой поверхности и расстояние  $d_n$  между вершинами n-й и n+1-й поверхностей. Соответствующая зависимость имеет вид:

$$\frac{\partial l'}{\partial a_{n,k}} = \frac{(k+E)}{2(1+E)} x_n^{k-1} \frac{\partial l'}{\partial r_n} - \frac{(k-1)x_n^k \sin \varphi_n \sin \left(u_n' - u_n\right)}{2(1+E)y_n \cos i_n \sin u_n'} \cdot \frac{\partial l'}{\partial d_n},$$
(1.185)

где

$$E = -\frac{x_n \cos u_n}{2y_n \cos i_n} [2 \operatorname{tg} u_n \cos \varphi_n + \sin \varphi_n F''(x_n)]. \quad (\text{II. 185'})$$

Таким образом, пользуясь таблицей влияния изменения параметров  $\Delta r_n$  и  $\Delta d_n$  на изменение координаты луча и воспользовавшись приближенными равенствами

$$\frac{\partial l'}{\partial r_n} \approx \frac{\Delta l}{\Delta r_n} \, \bowtie \, \frac{\partial l'}{\partial d_n} \approx \frac{\Delta l'}{\Delta d_n},$$

из формулы (II, 185) определяется величина  $\frac{dl'}{da_{n,k}}$ , а затем с помощью

рекуррентной формулы (II, 181) — остальные производные:

 $\frac{dl'}{da_{n, k+1}}$ ,  $\frac{dl'}{da_{n, k+2}}$  и т. д.

В случае деформации сферической поверхности, для которой F''(x) = -2, из (II, 185') находим:

$$E = E_{copep} = -\frac{x}{y} \operatorname{tg} i$$
. (I1, 185")

При всякого рода предварительных подсчетах вместо формулы (II, 185) можно, как показывает анализ, пренебрегая вторым слагаемым правой части, принять:

$$\frac{\partial l'}{\partial a_{n,k}} \approx \frac{k+E}{2(1+E)} x_n^{k-1} \frac{\partial l'}{\partial r_n}.$$
 (II, 186)

Эта формула — приближенная, полученная в результате пренебрежения влиянием вариации координат dx и dy на изменение координат преломленного луча и учета влияния лишь вариации  $d\phi$  — угла поворота нормали (см. рис. II, 29).

В заключение заметим, что в качестве координаты луча, вариация которой в пространстве изображений определяется, может быть выбрана не только ордината l', но и любая другая величина, определяющая положение луча, например угол u' луча с оптической осью или отрезок s'; в частности, определение производной  $\frac{du'}{da_k}$  необходимо для вычисления изменения отступления от условия Штебле — Лигоцкого (II, 69):

$$\frac{\partial \eta}{\partial a_k} = -\operatorname{ctg} u' \, \frac{\partial u'}{\partial a_k} + \frac{1}{x'_0 - s'_0} \, \frac{\partial \Delta s'}{\partial a_k} \,, \qquad (II, 187)$$

где  $\partial \Delta s'$  — вариация продольной сферической аберрации  $\Delta s'$  пучка. Частная производная  $\frac{du'}{dak}$  может определяться из той же рекуррентной формулы (II, 181), если в последней координату l' заменить координатой u'.

Мы изложили здесь общую идею метода [3]. Описание конкретных результатов разработок объективов — линзовых и зеркально-линзовых — с асферическими поверхностями приводится в последующих главах. Эта задача может быть существенно упрощена при применении ЭВМ.

## § 5. АБЕРРАЦИИ СЛОЖНЫХ МНОГОКОМПОНЕНТНЫХ ОБЪЕКТИВОВ

Объективы применяются для изображения объектов, находящихся на различных расстояниях. Необходимо знать изменения аберраций при перемещении плоскости предметов. Иногда по конструктивным соображениям в объективе изменяют местоположение апертурной диафрагмы, а следовательно, и положение зрачков; необходимо знать изменения аберраций объектива при изменении положения зрачков.

Еще до развития теории аберраций при расчете оптических систем было замечено существование связей между аберрациями в плоскости изображений и аберрациями в плоскости зрачка; эти и перечисленные выше вопросы рассмотрим здесь на основе применения теории аберраций третьего порядка.

1. Изменение аберраций объектива при перемещении плоскости предметов. У становление зависимости между аберрациями, соответствующими каким-либо двум произвольным положениям плоскостей предметов, приводит к сложным выражениям, рациональное применение которых вследствие их громоздкости следует признать сомнительным. Задача существенно упрощается, если предположить, что одна из плоскостей предметов бесконечно удалена, а другая расположена на некотором расстоянии *s* от объектива. Зависимости между коэффициентами аберрации в этом случае имеют следующий вид [3]:

$$\begin{split} S_{\rm I} &= \frac{1}{s} \, S_{\rm Ix} + \left(\frac{x-s}{s}\right) \left[ \left(\frac{x-s}{f'}\right)^3 S_{\rm I \,\infty} - 4 \, \left(\frac{x-s}{f'}\right)^2 S_{\rm II \,\infty} + \\ &+ 6 \left(\frac{x-s}{f'}\right) S_{\rm III \,\infty} + 2 \left(\frac{x-s}{f'}\right) S_{\rm IV} - 4 S_{\rm V \,\infty} + \\ &+ \left(\frac{x-s}{f'}\right)^2 - 3 \gamma_x \left(\frac{x-s}{f'}\right) + 3 \left(\gamma_x^2 - 1\right) \right]; \\ S_{\rm II} &= \frac{1}{s} \, S_{\rm Ix} + \left(\frac{x-s}{s}\right) \left[ - \left(\frac{x-s}{f'}\right)^2 S_{\rm II \,\infty} + \\ &+ 3 \left(\frac{x-s}{f'}\right) S_{\rm III \,\infty} + \left(\frac{x-s}{f'}\right) S_{\rm IV} - 3 S_{\rm V \,\infty} - \\ &- \gamma_x \left(\frac{x-s}{f'}\right) + 2 \left(\gamma_x^2 - 1\right) \right]; \\ S_{\rm III} &= \frac{1}{s} \, S_{\rm Ix} + \left(\frac{x-s}{s}\right) \left[ \left(\frac{x-s}{f'}\right) S_{\rm III \,\infty} - \\ &- 2 S_{\rm V \,\infty} + \left(\gamma_x^2 - 1\right) \right]; \\ S_{\rm V} &= \frac{1}{s} \, S_{\rm Ix} - \left(\frac{x-s}{s}\right) S_{\rm V \,\infty}, \end{split}$$

где  $S_1$ ,  $S_{11}$ ,  $S_{111}$ ,... — коэффициенты аберраций для плоскости предметов, расположенной на расстоянии *s* от объектива, фокусное расстояние которого *f*', и определенные при нормировке (II, 21);  $S_{1\infty}$ ,  $S_{11\infty}$ ,  $S_{11\infty}$ , ... — коэффициенты аберраций объектива для бесконечно удаленной плоскости предметов, определенные при нормировке (II, 22);  $\gamma_x$  — угловое увеличение в выходном зрачке:

$$\gamma_{x} = \frac{1}{\overline{\beta}_{x}} = \frac{m}{m'} = \frac{M}{M'} = \frac{x - s_{F}}{f} = -\frac{nf'}{n' (x' - s_{F'})}; \quad (\text{II}, 188')$$

коэффициент сферической аберрации объектива S<sub>Ix</sub> в выходном зрачке:

$$S_{1x} = \sum_{k=1}^{k=\rho} y_k \left(\frac{\Delta\beta_k}{\Delta\nu_k}\right)^2 \Delta\beta_k \nu_k; \quad \nu_k = \frac{1}{n_k}, \quad (\text{II}, 188'')$$

вычисленный при нормировке (II, 21).

Из анализа формул (II, 188) можно сделать практически важный вывод, особенно важный для создания репродукционных и других объективов, работающих с различными увеличениями, — о принципиальной невозможности совершенной коррекции аберраций для широких пределов изменения расстояний до изображаемых предметов; иными словами, для работы объектива с различными увеличениями.

Действительно, пусть коэффициенты аберраций  $S_{I\infty}$ ,  $S_{II\infty}$ ,  $S_{IIII,\infty}$ ,... для бесконечно удаленной плоскости предметов, а также коэффициент  $S_{Ix}$  равны нулю; в формулах (II, 188) остаются свободные члены в выражениях для коэффициентов сферической аберрации  $S_I$ , комы  $S_{II}$  и астигматизма  $S_{III}$ ; только коэффициент дисторсии  $S_V$  и коэффициент  $S_{IV}$ , определяющий кривизну поверхности изображения, оказываются независящими от дистанции *s* (поэтому выражение  $S_{IV}$  в системе формул (II, 188) не приводится).

Если предположить, как это чаще всего бывает в репродукционных анастигматах, что увеличение в зрачках близко к единице ( $\gamma_x = 1$ ), то множитель  $\gamma_x^2 - 1$  при свободном члене коэффициента  $S_{III}$  обращается в нуль и, следовательно, астигматизм перестает зависеть от расстояния до предмета s, но условия коррекции сферической аберрации и комы ( $S_I = S_{II} = 0$ ) оказываются при этом несовместимыми. Более того, при  $\gamma_x = 1$  коэффициент  $S_{II}$  не может быть равен нулю ни при каких значениях s (исключая практически неинтересный случай, когда x - s = 0), а коэффициент  $S_I$  обращается в нуль при условии, если  $\gamma_x = 1$ :

$$\frac{x-s}{f'} - 3\gamma_x = 0; \quad x - s = 3f',$$

т. е. если расстояние плоскости предмета от входного зрачка равно утроенному фокусному расстоянию объектива; в этом случае линейное увеличение изображения приблизительно равно  $\overline{\beta} = -\frac{1}{2}$ , так как расстояние входного зрачка от переднего фокуса приблизительно равно но фокусному расстоянию объектива.

2. Зависимость аберраций объектива от положения входного зрачка. За последние годы появились фотографические аппараты различных схем и конструкций (обычные и автоматические с центральным и залинзовым затвором и т. п.) с размещением апертурной диафрагмы и затвора в месте, удобном по конструктивным соображениям. При этом необходима или разработка нового объектива, или некоторое видоизменение и приспособление одного из объективов существующих типов. При решении подобных задач интерес представляет исследование зависимости аберраций объектива от выбора положения входного зрачка. Теория аберраций приводит к следующей зависимости [18, 3]:

$$S_{II}^{(x)} = S_{I}^{(x_0)};$$

$$S_{II}^{(x)} = -\left(\frac{x - x_0}{x_0 - s}\right)S_{I}^{(x_0)} + \left(\frac{x - s}{x_0 - s}\right)S_{II}^{(x_0)};$$

$$S_{III}^{(x)} = \left(\frac{x - x_0}{x_0 - s}\right)^2S_{I}^{(x_0)} - \frac{2(x - x_0)(x - s)}{(x_0 - s)^2}S_{II}^{(x_0)} + \left(\frac{x - s}{x_0 - s}\right)^2S_{III}^{(x_0)};$$

$$S_{V}^{(x)} = \left(\frac{x - x_0}{x_0 - s}\right)^3S_{I}^{(x_0)} + \frac{3(x - x_0)^2(x - s)}{(x_0 - s)^3}S_{II}^{(x_0)} - \frac{3(x - x_0)(x - s)^2}{(x_0 - s)^3}S_{III}^{(x_0)} - \frac{(x - x_0)(x - s)^2}{(x_0 - s)^3}S_{III}^{(x_0)} + \left(\frac{x - s}{x_0 - s}\right)^4S_{V}^{(x_0)};$$

$$S_{Ix}^{(x)} = \left(\frac{x - s}{x_0 - s}\right)^4S_{Ix}^{(x_0)} + \left(\frac{x - x_0}{(x_0 - s)^4}S_{III}^{(x_0)} - \frac{4(x - x_0)^3(x - s)s}{(x_0 - s)^4}S_{III}^{(x_0)} - \frac{4(x - x_0)^3(x - s)s}{(x_0 - s)^4}S_{III}^{(x_0)} + \frac{3(x - x_0)^2(x - s)^2s}{(x_0 - s)^4}S_{V}^{(x_0)} - \frac{(x - x_0)^3(x - s)s}{(x_0 - s)^2}(x_1 - s)^3}(\gamma_{Yx} - \frac{-(x - x_0)^3(x - s)s}{(x_0 - s)^3}(\gamma_{Yx}^2 - 1) - \frac{3(x - x_0)(x - s)^3}{(x_0 - s)^3}(\gamma_{Xx}^2 - 1),$$
(11, 189)

где  $S_{10}^{(x_0)}$ ,  $S_{11}^{(x_0)}$ ,..., $S_{10}^{(x_0)}$  — коэффициенты аберраций при положении зрачка  $x_0$ ;  $S_{11}^{(x)}$ ,  $S_{11}^{(x)}$ , ...,  $S_{10}^{(x)}$  — коэффициенты аберраций того же объектива при новом положении зрачка x. В целях некоторого упрощения вида зависимостей здесь предположено, что коэффициент сферической аберрации в выходном зрачке  $S_{1x}^{(x_0)}$  вместо (II, 21) нормируется следующими начальными значениями координат вспомогательных лучей:

$$\begin{array}{l} \alpha_{1} = 1, \quad h_{1} = 1, \\ \beta_{1} = 1, \quad y_{1} = x_{0}. \end{array}$$
 (II, 190)

Коэффициенты  $S_{I}^{(x_0)}$ ,  $S_{II}^{(x_0)}$ ,..., $S_{V}^{(x_0)}$  — по-прежнему нормируются условиями (II, 21).

Для бесконечно удаленной плоскости предметов имеют место зависимости:

$$S_{I}^{(x)} = S_{I_{\infty}}^{(x_{0})};$$

$$S_{II_{\infty}}^{(x)} = \left(\frac{x - x_{0}}{f'}\right)S_{I_{\infty}}^{(x_{0})} + S_{II_{\infty}}^{(x_{0})};$$

$$S_{III_{\infty}}^{(x)} = \left(\frac{x - x_{0}}{f'}\right)^{2}S_{I_{\infty}}^{(x_{0})} + 2\left(\frac{x - x_{0}}{f'}\right)S_{II_{\infty}}^{(x_{0})} + S_{III_{\infty}}^{(x_{0})};$$

$$S_{V_{\infty}}^{(x)} = \left(\frac{x - x_{0}}{f'}\right)^{3}S_{I_{\infty}}^{(x_{0})} + 3\left(\frac{x - x_{0}}{f'}\right)^{2}S_{II_{\infty}}^{(x_{0})} + 3\left(\frac{x - x_{0}}{f'}\right)S_{III_{\infty}}^{(x_{0})} + \left(\frac{x - x_{0}}{f'}\right)S_{V_{\infty}}^{(x_{0})} - \left(\frac{(x - x_{0})^{2}}{f'}S_{III_{\infty}}^{(x_{0})} + 2\left(\frac{(x - x_{0})^{2}}{f'}S_{IV}^{(x_{0})} + 4\left(x - x_{0}\right)S_{V_{\infty}}^{(x_{0})} - \left(\frac{(x - x_{0})^{3}}{f'}S_{III_{\infty}}^{(x_{0})} - 3\left(x - x_{0}\right)\left(\gamma_{x_{0}}^{2} - 1\right),$$

$$(11, 191)$$

где коэффициенты аберраций  $S_{1\infty}^{(x_0)}, S_{1\infty}^{(x_0)}, ..., S_{V\infty}^{(x_0)}$  по-пр нормируются условиями (II, 22). Для частного случая, когда  $x_0 = 0$ , из (II, 191) находим: по-прежнему

$$S_{1\infty}^{(x)} = S_{1\infty}^{(0)};$$

$$S_{11\infty}^{(x)} = \frac{x}{f'} S_{1\infty}^{(0)} + S_{11\infty}^{(0)};$$

$$S_{111\infty}^{(x)} = \left(\frac{x}{f'}\right)^2 S_{1\infty}^{(0)} + 2\left(\frac{x}{f'}\right) S_{11\infty}^{(0)} + S_{111\infty}^{(0)};$$

$$S_{V\infty}^{(x)} = \left(\frac{x}{f'}\right)^3 S_{1\infty}^{(0)} + 3\left(\frac{x}{f'}\right)^2 S_{11\infty}^{(0)} + 3\frac{x}{f'} S_{111\infty}^{(0)} + \frac{x}{f'} S_{1V}^{(0)} + S_{V\infty}^{(0)};$$

$$S_{1x}^{(x)} = S_{1x}^{(0)} + \frac{x^4}{f'^3} S_{1\infty}^{(0)} + 4\frac{x^3}{f'^2} S_{11\infty}^{(0)} + 6\frac{x^2}{f'} S_{111\infty}^{(0)} + \frac{x^2}{f'} S_{1V}^{(0)} - \frac{x^3}{f'^2} - 3\frac{x^2}{f'} \gamma_0 - \frac{-3x(\gamma_0^2 - 1).$$

$$(11, 192)$$

173

Обратим внимание, что во всех выражениях (II, 189)—(II, 191), если  $S_{1}^{(x_0)} = 0$ , то коэффициент  $S_{11}^{(x_0)}$  не зависит от положения зрачка; если  $S_{1}^{(x_0)} = 0$  и  $S_{11}^{(x_0)} = 0$ , то следующий коэффициент ( $S_{111}^{(x_0)}$ ) также не зависит от положения зрачка. В теории аберраций доказывается общая теорема: при исправлении первых *j* аберраций третьего порядка аберрация с номером *j*+1 не зависит от положения входного зрачка. Например, если исправлена сферическая аберрация, то нельзя использовать положение входного зрачка для исправления комы; если исправлены сферическая аберрация и кома, то астигматизм не зависит от положения входного зрачка.

Эта теорема имеет большое практическое значение, хотя она доказана лишь в области аберраций третьего порядка; дело в том, что у всех хорошо корригированных объективов малы не только аберрации третьего порядка, но и аберрации высших порядков и, следовательно, изменение положения входного зрачка лишь изменяет координаты главного луча на графиках аберраций широких наклонных пучков, но если последние хорошо корригированы, то такое перемещение главного луча оказывается несущественным.

Таким образом, у хорошо исправленных объективов апертурную диафрагму можно перемещать, если это необходимо по конструктивным соображениям, не нарушая состояния коррекции их аберраций. Конечно, одновременно необходимо следить за изменением характера виньетирования наклонных пучков при изменении диаметра ирисовой диафрагмы.

3. Изменение аберраций объектива при его использовании в обратном ходе лучей. Иногда, например, как увидим ниже, при комплектовании сложного многокомпонентного объектива из отдельных, более простых, компонентов оказывается необходимым исследовать изменение аберраций объектива при изображении им двух бесконечно удаленных предметов, расположенных в прямом (слева от объектива) и обратном (справа от объектива) ходе лучей. Обозначим символами

 $\overline{S}_{I_{\infty}}, \overline{S}_{II_{\infty}}, \overline{S}_{III_{\infty}}, \ldots$ 

коэффициенты аберраций луча, идущего справа налево (обратный ход луча) из бесконечно удаленной точки предмета, расположенной справа  $(s_1 = \infty)$ . Предположив, что положение плоскостей входного и выходного зрачков остается неизменным, что показатели преломления сред пространства предметов и изображений n = n' = 1 и что соблюдена нормировка углов  $\beta_1 = \beta_1 = 1$ , можно получить следующие выражения [3], связывающие величины коэффициентов аберраций в прямом и обратном ходе лучей:

ходе лучей, если увеличение в зрачках объектива  $\gamma_x = 1$ . **4. Зависимость между аберрациями объектива в плоскости изобра жений и выходного зрачка**. При анализе свойств репродукционных объективов, работающих при различных увеличениях изображений и свойств широкоугольных ортоскопических объективов очень важно знать аберрации в выходном зрачке; теория дает однозначное соответствие между аберрациями в плоскости изображений и аберрациями в плоскости выходного зрачка. Между коэффициентами указанных аберраций существует следующая зависимость [18, 3]:

$$S_{IIx} = sS_{V} + (x - s) (\gamma_{x}^{2} - 1);$$
  

$$S_{IIIx} = sS_{III} + (x - s) (\gamma \gamma_{x} - 1);$$
  

$$S_{Vx} = sS_{II} + (x - s) (\gamma^{2} - 1),$$
  
(II, 194)

где коэффициенты аберраций в плоскости изображений  $S_{II}$ ,  $S_{III}$  и  $S_V$  определены при нормировке (II, 21), а коэффициенты аберраций в плоскости выходного зрачка  $S_{IIx}$ ,  $S_{IIIx}$  и  $S_{Vx}$  определены при нормировке (II, 190).

Для объективов, изображающих бесконечно удаленную плоскость предметов, выражения (II, 194) принимают еще более простой вид:

$$S_{IIx, \infty} = S_{V \infty} - (\gamma_x^2 - 1);$$
  

$$S_{IIIx, \infty} = S_{III \infty} - \gamma_x;$$
  

$$S_{Vx, \infty} = S_{II \infty} - 1,$$
(11, 195)

175

где коэффициенты  $S_{11x,\infty}$ ,  $S_{111x,\infty}$  и  $S_{Vx,\infty}$  определены при нормировке:

Зависимости (II, 194) и (II, 195) написаны в предположении, что показатели преломления сред пространства предметов и изображений одинаковы (n = n').

5. Аберрации тонкого объектива. В ряде случаев находят применение тонкие объективы, у которых суммарная толщина линз и воздушных промежутков между линзами значительно меньше фокусного расстояния объектива. К ним относятся ахроматические двухлинзовые длиннофокусные объективы для съемок удаленных объектов, астрономические объективы, объективы коллиматоров, зрительных труб, биноклей, и т. п. У тонких объективов высоты пересечения поверхностей линз h и y обоими вспомогательными лучами одинаковы для всех преломляющих поверхностей, что позволяет выразить разность углов  $\Delta\beta$  через $\Delta \alpha$  и исключить первые в формулах (II, 35). Для этого преобразуем инвариант I:

$$I = n\alpha \left(y - \beta s\right) = n \frac{h}{s} \left(y - \frac{y}{x} s\right) =$$
$$= nhy \left(\frac{1}{s} - \frac{1}{x}\right) = hy \left[n \left(\frac{1}{r} - \frac{1}{x}\right) - n \left(\frac{1}{r} - \frac{1}{s}\right)\right] =$$
$$= hy \left(Q_x - Q_s\right), \qquad (11, 197)$$

где

$$Q_s = n\left(\frac{1}{r} - \frac{1}{s}\right); \ Q_x = n\left(\frac{1}{r} - \frac{1}{x}\right).$$

После простых выкладок находим:

$$I = y \frac{\Delta \alpha}{\Delta \frac{1}{n}} - h \frac{\Delta \beta}{\Delta \frac{1}{n}}; \qquad (11, 197')$$

отсюда

$$\frac{\Delta\beta}{\Delta\frac{1}{n}} = \frac{1}{h} \left( y \frac{\Delta\alpha}{\Delta\frac{1}{n}} - I \right).$$
(11, 198)

Воспользовавшись (II, 198), исключим величины ∆β в выражениях (II, 35):

$$S_{1} = \sum_{k=1}^{k=p} h_{k} P_{k}^{*};$$

$$S_{11} = \sum_{k=1}^{k=p} y_{k} P_{k}^{*} - I \sum_{k=1}^{k=p} W_{k}^{*};$$

$$S_{111} = \sum_{k=1}^{k=p} \frac{y_{k}^{2}}{h_{k}} P_{k}^{*} - 2I \sum_{k=1}^{k=p} \frac{y_{k}}{h_{k}} W_{k}^{*} + I^{2} \sum_{k=1}^{k=p} \frac{1}{h_{k}} \Delta \frac{a_{k}}{n_{k}};$$

$$S_{1V} = \sum_{k=1}^{k=p} \frac{1}{h_{k}} \frac{\Delta a_{k} n_{k}}{n_{k} n_{k}'};$$

$$S_{V} = \sum_{k=1}^{k=p} \frac{y_{k}^{3}}{h_{k}^{2}} P_{k}^{*} - 3I \sum_{k=1}^{k=p} \frac{y_{k}^{2}}{h_{k}^{2}} W^{*} + I^{2} \sum_{k=1}^{k=p} \frac{y_{k}}{h_{k}} \left( 3\Delta \frac{a_{k}}{n_{k}} + \frac{\Delta a_{k} n_{k}}{n_{k} n_{k}'} \right) - I^{3} \sum_{k=1}^{k=p} \frac{1}{h_{k}^{2}} \Delta \frac{1}{n_{k}^{2}},$$

$$(II, 199)$$

где

$$P_{k}^{*} = \left(\frac{\Delta \alpha_{k}}{\Delta \frac{1}{n_{k}}}\right)^{2} \Delta \frac{\alpha_{k}}{n_{k}}; \quad W^{*} = \left(\frac{\Delta \alpha_{k}}{\Delta \frac{1}{n_{k}}}\right) \Delta \frac{\alpha_{k}}{n_{k}}. \quad (II, 199')$$

Обозначим через *P*\* и *W*\* значения сумм *P<sub>k</sub>*\* и *W<sub>k</sub>*\* по всем преломляющим поверхностям тонкого объектива:

$$P^* = \sum_{k=1}^{k=p} P_h^*; \quad W^* = \sum_{k=1}^{k=p} W_k^*. \tag{11, 200}$$

Обратим внимание, что высоты  $h_k$  и  $y_k$  остаются одинаковыми для всех p преломляющих поверхностей тонкого объектива; кроме того, заметим, что у тонкого объектива имеем:

$$\sum_{k=1}^{n-p} \frac{1}{h_k} \Delta \frac{\alpha_k}{n_k} = \frac{1}{h} \left( \frac{\alpha_2}{n_2} - \alpha_1 + \frac{\alpha_3}{n_3} - \frac{\alpha_2}{n_2} + \dots + \alpha_p' \right) =$$
$$= \frac{\alpha_p' - \alpha_1}{h} = \varphi,$$

где  $\varphi$  — оптическая сила объектива. Упрощается также выражение  $\sum \frac{1}{h} \frac{\Delta an}{nn'}$ :

$$\sum_{k=1}^{k=p} \frac{1}{h_k} \frac{\Delta \alpha_k n_k}{n_k n'_k} = \sum_{k=1}^{k=p} \frac{\Delta n_k}{n_k n'_k} \frac{1}{r_k} = -\sum_{k=1}^{k=p} \left( \frac{1}{n'_k} - \frac{1}{n_k} \right) \frac{1}{r_k};$$

для простой линзы в воздухе:

$$-\sum_{k=1}^{n=p} \left(\frac{1}{n'_{k}} - \frac{1}{n_{k}}\right) \frac{1}{r_{k}} = -\left[\left(\frac{1}{n} - 1\right) \frac{1}{r_{1}} + \left(1 - \frac{1}{n}\right) \frac{1}{r_{2}}\right] = \frac{\varphi}{n}.$$

Следовательно, для тонкого объектива получим:

$$\sum_{k=1}^{k=p} \frac{1}{h_k} \frac{\Delta \alpha_k n_k}{n_k n'_k} = -\sum_{k=1}^{k=p} \left( \frac{1}{n'_k} - \frac{1}{n_k} \right) \frac{1}{r_k} = \sum_{j=1}^{j=0} \frac{\varphi_j}{n_j},$$

где суммирование распространяется по всем в линзам объектива. Введем обозначение:

$$\pi = \sum_{j=1}^{j=0} \frac{\overline{\varphi}_j}{n_j}, \qquad (II, 201)$$

где  $\overline{\phi_j}$  — так называемая приведенная оптическая сила линзы объектива, т. е. отношение оптической силы  $\phi_j$  *j*-й линзы к оптической силе  $\phi$  всего объектива:

$$\overline{\varphi}_j = \frac{\varphi_j}{\varphi}$$
, (I1, 202)

где очевидно:  $\varphi = \sum_{j=1}^{j=\theta} \varphi_j.$ 

Для всего тонкого объектива получим:

$$\sum_{k=1}^{k=p} \frac{1}{h_k} \frac{\Delta \alpha_k n_k}{n_k \dot{n'_k}} = \sum_{j=1}^{j=0} \frac{\varphi_j}{n_j} = \varphi \sum_{j=1}^{j=0} \frac{\overline{\varphi}_j}{n_j} = \pi \varphi.$$

Приняв во внимание выполненные выше упрощения, вместо (II, 199) находим выражения коэффициентов аберраций тонкого объектива:

$$S_{I} = hP^{*};$$

$$S_{II} = yP^{*} - IW^{*};$$

$$S_{III} = \frac{y^{2}}{h}P^{*} - 2I\frac{y}{h}W^{*} + I^{2}\varphi;$$

$$S_{IV} = \pi\varphi;$$

$$S_{V} = \frac{y^{3}}{h^{2}}P^{*} - 3I\frac{y^{2}}{h^{2}}W^{*} + I^{2}\frac{y}{h}(3 + \pi)\varphi.$$

$$\left. \right\}$$
(II, 203)

Заметим, что в выражении для  $S_V$  пропадает последний член ( $I^3 \sum_{h^2} \Delta \frac{1}{n^2}$ ),

так как все линзы или компоненты тонкого объектива окружены воздухом и для каждого компонента  $\frac{1}{h^2} \sum \Delta \frac{1}{n^2}$  равно нулю.

Напомним, что если переменные a, h и y, входящие в выражения (II, 203), нормируются условиями (II, 19), то аберрации объектива выражаются формулами (II, 39). Если эти переменные нормируются условиями (II, 20), то аберрации выражаются формулами (II, 45). В случае бесконечно удаленной плоскости предметов переменные a,  $\beta$ , h и y, входящие в (II, 203), нормируются условиями (II, 22), а аберрации объектива выражаются формулами (II, 37).

Из (II, 203) вытекают два важных следствия, касающиеся определения коэффициентов аберраций третьего порядка тонкого компонента:

A. Плоскость предметов на конечном расстоянии (α≠0):

$$S_{I} = s_{I}\overline{\beta}_{0}P^{*};$$

$$S_{II} = x_{I}P^{*} - \overline{\beta}_{0} (x_{I} - s_{I})W^{*};$$

$$S_{III} = \frac{x_{1}^{2}}{s_{I}\overline{\beta}_{0}}P^{*} - 2 (x_{I} - s_{I})\frac{x_{I}}{s_{I}}W^{*} + \frac{\overline{\beta}_{0} (x_{I} - s_{I})^{2}}{s_{I}} (1 - \overline{\beta}_{0});$$

$$S_{IV} = \frac{\pi}{s_{I}\overline{\beta}_{0}} (1 - \overline{\beta}_{0}); \quad \pi = \sum \frac{\overline{\phi}}{n};$$

$$S_{IV} = \frac{x_{1}^{3}}{s_{I}\overline{\beta}_{0}}P^{*} - 3 \frac{(x_{I} - s_{I})}{(x_{I} - x_{I})} (\frac{x_{I}}{x_{I}})^{2}W^{*} + 1$$
(II, 204)

$$S_{V} = \frac{1}{s_{1}^{2}\overline{\beta}_{0}^{2}} P^{\pi} - 3 \frac{1}{\overline{\beta}_{0}} \left(\frac{1}{s_{1}}\right) W^{\pi} + \left(x_{1} - s_{1}\right)^{2} \frac{x_{1}}{s_{1}^{2}} (3 + \pi) \left(1 - \overline{\beta}_{0}\right),$$

где  $P^*$  и  $W^*$  определены выражениями (II, 193') при условии (II, 20)  $\overline{\beta_0}$  — линейное увеличение системы.

Б. Плоскость предметов бесконечно удалена ( $a_1 = 0$ ):

$$S_{1 \infty} = P;$$

$$S_{11 \infty} = x_1 P + W;$$

$$S_{11 \infty} = x_1^2 P + 2x_1 W + 1;$$

$$S_{1V} = \pi;$$

$$S_{V \infty} = x_1^3 P + 3x_1^2 W + x_1 (3 + \pi),$$
(II, 205)

где *Р* и *W* определены выражениями (II, 199') при условии нормировки (II, 22).

Таким образом, параметры тонкого объектива P и W, подобно параметрам  $P^*$  и  $W^*$ , определяются также выражениями (II, 199'), но
первые из них (P и W) характеризуют аберрации компонента в случае бесконечно удаленной плоскости предметов, т. е. когда в выражениях (II, 199') взято  $\alpha_1 = 0$ ,  $h_1 = 1$  и  $\alpha' = 1$ .

Заметим, что при заданном положении плоскости предметов  $s_1$  и заданном положении входного зрачка  $x_1$  аберрации третьего порядка тонкого объектива определяются не пятью коэффициентами ( $S_1$ ,  $S_{11}$ ,  $S_{1V}$  и  $S_V$ ), а, как это следует из (II, 204) и (II, 205), лишь тремя параметрами:  $P^*$ ,  $W^*$  и  $\pi$  — при произвольном положении плоскости предметов и P, W и  $\pi$  — при бесконечно удаленной плоскости предметов; параметр  $\pi$  не зависит от положения плоскости предметов.

Из формул (II, 205) следует также, что если плоскость входного зрачка совмещена с тонким компонентом ( $x_1 = 0$ ), то:

$$S_{1\infty} = P; \ S_{11\infty} = W; \ S_{111\infty} = 1; \ S_{1V} = \pi; \ S_{V\infty} = 0, \ (11, 205')$$

т. е. астигматизм, определяемый коэффициентом  $S_{111}$ , совершенно не поддается исправлению; дисторсия оказывается исправленной автоматически; сферическая аберрация и кома, определяемые соответственно коэффициентами  $S_1$  и  $S_{11}$ , оказываются зависящими от параметров P и W компонента и, как увидим ниже, эти аберрации поддаются исправлению; коэффициент  $S_{1V}$ , определяющий кривизну поверхности изображения, зависит от параметра  $\pi = \sum \frac{\overline{\phi}}{n}$ , который не является параметром полноценным, так как он не может изменяться в широких пределах вследствие ограниченности пределов численных значений показателей преломления стекол n и так как приведенные оптические силы линз компонента  $\overline{\phi}$  по сути своей нормированы условием  $\Sigma \overline{\phi} = 1$ .

Параметры *P*\* и *W*\* и параметры *P* и *W* взаимосвязаны друг с другом линейными зависимостями. Эти зависимости, впервые выведенные Γ. Слюсаревым, имеют следующий вид [16]:

$$P^* = (\alpha' - \alpha)^3 P + 4\alpha (\alpha' - \alpha)^2 W + \alpha (\alpha' - \alpha) [2\alpha (2 + \pi) - \alpha'];$$
  

$$W^* = (\alpha' - \alpha)^2 W + \alpha (\alpha' - \alpha) (2 + \pi), \quad (II, 206)$$

где параметры P и W—краткая запись выражений (II, 199'), написанных при нормировке  $a_1 = 0$ , a' = 1,  $h_1 = 1$ , а следовательно, f' = 1;  $P^*$  и  $W^*$  — краткая запись тех же выражений (II, 199') при произвольных a и a' углах с оптической осью первого вспомогательного параксиального луча, выходящего из точки предмета на оптической оси, расположенной на расстоянии s от компонента, и, следовательно:

$$a'-a=h\varphi;$$

выбор условной единицы a (или a') определяет нормировку h: h = sa = s'a', так как у тонкого объектива h = h'; параметры  $P^*$  и  $W^*$ , таким образом, характеризуют аберрации тонкого объектива при любом положении s предмета.

6. Выражение аберраций сложного объектива через коэффициенты аберраций его тонких компонентов. Многие оптические схемы современных объективов различного назначения состоят из отдельных тонких линз или компонентов, каждый из которых обладает толщиной, весьма малой по сравнению с фокусным расстоянием; это — универсальные трехкомпонентные анастигматы типа «Триплет» и «Индустар», дву хкомпонентные телеобъективы типа «Телемар» и «Ленинград», четырехлинзовые объективы типа «Ортогоз» и «Сириус», шестилинзовые анастигматы «Секстар» и многие другие. У каждого тонкого компонента подобного объектива величины h и y одинаковы для всех преломляющих поверхностей, что и позволяет обобщить полученные выше выражения коэффициентов аберраций (II, 203) на сложную оптическую схему многокомпонентного объектива, состоящего из m тонких компонентов:

$$S_{1} = \sum_{i=1}^{l=m} h_{i}P_{i}^{*};$$

$$S_{11} = \sum_{i=1}^{l=m} y_{i}P_{i}^{*} - I\sum_{i=1}^{l=m} W_{i}^{*};$$

$$S_{111} = \sum_{i=1}^{l=m} \frac{y_{i}^{2}}{h_{i}} P_{i} - 2I\sum_{i=1}^{l=m} \frac{y_{i}}{h_{i}} W_{i}^{*} + I^{2} \sum_{i=1}^{l=m} \varphi_{i}.$$

$$S_{111} = \sum_{i=1}^{l=m} \frac{y_{i}^{2}}{h_{i}} P_{i} - 3I\sum_{i=1}^{l=m} \frac{y_{i}^{2}}{h_{s}^{2}} W_{i}^{*} + I^{2} \sum_{i=1}^{l=m} \frac{y_{i}}{h_{i}^{2}} P_{i}^{*} - 3I\sum_{i=1}^{l=m} \frac{y_{i}^{2}}{h_{s}^{2}} W_{i}^{*} + I^{2} \sum_{i=1}^{l=m} \frac{y_{i}}{h_{i}} \varphi_{i} (3 + \pi_{i}),$$

$$(II, 207)$$

где в свою очередь параметры  $P^*_i$  и  $W^*_i$  *i*-го компонента связаны с его основными параметрами P и W уравнениями (II, 206). Зависимости (II, 207) и (II, 206) выражают коэффициенты аберра-

Зависимости (II, 207) и (II, 206) выражают коэффициенты аберраций сложного многокомпонентного объектива линейно относительно основных параметров  $P_i$ ,  $W_i$  и  $\pi_i$  его компонентов, что позволяет определять конструктивные элементы оптики каждого из компонентов по известным численным значениям его основных параметров, устанавливаемым в результате решения системы простых линейных алгебраических уравнений (II, 207) при наперед заданных численных значениях коэффициентов аберраций  $S_1$ ,  $S_{11}$ ,  $S_{111}$ ,... объектива и при известных значениях его гауссовых элементов:  $\alpha_i$ ,  $h_i$  и  $y_i$ .

По-прежнему, если переменные а, h и y, входящие в выражения (II, 207) и (II, 206), нормируются условиями (II, 19), то аберрации объектива выражаются формулами (II, 39); если эти параметры нормируются условиями (II, 20), то аберрации объектива выражаются формулами (II, 45). В случае бесконечно удаленной плоскости предметов параметры  $\alpha$ , h и y, входящие в (II, 207) и (II, 206), нормируются условиями (II, 22), а аберрации объектива выражаются формулами (II, 37).

Эта весьма действенная методика расчета, развитая Г. Слюсаревым, находит практическое применение при разработке оптических систем, состоящих из тонких компонентов.

Хроматические аберрации подобных объективов также весьма просто выражаются через коэффициенты аберраций отдельных компонентов. Напишем формулу хроматической аберрации положения (II, 150) в следующем виде:

$$n'\alpha'\delta s'_{xp} = \sum_{k=1}^{k=p} h_k \overline{C}_k, \qquad (II, 208)$$

где

$$\bar{C}_{k} = \frac{\Delta \alpha_{k}}{\Delta \frac{1}{n_{k}}} \Delta \frac{\delta n_{k}}{n_{k}}; \qquad (II, 208')$$

суммирование распространяется по всем *р* поверхностям объектива. Пусть объектив состоит из бесконечно тонких компонентов; для

*i*-го компонента выражение под знаком суммы принимает вид:

$$h_i \sum_{k=1}^{k=l} \overline{C}_k = h_i \sum_{k=1}^{k=l} \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k}.$$

Для каждой простой линзы, входящей в состав компонента *i*, выражение под знаком суммы приводится к виду:

$$\sum_{k=1}^{R=2} \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k} = \frac{\alpha' - \alpha}{1 - n} \, \delta n = -\frac{\alpha' - \alpha}{\nu} = -\frac{h_i \varphi}{\nu} \, .$$

Для *i*-го компонента (в воздухе), состоящего из  $\theta$  линз, можно написать:

$$h_i C_i^* = -h_i^2 \sum_{j=1}^{j=0} \frac{\varphi_j}{\nu_j}$$
, (II, 209)

где

$$C_i^* = \sum_{k=1}^{k=l} \overline{C}_k = \sum_{k=1}^{k=l} \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\Delta n_k}{n_k} . \qquad (II, 209')$$

Введем и здесь приведенную оптическую силу  $\overline{\varphi}_{j} = \frac{\varphi_{j}}{\varphi_{i}} j$ -й линзы *i*-го компонента, оптическая сила которого  $\varphi_{i}$  (см. выше II, 202); тогда вместо (II, 209) получим:

$$h_i C_i^* = -h_i^2 \varphi_i \sum_{j=1}^{i=0} \frac{\bar{\varphi}_j}{\gamma_j} = h_i^2 \varphi_i C_i, \qquad (II, 210)$$

где

$$C_i = -\sum_{j=1}^{j=0} \frac{\overline{\varphi_j}}{\gamma_j}.$$
 (II, 210')

Для системы, состоящей из *m* тонких компонентов, хроматическая аберрация положения определится формулой:

$$\alpha'^{2} \delta s_{xp}' = \sum_{i=1}^{i=m} h_{i} C_{i}^{*} = \sum_{i=1}^{i=m} h_{i}^{2} \varphi_{i} C_{i}.$$
(II, 211)

Из (II, 210) вытекает очевидное соотношение:

$$C_i^* = h_i \varphi_i C_i = (\alpha_i' - \alpha_i) C_i. \qquad (II, 212)$$

Можно показать, что такое же соотношение между основными хроматическими параметрами тонкого компонента  $C^*$  и C получим, если дважды сопоставить выражение (II, 210'): один раз — вычисленное для бесконечно удаленной плоскости предметов ( $a_1 = 0$ ,  $a_i' = 1$ ), а другой раз — для предмета на конечном расстоянии ( $a_1 = a, a_i' = a'$ ); первое значение определит величину C, а второе —  $C^*$  и соотношение между ними будет равно:  $C^* = (a' - a)C$ . Параметр C зависит только от внутренних конструктивных элементов компонента, относительных оптических сил линз компонента (II, 210') и оптических стекол этих линз; параметр  $C^*$  зависит также и от внешних гауссовых элементов, в частности от оптической силы компонента  $\varphi_i$  (II, 212) и его расстояния до плоскости предметов  $h_i = s_i a_i$ .

Хроматическая аберрация положения системы, состоящей из простых линз, согласно (II, 211) определится из формулы:

$$-\alpha_{l}^{\prime^{2}}\delta s_{xp}^{\prime} = \frac{h_{1}^{2}\varphi_{1}}{v_{1}} + \frac{h_{2}^{2}\varphi_{2}}{v_{2}} + \dots + \frac{h_{m}^{2}\varphi_{m}}{v_{m}}$$
(II, 213)

при нормировке  $h_1 = a_1 s_1$  (или  $h_m = s'_m a'_m$ ).

В случае бесконечно удаленной плоскости предметов из (II, 151) и (II, 210) имеем:

$$(\delta s'_{xp})_{\infty} = f' \sum_{i=1}^{l=m} h_i C_i^* = f' \sum_{i=1}^{l=m} h_i^2 \varphi_i C_i.$$
(11, 214)

Для системы из l простых линз формула (II, 214) принимает вид:

$$(\delta s'_{xp})_{\infty} = -f'\left(\frac{\varphi_1}{\nu_1} + \frac{h_2^2\varphi_2}{\nu_2} + \dots + \frac{h_l^2\varphi_l}{\nu_l}\right). \quad (II, 214')$$

Преобразуем аналогично формулу (II, 152), выражающую хроматическую аберрацию увеличения:

$$\delta L'_{xp} = \frac{l'_{\lambda_0}}{l} \sum_{k=1}^{k=p} y_k \overline{C}_k.$$
 (II, 215)

Для бесконечно тонкого *i*-го компонента системы, приняв во внимание (II, 209') и (II, 212), можно написать:

$$\sum_{k=1}^{k=l} y_k \overline{C}_k = y_i \sum_{k=1}^{k=l} \overline{C}_k = y_i C_i^* = h_i y_i \varphi_i C_i.$$

Применительно к системе из бесконечно тонких компонентов получим:

$$\delta L'_{\rm xp} = \frac{l'_{\lambda_0}}{I} \sum_{i=1}^{l=m} h_i y_i \varphi_i C_i. \qquad (11, 216)$$

Если предмет на конечном расстоянии ( $a_1 \neq 0$ ), приняв нормировку (II, 20), имеем  $I = a_1(x_1 - s_1)$  при  $h_1 = s_1 a_1$ . Если предмет на бесконечности ( $a_1 = 0$ ), при нормировке (II, 22) находим I = -1; отсюда:

$$(\delta L'_{xp})_{\infty} = l' \sum_{l=1}^{l=m} h_i y_i \varphi_i C_i. \qquad (II, 217)$$

Хроматическая аберрация увеличения объектива, состоящего из *l* простых линз, согласно (II, 217) определится формулой:

$$(\delta L'_{xp})_{\infty} = l' \left( \frac{h_1 y_1 \varphi_1}{\nu_1} + \frac{h_2 y_2 \varphi_2}{\nu_2} + \dots + \frac{h_l y_l \varphi_l}{\nu_l} \right).$$
(II, 218)

7. Общее выражение коэффициентов аберраций объектива через коэффициенты аберраций его сложных компонентов конечной толщины. Пусть сложный объектив образован *i* компонентами таким образом, что плоскость изображений каждого предыдущего компонента является вместе с тем плоскостью предметов по отношению к соответствующему последующему компоненту, а плоскость выходного зрачка предыдущего компонента является вместе с тем плоскостью входного зрачка последующего.

Пусть через такой объектив рассчитаны оба вспомогательных параксиальных луча, образующих с оптической осью углы:  $\overline{a_1}$ ,  $\overline{\beta_1}$  — до преломления через первый компонент объектива; углы  $\overline{a_2}$ ,  $\overline{\beta_2}$  — в пространстве между первым и вторым компонентами объектива;  $\overline{a_3}$ ,  $\overline{\beta_3}$  в пространстве между вторым и третьим компонентами и т. д. и высоты падения:  $\overline{h_1}$ ,  $\overline{y_1}$  — на первой поверхности первого компонента;  $\overline{h_2}$ ,  $\overline{y_2}$  — на первой поверхности второго компонента и т. д. Параметры  $\overline{a}, \overline{\beta}, \overline{h}$  и  $\overline{y}$  пусть определены при условиях нормировки (II, 20). Установим зависимости между коэффициентами аберраций сложного обектива: S<sub>1</sub>, S<sub>11</sub>, S<sub>11</sub>, S<sub>12</sub>, S<sub>V</sub>, S<sub>V</sub> и коэффициентами аберраций его компонентов:

$$\begin{split} S_{\rm I}^{(1)}, \ S_{\rm II}^{(1)}, \ S_{\rm III}^{(1)}, \ S_{\rm III}^{(1)}, \ S_{\rm IV}^{(1)}, \ S_{\rm V}^{(1)}; \\ S_{\rm I}^{(2)}, \ S_{\rm II}^{(2)}, \ S_{\rm III}^{(2)}, \ S_{\rm IV}^{(2)}, \ S_{\rm V}^{(2)}; \\ & \cdots & \cdots & \cdots \\ S_{\rm I}^{(\ell)}, \ S_{\rm II}^{(\ell)}, \ S_{\rm III}^{(\ell)}, \ S_{\rm IV}^{(\ell)}, \ S_{\rm V}^{(\ell)}. \end{split}$$

При этом предполагается, что эти коэффициенты аберраций для каждого из компонентов определены при условиях нормировки (II, 21). Из общих выражений коэффициентов аберраций (II, 35) непосред-

Из общих выражений коэффициентов аберраций (II, 35) непосредственно следует:

$$S_{I} = \overline{a}_{1}^{3} \overline{h}_{1} S_{I}^{(1)} + \overline{a}_{2}^{3} \overline{h}_{2} S_{I}^{(2)} + \dots + \overline{a}_{i}^{3} \overline{h}_{i} S_{I}^{(l)};$$

$$S_{II} = \overline{a}_{1}^{2} \overline{h}_{1} S_{II}^{(1)} + \overline{a}_{2}^{2} \overline{h}_{2} \overline{\beta}_{2} S_{II}^{(2)} + \dots + \overline{a}_{i}^{2} \overline{h}_{i} \overline{\beta}_{i} S_{II}^{(l)};$$

$$S_{III} = \overline{a}_{1}^{2} \overline{h}_{1} S_{III}^{(1)} + \overline{a}_{2}^{2} \overline{h}_{2} \overline{\beta}_{2}^{2} S_{III}^{(2)} + \dots + \overline{a}_{i}^{2} \overline{h}_{i} \overline{\beta}_{i}^{2} S_{III}^{(l)};$$

$$S_{IV} = \frac{F'}{f_{1}'} S_{IV}^{(1)} + \frac{F'}{f_{2}'} S_{IV}^{(2)} + \dots + \frac{E'}{f_{i}'} S_{IV}^{(l)};$$

$$S_{V} = \overline{h}_{1} S_{V}^{(1)} + \overline{h}_{2} \overline{\beta}_{2}^{3} S_{V}^{(2)} + \dots + \overline{h}_{i} \overline{\beta}_{i}^{3} S_{V}^{(i)}.$$
(II, 219)

Для бесконечно удаленной плоскости предметов вместо формул (II, 219), приняв для коэффициентов аберраций сложного объектива и для коэффициентов аберраций первого компонента условия нормировки (II, 22), имеем:

$$S_{I \ \infty} = \overline{a}_{2}^{3} S_{I \ \infty}^{(1)} + \overline{a}_{2}^{3} \overline{h}_{2} S_{1}^{(2)} + \overline{a}_{3}^{3} \overline{h}_{3} S_{1}^{(3)} + \dots + \overline{a}_{i}^{3} \overline{h}_{i} S_{1}^{(i)};$$

$$S_{I \ \infty} = \overline{a}_{2}^{2} S_{I \ \infty}^{(1)} + \overline{a}_{2}^{2} \overline{h}_{2} \overline{\beta}_{2} S_{1 \ 1}^{(2)} + \overline{a}_{3}^{2} \overline{h}_{3} \overline{\beta}_{3} S_{1 \ 1}^{(3)} + \dots + a_{i}^{2} \overline{h}_{i} \overline{\beta}_{i} S_{1 \ 1}^{(i)};$$

$$S_{I \ 1} \ \infty = \overline{a}_{2} S_{I \ 1}^{(1)} \ \infty + \overline{a}_{2} \overline{h}_{2} \overline{\beta}_{2} S_{1 \ 1}^{(2)} + \overline{a}_{3} \overline{h}_{3} \overline{\beta}_{3} S_{1 \ 1}^{(3)} + \dots + a_{i}^{2} \overline{h}_{i} \overline{\beta}_{i} S_{1 \ 1}^{(i)};$$

$$S_{I \ 1} \ \infty = \overline{a}_{2} S_{I \ 1}^{(1)} \ \infty + \overline{a}_{2} \overline{h}_{2} \overline{\beta}_{2}^{2} S_{1 \ 1}^{(2)} + \overline{a}_{3} \overline{h}_{3} \overline{\beta}_{3}^{2} S_{1 \ 1}^{(3)} + \dots + a_{i}^{2} \overline{h}_{i} \overline{\beta}_{i} S_{1 \ 1}^{(i)};$$

$$S_{I \ 1} \ = \overline{a}_{2} S_{I \ 1}^{(1)} \ \infty + \overline{a}_{2} \overline{h}_{2} \overline{\beta}_{2}^{2} S_{1 \ 1}^{(2)} + \overline{a}_{3} \overline{h}_{3} \overline{\beta}_{3}^{2} S_{1 \ 1}^{(3)} + \dots + a_{i}^{2} \overline{h}_{i} \overline{\beta}_{i} S_{1 \ 1}^{(i)};$$

$$S_{I \ 1} \ = \frac{F'}{f_{1}'} S_{I \ 1}^{(1)} + \frac{F'}{f_{2}'} S_{1 \ 2}^{(2)} + \frac{F'}{f_{3}'} S_{1 \ 1}^{(3)} + \dots + \frac{F'}{f_{i}'} S_{1 \ 1}^{(i)};$$

$$S_{V \ \infty} \ = S_{V \ \infty}^{(1)} \ + \overline{h}_{2} \overline{\beta}_{2}^{3} S_{V}^{(2)} + \overline{h}_{3} \overline{\beta}_{3}^{3} S_{V}^{(3)} + \dots + \overline{h}_{i} \overline{\beta}_{i}^{3} S_{V}^{(i)},$$

$$(II, 220)$$

Для часто встречающегося двухкомпонентного объектива, состоящего из компонентов конечной толщины, положив в (II, 220)  $\overline{\overline{a_2}} = \overline{\overline{a}}$ и имея в виду, что  $\overline{h_2} = \overline{\overline{a}} \overline{s_2}$  и  $\overline{\overline{\beta}}_2 = \gamma_x^{(1)}$ , находим:

$$S_{I \infty} = \overline{a}^{3} \left( S_{I \infty}^{(1)} + \overline{a} \, \overline{s}_{2} S_{I}^{(2)} \right);$$

$$S_{II \infty} = \overline{a}^{2} \left( S_{II \infty}^{(1)} + \overline{a} \, \overline{s}_{2} \gamma_{x}^{(1)} S_{2}^{(2)} \right);$$

$$S_{III \infty} = \overline{a} \left( S_{III \infty}^{(1)} + \overline{a} \, \overline{s}_{2} \gamma_{x}^{(1)^{2}} S_{III}^{(2)} \right);$$

$$S_{IV} = \frac{F'}{f_{1}'} S_{IV}^{(1)} + \frac{F'}{f_{2}'} S_{IV}^{(2)};$$

$$S_{V \infty} = S_{V \infty}^{(1)} + \overline{a} \, \overline{s}_{2} \gamma_{x}^{(1)^{3}} S_{V}^{(2)}.$$
(II, 221)

8. Выражение коэффициентов аберраций объектива через коэффициенты аберраций его сложных «половинок» конечной толщины. Многие современные сложные анастигматы, как светосильные и широко-



Рис. II, 31. Схема оптики анастигматов типа «Уран» (а), «Ортогон» (б), «Рекорд» (в)

угольные, так и системы с нормальными оптическими характеристиками, содержат компоненты конечной толщины, что существенно усложняет теорию и методику их разработки. К последним относятся, например, светосильные широкоугольные объективы типа «Уран» (рис. II, 31, a), широкоугольные ортоскопические анастигматы «Ортогон» (рис. II, 31, b), особо светосильные объективы «Рекорд» (рис. II, 31, s) и др.

Оптические схемы этих объективов представляют комбинации, состоящие из двух сложных компонентов («половинок»), разделенных некоторым воздушным промежутком, в котором расположена апертурная диафрагма. Не ограничиваясь, здесь какой-либо конкретной оптической схемой «половинки», являющейся частью сложного объектива, назовем ее для краткости комбинацией X. Задача разработки сложных анастигматов и области аберраций третьего порядка, по-видимому, проще всего может решаться:

1) разделением коэффициентов аберраций всей системы по ее составляющим «половинкам», т. е. выражением коэффициентов аберраций всего объектива через коэффициенты аберраций его первой (комбинация X<sub>1</sub>) и второй (комбинация X<sub>2</sub>) «половинок»;

2) разработкой комбинаций X<sub>1</sub> и X<sub>2</sub> самостоятельно и независимо с последующим укомплектованием сложного объектива.

Ряд современных сложных анастигматов по их оптическим схемам подразделяется на две группы:

а) системы приблизительно симметричные и квазисимметричные (симметрично-подобные), понимая под последними комбинации, обе « половинки» которых ( $X_1$  и  $X_2$ ) имеют тождественные или подобные в геометрическом смысле оптические схемы; т. е. абсолютные величины соответственных конструктивных элементов «половинок» системы равны друг другу или отличаются лишь некоторым множителем пропорциональности;

б) системы несимметричные, у которых обе половинки (X<sub>1</sub> и X<sub>2</sub>) имеют различные оптические схемы.

Как показали исследования автора [3], в зависимости от оптических свойств комбинаций X<sub>1</sub> и X<sub>2</sub> возможны два случая их применения при укомплектовании из них сложной системы:

1) когда коэффициенты аберраций сложной системы выражаются через коэффициенты аберраций комбинаций  $X_1$  и  $X_2$ , вычисленные в прямом ходе лучей в предположении, что плоскости предметов расположены в бесконечности, слева от комбинаций  $X_1$  и  $X_2$ . Условимся этот случай укомплектования сложной системы символически записывать следующим образом:

$$\vec{X}_{1}; \ \vec{X}_{2};$$
 (II, 222)

2) когда коэффициенты аберраций сложной системы выражены через коэффициенты аберраций комбинаций  $X_1$  и  $X_2$ , определенные для бесконечно удаленных плоскостей предметов, причем для комбинации  $X_2$  коэффициенты по-прежнему определены в прямом ходе лучей, а для комбинации  $X_1$  — в обратном ходе лучей:

$$\overline{X}_1; \ \overline{X}_2.$$
 (II, 223)

Обозначим через  $f'_1$  и  $f'_2$  фокусные расстояния комбинаций  $X_1$  и  $X_2$ , которые в целях упрощения примем равными единице:

$$f'_1 = f'_2 = 1.$$
 (II, 224)

Пусть при этом  $x_1$  и  $x_2$  — расстояния плоскостей входных зрачков от вершин первых поверхностей комбинаций  $X_1$  и  $X_2$  (рис. II, 32). При укомплектовании системы по схеме (II, 223) для комбинации  $X_1$ , плоскость предметов расположена в бесконечности справа и, следовательно, через  $x_1$  будем обозначать расстояние входного зрачка от первой поверхности перевернутой комбинации  $X_1$ , проводя нумерацию поверхностей в обратном ходе лучей, т. е. со стороны апертурной диафрагмы, расположенной позади комбинации  $X_1$ .

Через  $x'_1$  и  $x'_2$  обозначим расстояния плоскостей выходных зрачков от вершин последних поверхностей комбинаций  $X_1$  и  $X_2$ ;  $d_1$  и  $t'_1$  расстояния от второй главной плоскости комбинации  $X_1$  соответственно до плоскости выходного зрачка и до вершины последней поверхности;  $d_2$  и  $t_2$  — расстояния первой главной плоскости комбинации  $X_2$ соответственно от плоскости входного зрачка и от вершины первой поверхности. Сложную систему укомплектуем, применяя комбинации X<sub>1</sub> и X<sub>2</sub> при условиях, что:

а) комбинация  $X_1$  после ее приведения к некоторому фокусному расстоянию  $\overline{f'_1}$  используется в качестве первой «половинки» сложной системы; соответственно комбинация  $X_2$  после ее приведения к некоторому фокусному расстоянию  $\overline{f'_2}$  используется в качестве второй «половинки» сложной системы;



Рис. II, 32. Комбинации X<sub>1</sub> и X<sub>2</sub>

б) фокусное расстояние сложной системы равно единице (F' = 1);

в) отношение фокусных расстояний «половинок» сложной системы равно е:

$$\frac{\overline{I}_{1}}{\overline{I}_{2}} = e,$$
 (11, 225)

где  $\overline{f'}_1$  и  $\overline{f'}_2$  — фокусные расстояния «половинок», приведенные к фокусному расстоянию всей системы, равному единице:



Рис. 11, 33. Схема комплектования сложного объектива

$$\overline{f}'_1 = kef'_1 = ke;$$
  
 $\overline{f}'_2 = kf'_2 = k,$  (11, 226)

где *k* — некоторый множитель приведения;

г) плоскость изображения первой «половинки» системы является плоскостью предметов для второй и плоскость выходного зрачка первой совмещается с плоскостью входного зрачка второй.

На рис. II, 33 представлена схема комплектования такой системы. Надчеркнутые буквенные обозначения ( $\overline{d_1}$ ,  $\overline{d_2}$  и т. д.) указывают, что соответствующие величины относятся уже к системе, приведенной к фокусному расстоянию F' = 1.

Для образования такой системы, очевидно, необходимо все конструктивные элементы оптики комбинации X<sub>2</sub> умножить на некоторый множитель приведения k, соответственно конструктивные элементы

комбинации X<sub>1</sub> умножить на величину *ek*; определим этот множитель *k*. Фокусное расстояние *F*' всей системы выражается соотношением:

$$\frac{1}{F'} = \frac{1}{\bar{t}'_1} + \frac{1}{\bar{t}'_2} - \frac{\bar{d}}{\bar{t}'_1\bar{t}'_2} = 1, \qquad (II, 227)$$

где

$$\overline{d} = \overline{d}_1 + \overline{d}_2 = ekd_1 + kd_2.$$
(11, 228)

Из последних трех формул находим:

$$k = (1 - d_1) + \frac{1}{e} (1 - d_2).$$
 (II, 229)

Обозначим через  $\gamma_{x_1}$  и  $\gamma_{x_2}$  угловые увеличения в выходных зрачках комбинаций  $X_1$  и  $X_2$ ; из известного соотношения (II, 188'):

$$\gamma_x = -\frac{x-s_F}{f} = -\frac{nf'}{n'(x'-s'_{F'})}$$

примененного к рассматриваемым случаям (рис. II, 32), находим:

$$\gamma_{x_1} = -\frac{f'_1}{x'_1 - s'_{1, F'}} = -\frac{f'_1}{x'_1 - f'_1 - t'_1} = \frac{1}{1 - d_1}; \quad (\text{II}, 230)$$

$$\gamma_{x_2} = \frac{x_2 - s_{2, F}}{f'_2} = 1 - d_2. \qquad (II, 231)$$

После подстановки в (II, 229) получим:

$$k = \frac{1}{\gamma_{x_1}} + \frac{\gamma_{x_2}}{e} \cdot \tag{II, 232}$$

Установим зависимость между коэффициентами аберраций сложной системы:

$$S_{I^{\infty}}, S_{II^{\infty}}, S_{III^{\infty}}, S_{IV}, S_{V^{\infty}}$$

и соответственными коэффициентами аберраций комбинаций X<sub>1</sub> и X<sub>2</sub>:

$$S_{I \ \infty}^{(x_1)}, S_{II \ \infty}^{(x_1)}, S_{III \ \infty}^{(x_1)}, S_{IV}^{(x_1)}, S_{V \ \infty}^{(x_1)}, S_{V \ \infty}^{(x_2)}, S_{III \ \infty}^{(x_2)}, S_{IV}^{(x_2)}, S_{V \ \infty}^{(x_2)}, \}$$
(II, 233)

которые определены для бесконечно удаленной плоскости предметов, причем при комплектовании системы по схеме (II, 222) — в прямом ходе лучей как для комбинации  $X_1$ , так и для комбинации  $X_2$ ; при комплектовании системы по схеме (II, 223) коэффициенты аберраций (II, 233) определены в прямом ходе лучей для комбинации  $X_2$  и в обратном ходе лучей для комбинации  $X_1$ .

Опуская промежуточные выкладки и отсылая заинтересовавше-

гося читателя к указанному выше источнику [3], напишем окончательные результаты: 1. Для укомплектования сложной системы по символической схе-

ме (II, 222):

$$(ek)^{3} S_{I \infty} = -\frac{x_{2}}{e} S_{Ix}^{(x_{2})} + \left(S_{I \infty}^{(x_{1})} + \frac{e^{3}}{\gamma_{x}^{4}} S_{I\infty}^{(x_{2})}\right) + \frac{4e^{2}}{\gamma_{x_{1}}^{3}} S_{II \infty}^{(x_{2})} + \frac{2e}{\gamma_{x_{1}}^{2}} \left(3S_{III \infty}^{(x_{2})} + S_{IV}^{(x_{2})}\right) + \frac{4}{\gamma_{x_{1}}} S_{V \infty}^{(x_{2})} - \frac{e^{2}}{\gamma_{x_{1}}^{3}} - \frac{3e}{\gamma_{x_{1}}^{2}} \gamma_{x_{2}} - \frac{3}{\gamma_{x_{1}}} \left(\gamma_{x_{2}}^{2} - 1\right);$$
(a) (II, 234)

$$(ek)^{3} S_{II \infty} = \frac{x_{2}}{e} \gamma_{x_{1}} S_{Ix}^{(x_{2})} + \left( S_{II \infty}^{(x_{1})} + \frac{e^{2}}{\gamma_{x_{1}}^{2}} S_{II \infty}^{(x_{2})} \right) +$$

$$+ \frac{e}{\gamma_{x_{1}}} \left( 3S_{\text{III}\,\infty}^{(x_{2})} + S_{\text{IV}}^{(x_{2})} \right) + 3S_{\text{V}\,\infty}^{(x_{2})} - \frac{e}{\gamma_{x_{1}}} \gamma_{x_{2}} - 2 \left( \gamma_{x_{2}}^{2} - 1 \right); \quad (6)$$

$$(ek) S_{\rm III\,\infty} = \frac{x_2}{e} \gamma_{x_1}^2 S_{\rm Ix}^{(x_2)} + \left(S_{\rm III\,\infty}^{(x_1)} + eS_{\rm III\,\infty}^{(x_2)}\right) + 2\gamma_{x_1} S_{\rm V\,\infty}^{(x_2)} - \gamma_{x_1} \left(\gamma_{x_2}^2 - 1\right);$$
(B)

$$(ek) S_{IV} = S_{IV}^{(x_1)} + e S_{IV}^{(x_2)}; \qquad (r)$$

$$S_{V\infty} = \frac{x_2}{e} \gamma_{x_1}^3 S_{lx}^{(x_2)} + \left( S_{V\infty}^{(x_1)} + \gamma_{x_1}^2 S_{V\infty}^{(x_2)} \right), \qquad (A)$$

где коэффициенты аберраций (II, 233) определены при нормировке (II, 22), а коэффициенты  $S_{1x}$  — при нормировке (II, 21). 2. Для укомплектования сложной системы по символической схе-

ме (II, 223) имеем:

$$(ek)^{3} S_{I\infty} = \left( x_{1} S_{Ix}^{(x_{1})} + \frac{x_{2}}{e} S_{Ix}^{(x_{2})} \right) + \overleftarrow{\gamma}_{x_{1}}^{4} \left( S_{I\infty}^{(x_{1})} + e^{3} S_{I\infty}^{(x_{2})} \right) - - 4 \overleftarrow{\gamma}_{x_{1}}^{3} \left( S_{II\infty}^{(x_{1})} - e^{2} S_{II\infty}^{(x_{2})} \right) + 6 \overleftarrow{\gamma}_{x_{1}}^{2} \left( S_{III\infty}^{(x_{1})} + e S_{III\infty}^{(x_{2})} \right) + + 2 \overleftarrow{\gamma}_{x_{1}}^{2} \left( S_{IV}^{(x_{1})} + e S_{IV}^{(x_{2})} \right) - 4 \overleftarrow{\gamma}_{x_{1}} \left( S_{V\infty}^{(x_{1})} - S_{V\infty}^{(x_{2})} \right) + (1 - e^{2}) \overleftarrow{\gamma}_{x_{1}}^{3} - - 3 \left( \overleftarrow{\gamma}_{x_{1}}e + \gamma_{x_{2}} \right) \overleftarrow{\gamma}_{x_{1}} \gamma_{x_{2}};$$
(a)  
$$(ek)^{2} S_{II\infty} = \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \left( x_{1} S_{Ix}^{(x_{1})} + \frac{x_{2}}{e} S_{Ix}^{(x_{2})} \right) - \overleftarrow{\gamma}_{x_{1}}^{2} \left( S_{II\infty}^{(x_{1})} - e^{2} S_{II\infty}^{(x_{2})} \right) +$$

$$+ 3 \overleftarrow{\gamma}_{x_{1}} \left( S_{\text{III}\,\infty}^{(x_{1})} + e S_{\text{III}\,\infty}^{(x_{2})} \right) + \overleftarrow{\gamma}_{x_{1}} \left( S_{\text{IV}}^{(x_{1})} + e S_{\text{IV}}^{(x_{2})} \right) - 3 \left( S_{\text{V}\,\infty}^{(x_{1})} - S_{\text{V}\,\infty}^{(x_{2})} \right) + \\ + \overleftarrow{\gamma}_{x_{1}}^{2} - 2 \gamma_{x_{2}}^{2} - e \overleftarrow{\gamma}_{x_{1}} \gamma_{x_{2}}; \tag{6}$$

190

$$(ek) S_{\mathrm{III} \infty} = \frac{1}{\overbrace{\gamma_{x_{1}}}} \left( x_{1} S_{\mathrm{I}x}^{(x_{1})} + \frac{x_{2}}{e} S_{\mathrm{I}x}^{(x_{2})} \right) + \left( S_{\mathrm{III} \infty}^{(x_{1})} - e S_{\mathrm{III} \infty}^{(x_{2})} \right) - \frac{2}{\overbrace{\gamma_{x_{1}}}} \left( S_{\mathrm{V} \infty}^{(x_{1})} - S_{\mathrm{V} \infty}^{(x_{2})} \right) + \frac{1}{\overbrace{\gamma_{x_{1}}}} \left( \overbrace{\gamma_{x_{1}}}^{\leftarrow} - \gamma_{x_{2}}^{2} \right);$$
(B)

$$(ek) S_{\rm IV} = S_{\rm IV}^{(x_1)} + e S_{\rm IV}^{(x_2)}; \qquad (\Gamma)$$

$$S_{V\infty} = \frac{1}{\overleftarrow{\gamma}_{x_1}^3} \left( x_1 S_{l_x}^{(x_1)} + \frac{x_2}{e} S_{l_x}^{(x_2)} \right) - \frac{1}{\overleftarrow{\gamma}_{x_1}^2} \left( S_{V\infty}^{(x_1)} - S_{V\infty}^{(x_2)} \right), \qquad (A)$$

где  $\overleftarrow{\gamma_{x_1}}$  — угловое увеличение в зрачках комбинации  $X_1$ , определенное в обратном ходе лучей и, очевидно, равное обратной величине  $\gamma_{x_1}$  (см. II, 230):

$$\overleftarrow{\gamma}_{x_1} = \frac{1}{\gamma_{x_1}}$$
. (II, 236)

Формулы (II, 235) существенно упрощаются в случае симметричных или квазисимметричных систем; в этих случаях имеем:

$$S_{IX}^{(x_{1})} = S_{IX}^{(x_{2})}; \quad S_{I\infty}^{(x_{1})} = S_{I\infty}^{(x_{2})}; \quad S_{II}^{(x_{1})} = S_{II}^{(x_{2})}; \\S_{III}^{(x_{1})} = S_{III}^{(x_{2})}; \quad S_{IV}^{(x_{1})} = S_{IV}^{(x_{2})}; \quad S_{V\infty}^{(x_{1})} = S_{V\infty}^{(x_{2})}; \\\gamma_{x_{1}} = \frac{1+e}{ek}; \quad \gamma_{x_{2}} = \frac{ek}{1+e}; \end{cases}$$
(II, 237)

выражения (II, 235) принимают следующий вид:

$$\begin{split} S_{1 \infty} &= \frac{1+e}{e^{4}k^{3}} x S_{1x}^{(x)} + \frac{ek\left(1+e^{3}\right)}{\left(1+e\right)^{4}} S_{1 \infty}^{(x)} - \frac{4\left(1-e\right)}{\left(1+e\right)^{2}} S_{11 \infty}^{(x)} + \\ &+ \frac{6}{ek\left(1+e\right)} S_{111 \infty}^{(x)} + \frac{2}{ek\left(1+e\right)} S_{1V}^{(x)} - \frac{2+e}{\left(1+e\right)^{2}}; \\ S_{1I \infty} &= \frac{\left(1+e\right)^{2}}{e^{4}k^{3}} x S_{1x}^{(x)} - \frac{\left(1-e^{2}\right)}{\left(1+e\right)^{2}} S_{11 \infty}^{(x)} + \\ &+ \frac{3}{ek} S_{111 \infty}^{(x)} + \frac{1}{ek} S_{1V}^{(x)} + \frac{1}{1+e}; \\ S_{1II \infty} &= \frac{\left(1+e\right)^{3}}{e^{4}k^{3}} x S_{1x}^{(x)} + \frac{1+e}{ek} S_{111x}^{(x)}; \\ &S_{1V} &= \frac{\left(1+e\right)^{4}}{ek} S_{1V}^{(x)}; \\ &S_{V\infty} &= \frac{\left(1+e\right)^{4}}{e^{4}k^{3}} S_{1x}^{(x)} . \end{split}$$
(II, 238)

Для симметричных систем e = 1, что приводит к дальнейшему упрощению формул (II, 238).

Из общих соотношений (II, 235, б, в, г, д) следует:

$$\frac{(ek)^2}{\overleftarrow{\tau_{x_1}}} S_{II \infty} - ek \left( 3S_{III \infty} + S_{IV} \right) + 2\overleftarrow{\gamma_{x_1}} S_{V \infty} =$$

$$= -\overleftarrow{\gamma_{x_1}} \left( S_{II \infty}^{(x_1)} - e^2 S_{II \infty}^{(x_2)} \right) + \frac{1}{\overleftarrow{\tau_{x_1}}} \left( S_{V \infty}^{(x_1)} - S_{V \infty}^{(x_2)} \right) +$$

$$+ (e^2 - 2)\overleftarrow{\gamma_{x_1}} + \frac{\overrightarrow{\gamma_{x_2}}}{\overleftarrow{\tau_{x_1}}} - e^2 k. \qquad (II, 239)$$

Эта формула приобретает особо интересный смысл в случае квазисимметричных систем (см. II, 237):

$$(1+e) S_{II \infty} - 3S_{III \infty} - S_{IV} + \frac{2}{1+e} S_{V \infty} = -1;$$
 (II, 239')

это соотношение налагает определенные ограничения коэффициентов

третьего порядка, определяющих «полевые» аберрации объектива. Для удобства практических применений общие выражения (II, 235) могут быть представлены в следующем виде:

$$\begin{split} S_{1\,\infty} &= \overleftarrow{\gamma}_{x_{1}}^{2} \left(\frac{1}{ek}\right)^{3} \left[ \frac{4e^{2}k^{2}}{\overleftarrow{\gamma}_{x_{1}}} S_{11\,\infty} - 2ek\left(3S_{111\,\infty} + S_{1V}\right) + 3\overleftarrow{\gamma}_{x_{1}} S_{V\,\infty} + \right. \\ &+ \overleftarrow{\gamma}_{x_{1}}^{2} \left(S_{1\,\infty}^{(x_{1})} + e^{3}S_{1\,\infty}^{(x_{2})}\right) - \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \left(S_{V\,\infty}^{(x_{1})} - S_{V\,\infty}^{(x_{2})}\right) + \\ &+ \left(3 - e^{2}\right)\overleftarrow{\gamma}_{x_{1}} + e\gamma_{x_{2}} - \frac{\gamma_{x_{2}}^{2}}{\overleftarrow{\gamma}_{x_{1}}}\right]; \qquad (a) \\ S_{11\,\infty} &= \overleftarrow{\gamma}_{x_{1}} \left(\frac{1}{ek}\right)^{2} \left[ek\left(3S_{111\,\infty} + S_{1V}\right) - 2\overleftarrow{\gamma}_{x_{1}} S_{V\,\infty} - \right. \\ &- \overleftarrow{\gamma}_{x_{4}} \left(S_{11\,\infty}^{(x_{1})} - e^{2}S_{11\,\infty}^{(x_{2})}\right) + \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \left(S_{V\,\infty}^{(x_{1})} - S_{V\,\infty}^{(x_{2})}\right) + \\ &+ \left(e^{2} - 2\right)\overleftarrow{\gamma}_{x_{1}} + \frac{\gamma_{x_{2}}^{2}}{\overleftarrow{\gamma}_{x_{1}}} - e^{2}k\right]; \qquad (b) \qquad (11, 240) \\ &S_{111\,\infty} &= \frac{1}{ek} \left[\overleftarrow{\gamma}_{x_{1}} S_{V\,\infty} + \left(S_{111\,\infty}^{(x_{1})} + eS_{111\,\infty}^{(x_{2})}\right) - \\ &- \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \left(S_{V\,\infty}^{(x_{1})} - S_{V\,\infty}^{(x_{2})}\right) + \overleftarrow{\gamma}_{x_{1}} - \frac{\gamma_{x_{2}}^{2}}{\overleftarrow{\gamma}_{x_{1}}}\right]; \qquad (b) \qquad (11, 240) \\ S_{1V} &= \frac{1}{ek} \left(S_{1V}^{(x_{1})} + eS_{1V}^{(x_{2})}\right); \qquad (c) \end{aligned}$$

192

$$S_{V_{\infty}} = \frac{1}{\overleftarrow{\gamma}_{x_{1}}^{3}} \left( x_{1} S_{Ix}^{(x_{1})} + \frac{x_{2}}{c} S_{Ix}^{(x_{2})} \right) - \frac{1}{\overleftarrow{\gamma}_{x_{1}}^{2}} \left( S_{V_{\infty}}^{(x_{1})} - S_{V_{\infty}}^{(x_{2})} \right).$$
(II)

У хорошо корригированных анастигматов аберрации всех порядков, а следовательно, и аберрации третьего порядка невелики; положив

$$S_{1 \infty} \approx 0$$
,  $S_{11 \infty} \approx 0$ ,  $S_{111 \infty} \approx 0$ ,  $S_{1 \gamma} \approx 0$ ,  $S_{\gamma} \approx 0$ ,

из выражений (II, 240) находим зависимости между коэффициентами аберраций первой и второй «половинок» системы:

$$S_{V \infty}^{(x_{1})} - S_{V \infty}^{(x_{2})} = Z; \qquad (a)$$

$$S_{III \infty}^{(x_{1})} + eS_{III \infty}^{(x_{2})} = \frac{1}{\overleftarrow{\gamma}_{x_{1}}} Z - \overleftarrow{\gamma}_{x_{1}} + \frac{\overrightarrow{\gamma}_{x_{2}}^{2}}{\overleftarrow{\gamma}_{x_{1}}}; \qquad (b)$$

$$S_{II \infty}^{(x_{1})} - e^{2}S_{II \infty}^{(x_{2})} = \frac{1}{\overleftarrow{\gamma}_{x_{1}}^{2}} Z - 2 + \frac{\overrightarrow{\gamma}_{x_{2}}^{2}}{\overleftarrow{\gamma}_{x_{1}}^{2}} - \frac{\overrightarrow{\gamma}_{x_{2}}}{\overleftarrow{\gamma}_{x_{1}}}; \qquad (b)$$

$$S_{I \infty}^{(x_{1})} + e^{3}S_{I \infty}^{(x_{2})} = \frac{1}{\overleftarrow{\gamma}_{x_{1}}^{3}} Z - \frac{3 - e^{2}}{\overleftarrow{\gamma}_{x_{1}}} - \frac{e^{\gamma}_{x_{2}}}{\overleftarrow{\gamma}_{x_{1}}}; \qquad (c)$$

где

$$Z = \frac{1}{\overleftarrow{\gamma_{x_1}}} \left( x_1 S_{1x}^{(x_1)} + \frac{x_2}{e} S_{1x}^{(x_2)} \right).$$

Таким образом, зависимости между коэффициентами аберраций «половинок» сложного анастигмата определяются величинами коэф-фициентов сферической аберрации в зрачках его «половинок» и чисто внешними элементами:

$$e, \gamma_{x_1}, \gamma_{x_2}$$

Уравнения (II, 241) приводят к некоторым следствиям: 1. Пусть  $\dot{\gamma}_{x1} = \gamma_{x_2}$ ; этому условию удовлетворяет большая группа анастигматов, имеющих не только приблизительно симметричные, но и несимметричные оптические схемы; из (II, 241) находим:

$$S_{V_{\infty}}^{x_1} - S_{V_{\infty}}^{x_2} = Z;$$
 (a)

$$S_{111_{\infty}}^{(x_1)} + eS_{111_{\infty}}^{(x_2)} = \frac{1}{\gamma_{x_2}} Z;$$
 (6)

$$S_{\Pi_{\infty}}^{(x_{1})} - e^{2}S_{\Pi_{\infty}}^{(x_{2})} = \frac{1}{\gamma_{x_{2}}^{2}} Z - e - 1; \qquad (B) \begin{cases} (11, 242) \\ (11, 242) \end{cases}$$

$$S_{1\infty}^{(x_1)} + e^2 S_{1\infty}^{(x_2)} = \frac{1}{\gamma_{x_2}^3} Z + \frac{1}{\gamma_{x_2}} (e^2 - e - 2).$$
 (F)

2. Пусть  $\gamma_{x1} = \gamma_{x2}$ , e = 1 и Z = 0, что приближенно имеет место у некоторых современных светосильных широкоугольных анастигматов; находим:

$$S_{V_{\infty}}^{(x_{1})} - S_{V_{\infty}}^{(x_{2})} = 0; \quad (a)$$

$$S_{III_{\infty}}^{(x_{1})} + S_{III_{\infty}}^{(x_{2})} = 0; \quad (b)$$

$$S_{II_{\infty}}^{(x_{1})} - S_{II_{\infty}}^{(x_{2})} = -2; \quad (B)$$

$$S_{I_{\infty}}^{(x_{1})} + S_{I_{\infty}}^{(x_{2})} = -\frac{2}{\gamma_{x_{2}}}. \quad (r)$$

$$(II, 243)$$

Во многих конкретных оптических схемах указанные ограничения и вытекающие из них следствия следует иметь в виду при проектировании сложных анастигматов, точнее, при синтезе их оптических схем в первом приближении.

9. Выражение коэффициентов хроматических аберраций сложного объектива через коэффициенты хроматических аберраций его «половинок».

Как было сказано выше (II, 150) и (II, 152), коэффициенты членов первого порядка в разложениях продольной хроматической аберрации и хроматической разности увеличений в переменных Ланге имеют следующий вид:

$$C_{I} = \sum_{k=1}^{k=p} h_{k} \frac{\Delta \alpha_{k}}{\Delta \frac{1}{n_{k}}} \Delta \frac{\delta n_{k}}{n_{k}}; \qquad (II, 244)$$

$$C_{II} = \sum_{k=1}^{k=p} y_k \frac{\Delta \alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k} \cdot$$
(II, 245)

Установим зависимость между коэффициентами хроматических аберраций сложного объектива, относящихся к случаю бесконечно удаленной плоскости предметов:

$$C_{I_{\infty}}$$
 и  $C_{II_{\infty}}$  (II, 246)

и соответственными коэффициентами хроматических аберраций комбинаций X<sub>1</sub> и X<sub>2</sub>, образующих сложную систему:

$$C_{I\infty}^{(x_1)}$$
  $H C_{II\infty}^{(x_1)}$ ;  $C_{I\infty}^{(x_2)}$   $H C_{II\infty}^{(x_2)}$ , (II, 247)

где x<sub>1</sub> и x<sub>2</sub> — расстояния входных зрачков от первых преломляющих поверхностей комбинаций X<sub>1</sub> и X<sub>2</sub>. Величины хроматических аберраций следующим образом выража-

Величины хроматических аберраций следующим образом выражаются через их коэффициенты:

$$\delta s'_{xp} = F'C_{I\infty}; \quad \delta L'_{xp} = -l'C_{II\infty}. \tag{II, 248}$$

Подобно тому, как это было сделано выше при синтезе монохроматических аберраций сложного объектива, рассмотрим две схемы комплектования системы:

- I. Схема  $(\vec{X}_1; \vec{X}_2)$ .
- II. Схема  $(\overleftarrow{X}_1; \overrightarrow{X}_2)$ .

Для первой схемы образования сложного объектива из (II, 244) непосредственно следует:

$$C_{1\infty} = \overline{\bar{a}} C_{1\infty}^{(x_1)} + \overline{h} \overline{\bar{a}} C_{1}^{(x_2)}, \qquad (\text{II}, 249)$$

где через  $\overline{a}$  по-прежнему обозначен угол с оптической осью первого вспомогательного параксиального луча в пространстве между «половин. ками» объектива; *h* — высота пересечения тем же лучом первой преломляющей поверхности второй «половинки» объектива. Хроматический коэффициент С<sup>(x1)</sup> для первой «половинки» объектива нормируется условиями (II, 22); коэффициент C<sub>1</sub><sup>(x2)</sup> для второй «половинки» объектива нормируется условиями  $\alpha_1 = 1$ ,  $h_1 = 1$ .

Выражение (II, 249) можно привести к виду:

$$C_{I_{\infty}} = \frac{1}{ek} C_{I_{\infty}}^{(x_1)} + \frac{s_2}{e^{2k}} C_{I}^{(x_2)}, \qquad (II, 250)$$
  
$$\overline{\overline{a}} = \frac{1}{\overline{f}'_1} = \frac{1}{ek} \quad H \quad \overline{h} = \overline{\overline{a}} \ \overline{s}_2 = \overline{\overline{a}} k s_2.$$

Остается выразить коэффициент  $C_{1}^{(x_2)}$ , относящийся ко второй «по-ловинке» объектива и определенный для конечного расстояния плоскости предметов через хроматические коэффициенты, соответствующие бесконечно удаленной плоскости предметов. Можно показать, что это выражение имеет следующий вид:

$$C_{\rm I}^{(x_2)} = \frac{1}{s_2} \left( \frac{e^2}{\gamma_{x_1}^2} C_{\rm I\,\infty}^{(x_2)} + \frac{2e}{\gamma_{x_1}} C_{\rm I\,I\,\infty}^{(x_2)} + C_{\rm I\,x}^{(x_2)} \right), \qquad ({\rm II}, 251)$$

С<sup>(x2)</sup> — коэффициент хроматической аберрации в выходном где зрачке второй «половинки» объектива, выражающийся суммой вида:

$$C_{1x} = \sum_{k=1}^{k=p} y_k \frac{\Delta\beta_k}{\Delta \frac{1}{n_k}} \Delta \frac{\delta n_k}{n_k}; \qquad (II, 252)$$

переменные Ланге  $y_k$  и  $\beta_k$ , относящиеся ко второму вспомогательному лучу, нормируются начальными условиями:  $\beta_1 = 1$ ,  $y_1 = x_1$ . Из последних двух выражений находим искомую зависимость при

комплектовании объектива по схеме ( $\vec{X}_1$ ;  $\vec{X}_2$ ):

$$ekC_{I_{\infty}} = C_{I_{\infty}}^{(x_1)} + \frac{e}{\gamma_{x_1}^2} C_{I_{\infty}}^{(x_2)} + \frac{2}{\gamma_{x_1}} C_{II_{\infty}}^{(x_2)} + \frac{1}{e} C_{I_{\infty}}^{(x_2)}. \quad (II, 253)$$

195

Заметим, что у многих объективов величина коэффициента  $C_{Ix}^{(x_2)}$  значительно меньше величины коэффициента  $C_{I\infty}^{(x_2)}$ .

Для этой же схемы комплектования объектива выражение второго хроматического коэффициента ( $C_{11\infty}$ ) сложной системы имеет вид;

$$C_{II \infty} = C_{II \infty}^{(x_1)} + \frac{\gamma_{x_1}}{e} C_{II}^{(x_2)}.$$
 (II,254)

Коэффициент  $C_{11}^{(x_2)}$ , определенный для конечного расстояния плоскости предметов, может быть выражен через таковой, определенный для бесконечно удаленной плоскости предметов:

$$C_{II\,\infty} = C_{II\,\infty}^{(x_1)} + C_{II\,\infty}^{(x_2)} + \frac{\gamma_{x_1}}{e} C_{I\,x}^{(x_2)}. \tag{II,255}$$

Коэффициенты хроматических аберраций комбинаций  $\vec{X}_1$  и  $\vec{X}_2$  определены для тех положений  $x_1$  и  $x_2$  входных зрачков, для которых выше корригировались монохроматические аберрации объектива. Заметим при этом, что перемещение плоскости входного зрачка  $\Delta x = x - x_0$ вызывает следующие изменения коэффициентов:

$$C_{1 \infty}^{(x)} = C_{1 \infty}^{(x_{0})};$$

$$C_{11 \infty}^{(x)} = (x - x_{0}) C_{11 \infty}^{(x_{0})} + C_{11 \infty}^{(x_{0})};$$

$$C_{1x}^{(x)} = (x - x_{0})^{2} C_{1 \infty}^{(x_{0})} + 2 (x - x_{0}) C_{11 \infty}^{(x_{0})} + C_{1 x}^{(x_{0})},$$

$$\left. \right\}$$
(I1,256)

где  $x_0$  — первоначальное положение плоскости входного зрачка, которому соответствуют коэффициенты  $C_{1,x_0}^{(x_0)}$  и  $C_{1,x}^{(x_0)}$ . Во второй схеме образования сложного объектива ( $X_1$ ;  $X_2$ ) предполагается, что коэффициенты аберраций для комбинации  $X_1$  вычислены в обратном ходе лучей, т. е. для бесконечно далекой плоскости предметов, расположенных справа от комбинации  $X_1$ , являющейся первой «половинкой» объектива:

$$\overleftarrow{C}_{I\infty}^{(x_1)}, \quad \overleftarrow{C}_{II\infty}^{(x_1)}, \quad \overleftarrow{C}_{Ix}^{(x_1)};$$

через x<sub>1</sub> по-прежнему обозначим расстояние центра входного зрачка от вершины первой (нумерация поверхностей комбинации X<sub>1</sub> ведется также в обратном порядке) поверхности комбинации X<sub>1</sub>.

Приходим к зависимостям:

$$C_{I \infty}^{(x_{1})} = \overleftarrow{\gamma}_{x_{1}}^{2} \overleftarrow{C}_{I \infty}^{(x_{1})} - 2 \overleftarrow{\gamma}_{x_{1}} C_{I I \infty}^{(x_{1})} + \overleftarrow{C}_{I x}^{(x_{1})};$$

$$C_{I I \infty}^{(x_{1})} = -\overleftarrow{C}_{I I \infty}^{(x_{1})} + \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \overleftarrow{C}_{I x}^{(x_{1})},$$

$$\left. \left. \right\}$$

$$(II, 257)$$

где  $C_{1\infty}^{(x_1)}$  и  $C_{11\infty}^{(x_1)}$  — коэффициенты хроматических аберраций комбинации  $X_1$ , определенные в прямом ходе лучей и при нормировке  $\beta_1 = 1$  и  $y_1 = x_1$ . После подстановки (II, 257) в выражения (II, 253) и (II, 255) находим:

$$e^{k}C_{1\infty} = \overset{\leftarrow}{\gamma}_{x_{1}}^{2} \left( \overleftarrow{C}_{1\infty}^{(x_{1})} + eC_{1\infty}^{(x_{2})} \right) - 2 \overleftarrow{\gamma}_{x_{1}} \left( \overleftarrow{C}_{11\infty}^{(x_{1})} - - - C_{11\infty}^{(x_{2})} \right) + \left( \overleftarrow{C}_{1x}^{(x_{1})} + \frac{1}{e} C_{1x}^{(x_{2})} \right);$$

$$C_{11\infty} = -\left( \overleftarrow{C}_{11\infty}^{(x_{1})} - C_{11\infty}^{(x_{2})} \right) + \frac{1}{\overleftarrow{\gamma}_{x_{1}}} \left( \overleftarrow{C}_{1x}^{(x_{1})} + \frac{1}{e} C_{1x}^{(x_{2})} \right).$$
(II,258)

Формулы (II, 258) существенно упрощаются, если положить:

$$e = 1; \quad \overleftarrow{\gamma}_{x_1} = \gamma_{x_2} = \frac{k}{2}; \quad \overleftarrow{C}_{I \ \infty}^{(x_1)} = C_{I \ \infty}^{(x_2)}; \quad \overleftarrow{C}_{II \ \infty}^{(x_1)} = C_{II \ \infty}^{(x_2)};$$

находим:

$$C_{1 \infty} = \frac{k}{2} C_{1 \infty}^{(x_2)} + \frac{2}{k} C_{1x}^{(x_2)};$$

$$C_{11 \infty} = \frac{4}{k} C_{1x}^{(x_2)};$$
(II,259)

последнее имеет место, например, в случае симметричных объективов или объективов, близких к симметричным.

Полученные здесь зависимости упрощают анализ оптических схем сложных анастигматов, а также задачу синтеза новых схем по «половинкам» системы.

## § 6. ТЕРМООПТИЧЕСКИЕ И ТЕРМОБАРИЧЕСКИЕ АБЕРРАЦИИ ОБЪЕКТИВОВ

За последние годы успешно решались задачи создания оптических, в частности фотографических, систем, сохраняющих свои оптические качества при изменении температуры.

Такие требования предъявляются к группам точных и оптически совершенных приборов применяющихся в переменных метеорологических и климатических условиях, — к фотографическим объективам, применяющимся для аэросъемки, к астрофотографическим объективам для астрономических исследований и т. п.

Тепловые колебания вызывают изменения оптических постоянных стекол, геометрических параметров оптических и механических деталей. Низкая теплопроводность оптических материалов обусловливает появление в линзах температурных градиентов.

Указанные тепловые колебания приводят к дефокусировке плоскости изображения и изменению величины изображения. Очевидно, тепловые колебания, вызывающие неравномерное распределение температуры и изменяющиеся со временем, приводят к такого рода нарушениям оптических свойств объектива, которые не могут быть устранены при его коррекции. Задача разработки объектива, не расстраивающегося при изменении температуры, становится разрешимой, если предположить, что процесс изменения температуры протекает весьма медленно; в этом случае возникающие температурные градиенты в объективе весьма малы.

Задача оптического расчета сводится к устранению смещения плоскости изображения — к исправлению, как мы ее назвали, термооптической аберрации положения изображения, а иногда и к устранению колебаний размеров изображения — к исправлению термооптической аберрации увеличения\*.

На первую из указанных термооптических аберраций следует обращать внимание при разработке длиннофокусных аэрофотообъективов; вторая аберрация должна учитываться в высокоортоскопических и высокоразрешающих аппаратах для топографической аэросъемки, а также при некоторых точных астрономических или геодезических определениях, связанных с установлением координат тех или иных объектов.

Если объектив постепенно принимает различные температуры, то исправление термооптических аберраций должно проводиться для заданного температурного интервала. Во избежание возможности возникновения быстрых температурных колебаний корпус объектива защищают термоизоляционным материалом.

Изложим здесь развитую нами теорию термооптических аберраций, использованную в дальнейшем (главы IV и VI) для проектирования так называемых нерасстраивающихся аэрофотообъективов, в частности отечественных серийных телеобъективов «Ленинград».

1. Термооптическая аберрация положения изображения. Термооптическая аберрация положения является следствием: а) зависимости показателей преломления стекол от температуры; б) изменения радиусов кривизны преломляющих поверхностей линз и их толщин при колебании температуры; в) изменения расстояний между линзами из-за теплового расширения материала корпуса и оправ линз оптической системы. Предположим, что указанные изменения являются линейными функциями температуры.

Коэффициент линейного расширения стекла  $a^*$  хотя и незначительно, но зависит от температуры, однако в заданном интервале изменения температур можно принять некоторую среднюю величину коэффициента  $a^*$ . Температурное приращение показателя преломления  $\beta^*$  зависит от длины волны  $\lambda$ ; при расчетах коэффициент  $\beta^*$  следует отнести к той длине волны, для которой исправляются монохроматические аберрации объектива.

Задача создания нерасстраивающегося объектива, вообще говоря, может быть решена выбором соответствующего материала и типа кон-

<sup>\*</sup> За последние годы автором была развита также теория т е р м о х ромат и ческих аберраций — как следствие зависимости температурного приращения показателей преломления стекол  $\beta_{\lambda}$  от длины волны ( $d\lambda_{\lambda} = \beta_{2}dt$ ). Показана возможность коррекции этих аберраций при расчете оптической системы. В частности, в длиннофокусных апохроматах при неблагоприятном выборе марок стекол проявление термохроматических аберраций может привести к существенному нарушению хроматической коррекции.

струкции оправ линз и корпуса объектива, при которых компенсируется заранее рассчитанное смещение изображения. Однако это приводит к применению конструктивно сложных оправ, специально подобранных материалов корпуса объектива и его особой конструкции, что допустимо в уникальных приборах, но должно быть исключено в приборах серийных.

Рациональнее уже в процессе разработки оптики объектива корригировать термооптическую аберрацию положения изображения для заданного интервала изменения температуры. Это решение задачи не требует каких-либо специальных материалов корпуса объектива, конструктивно сложных механических компенсационных устройств и т. д. Более того, такой объектив может быть рассчитан применительно к любому наперед заданному материалу корпуса объектива (сталь, силумин, титан и т.п.).

В основу последующих выводов положим нулевой инвариант преломления луча через поверхность:

$$Q_s = n\left(\frac{1}{r} - \frac{1}{s}\right) = n'\left(\frac{1}{r} - \frac{1}{s'}\right). \tag{II,260}$$

Рассматривая величины n, n', r, s и s' как функции температуры t, после дифференцирования (II, 260) получим:

$$\frac{n'}{s'^{2}} \frac{ds'}{dt} - \frac{n}{s^{2}} \frac{ds}{dt} = -Q_{s} \left( \frac{1}{n'} \frac{dn'}{dt} - \frac{1}{n} \frac{dn}{dt} \right) + \frac{n'-n}{r^{2}} \frac{dr}{dt} .$$
(II,261)

Обозначив через  $h_k$  ординату точки преломления параксиального луча на k-й поверхности, из (II, 261) найдем:

$$n_{k}^{'} \alpha_{k}^{'^{2}} \frac{ds_{k}^{'}}{dt} - n_{k} \alpha_{k}^{2} \frac{ds_{k}}{dt} = -Q_{s,k} h_{k}^{2} \left( \frac{1}{n_{k}^{'}} \frac{dn_{k}}{dt} - \frac{1}{n_{k}} \frac{dn_{k}}{dt} \right) + \frac{(n_{k}^{'} - n_{k})}{r_{k}^{2}} h_{k}^{2} \frac{dr_{k}}{dt} , \qquad (II,262)$$

где а<sub>k</sub> и а<sub>k</sub>' — углы параксиального луча с оптической осью. Переход от k—1-й к k-й преломляющей поверхности связан COOTношением:

$$s'_{k-1} - s_k = d_{k-1},$$
 (II,263)

где d<sub>k-1</sub> — расстояние между вершинами k—1-й и k-й преломляющих поверхностей.

Из последних двух выражений находим:

$$n'_{k} \alpha'^{2}_{k} ds'_{k} - n_{k} \alpha^{2}_{k} ds_{k-1} = -Q_{s, k} h^{2}_{k} \left( \frac{dn_{k}}{n'_{k}} - \frac{dn_{k}}{n_{k}} \right) + \frac{\left( n'_{k} - n_{k} \right)}{r^{2}_{k}} h^{2}_{k} dr_{k} - n_{k} \alpha^{2}_{k} dd_{k-1}; \qquad (II,264)$$

для сокращения записи знаки производных  $\frac{ds'}{dt} \frac{dn}{dt}$  и т. д. мы заменили знаками дифференциалов ds', dn и т. д.

Написав уравнение (II, 264) для каждой преломляющей поверхности системы, приходим к следующему выражению для всей системы:

$$n'_{p} \alpha'^{2}_{p} ds'_{p} = n_{1} \alpha^{2}_{1} ds_{1} - \sum_{k=1}^{k=p} \left[ Q_{s,k} h^{2}_{k} \left( \frac{dn'_{k}}{n'_{k}} - \frac{dn_{k}}{n_{k}} \right) - \frac{(n'_{k} - n_{k})}{r^{2}_{k}} h^{2}_{k} dr_{k} \right] - \sum_{k=2}^{k=p} n_{k} \alpha^{2}_{k} dd_{k-1}.$$
(II,265)

Приняв во внимание, что  $a_k = \frac{h_k}{s_k}$  и  $a_k' = \frac{h_k}{s'_k}$ , из (II, 265) находим:

$$ds'_{\rho} = \frac{n_{1}h_{1}^{2}s_{\rho}^{\prime^{2}}}{n'_{\rho}h_{\rho}^{2}s_{1}^{2}}ds_{1} - \frac{h_{1}^{2}s_{\rho}^{\prime^{2}}}{h_{\rho}^{2}n_{\rho}^{1}}\left\{\sum_{k=1}^{k=p}\frac{h_{k}^{2}}{h_{1}^{2}}\left[Q_{s_{1}}\left(\frac{dn'_{k}}{n'_{k}} - \frac{dn_{k}}{n_{k}}\right) - \left(n'_{k} - n_{k}\right)\frac{dr_{k}}{r_{k}^{2}}\right] + \sum_{k=2}^{k=p}\frac{h_{k}^{2}}{h_{1}^{2}}\frac{n_{k}}{s_{k}^{2}}dd_{k-1}\right\}.$$
 (II,266)

Величину  $ds'_p$  назовем термооптической аберрацией положения изображения. Выражения сумм в правой части формулы (II, 266) не зависят от выбора произвольной единицы измерения высот  $h_k$ . Назовем эти суммы коэффициентом термооптической аберрации положения изображения, или первым коэффициентом  $T_1$  термооптической аберрации:

$$T_{1} = \sum_{k=1}^{k=p} \frac{h_{k}^{2}}{h_{1}^{2}} \left[ Q_{s,k} \left( \frac{dn_{k}'}{n_{k}'} - \frac{dn_{k}}{n_{k}} \right) (n_{k}' - n_{k}) \frac{dr_{k}}{r_{k}^{2}} \right] + \sum_{k=2}^{k=p} \frac{h_{k}^{2}}{h_{1}^{2}} \frac{n_{k}}{s_{k}^{2}} dd_{k-1}.$$
(II,267)

Выражение (II, 266) можно преобразовать:

$$\gamma = \frac{a_p}{a_1} = \frac{h_p}{h_1} \frac{s_1}{s_{p'}},$$

где  $\gamma$  — угловое увеличение системы; выразив через него продольное увеличение  $\overline{a}$ , найдем:

$$\overline{a} = \frac{n_1}{n'_p \gamma^2} = \frac{n_1 h_1^2 {s'_p}^2}{n'_p h_p^2 s_1^2}.$$

После подстановки в (П, 266) получим:

$$ds'_{p} = \overline{\alpha} \, ds_{1} - \frac{\overline{\alpha} \, s_{1}^{2}}{n_{1}} T_{1} \, . \tag{II,268}$$

Если аберрации в пространстве предметов отсутствуют, то ds<sub>1</sub>=0 и

$$ds'_{p} = -\frac{\overline{a} s_{1}^{2}}{n_{1}} T_{1} . \qquad (11,269)$$

Для бесконечно удаленной плоскости предметов, например для фотографического объектива, приняв во внимание, что

$$\lim_{a\to\infty} \left( \overline{\alpha} \ s_1^2 \right) = \lim_{s_1\to\infty} \left( \frac{n_p}{n_1} \overline{\beta}^2 s_1^2 \right) = \frac{n_1}{n_p'} f'^2,$$

где  $\overline{\beta}$  — линейное увеличение системы, получим:

$$ds'_{p} = -\frac{f'^{2}}{n'_{p}}T_{1\infty}.$$
 (II,270)

Если линейные величины  $r_k$ ,  $s_k$  и  $d_{k-1}$  — под знаком суммы  $T_1$  в формуле (II, 267) выражены в долях фокусного расстояния f', то

$$ds' = -\frac{f'}{n'_{p}} T_{1 \ \infty} \,. \tag{I1,271}$$

2. Выражение первого коэффициента термооптической аберрации в форме, удобной для вычислений. Выражение (11, 267) представлено в форме, неудобной для вычислений; преобразуем его, введя следующие допущения:

а) температурное приращение показателя преломления стекол  $\beta^*$  является функцией длины волны; примем при расчетах значение коэффициента  $\beta^*$  для той длины волны, для которой исправлены монохроматические аберрации системы:

$$n_t = n_{20} + \beta^* (t - 20), \tag{11,272}$$

где  $n_{20}$  — относительный показатель преломления стекла при температуре 20° С и при нормальном атмосферном давлении, т. е. при тех условиях, при которых в отечественных каталогах стекол даны все величины оптических постоянных.

Из (11, 272) получим:

$$dn_t = \beta^* \, dt, \tag{II,273}$$

где  $dt \approx \Delta t = t - 20^{\circ}$ .

б) Температурный коэффициент расширения стекол α\* является функцией температуры. Примем при расчетах среднее значение коэффициента α\* в заданном интервале изменения температур. В отечественном каталоге оптических стекол указаны два усредненных значения коэффициента а\*: для интервала температур от +20 до  $-60^{\circ}$ С и для интервала от +20 до  $+120^{\circ}$ .

в) Изменение величины радиуса кривизны преломляющей поверхности следует линейному закону:

$$r_t = r_0 \,(1 + a^* t). \tag{II,274}$$

Если вариация dr определяется для поверхности склейки двух стекол, то значение а\* соответствует среднему арифметическому величин коэффициентов расширения этих стекол.

г) Величины  $Q_{s,k}$  и  $\frac{n_k' - n_k}{r_k}$ , входящие в выражение (II, 267), преобразуем, воспользовавшись известными соотношениями:





Рис. II, 34. К определению термического изменения величины воздушного промежутка

$$\frac{h_k\left(n'_k-n_k\right)}{r_k} = \Delta n_k \,\alpha_k \,. \quad (\text{II},275)$$

д) Входящие в формулу (II, 267) величины  $d_{k-1}$  выражают расстояния между вершинами преломляющих поверхностей оптической системы. Термические изменения  $dd_{k-1}$  этих расстояний весьма просто определяются для толщин линз и несколько сложнее для воздушных промежутков. Температурное изменение толщин линз приближенно определяется выражением:

$$dd_{k-1} \approx \alpha_{k-1}^* d_{k-1} dt.$$
 (II,276)

Температурное изменение воздушных промежутков зависит от коэффициента расширения материала корпуса у\* и от характера крепления линз в оправах и крепления самих оправ в корпусе объектива. В простейшем случае (рис. 11, 34), если принять, что кольцо оправы плотно прилегает к поверхности линзы, можно написать выражение:

$$d = L + e_1 - e_2, (II, 277)$$

где  $e_1$  и  $e_2$  — величины «стрелок», отсчитываемых от вершин преломляющих поверхностей с учетом их знака согласно принятому в оптике правилу знаков для отрезков.

Величина «стрелки» приближенно определяется радиусом кривизны r и «световым диаметром» D преломляющей поверхности:

$$e \approx \frac{D^2}{8r}$$
.

Температурное изменение de «стрелки» е:

$$de = \frac{\partial e}{\partial r} dr + \frac{\partial e}{\partial D} dD,$$

отсюда

$$de = e \left( 2\gamma^* - \alpha^* \right) dt.$$

Приняв во внимание эту зависимость, после дифференцирования (II, 277) находим:

$$dd = \left[ (d + e_1 - e_2) \gamma^* - e_1 \alpha_1^* + e_2 \alpha_2^* \right] dt.$$
 (II,278)

Эта формула позволяет определить изменение величин воздушных промежутков  $dd_{i-1}$ , входящих в выражение (II, 267). Заметим, что в конкретных конструкциях объективов могут встретиться различные сложные случаи крепления линз в оправах различных материалов с разными температурными коэффициентами расширения, отличными от коэффициента расширения материала корпуса. В этих случаях формула (II, 278) несколько усложнится.

Приняв во внимание (II, 273)—(II, 278), выражение (II, 267) при нормировке  $h_1 = s_1 \sigma_1$  можно привести к следующему виду:

$$T_{\mathbf{I}} = -\left(\frac{t-20^{\circ}}{h_{1}^{2}}\right) \left[\sum_{k=1}^{k=p} \left(h_{k} \frac{\Delta \alpha_{k}}{\Delta \frac{1}{n_{k}}} \Delta \frac{\beta_{k}^{*}}{n_{k}} + h_{k} \alpha_{k}^{*} \Delta \alpha_{k} n_{k}\right) - \sum_{j=1}^{j=0} n_{j} \alpha_{j}^{2} \alpha_{j}^{*} d_{j}\right] + \Delta T_{\mathbf{I}}, \qquad (II,279)$$

где  $d_j$  — толщины только линз и, следовательно, в выражении  $n_j \alpha_j^2 \alpha_j^* d_j$ , стоящем под знаком второй суммы, угол  $\alpha_j$  — суть угол в стекле, а  $n_j$  — показатель преломления стекла линзы j. Величина  $\Delta T_1$  в формуле (II, 279) равна:

$$\Delta T_{\rm I} = \frac{1}{h_1^2} \sum_{m=1}^{m=N} \alpha_m^2 \, dd_m \,, \qquad ({\rm II}, 80)$$

где суммирование распространяется на все N воздушные промежутки системы. Здесь  $\alpha_m$  — угол луча с оптической осью для данного воздушного промежутка;  $dd_m$  — изменение величины воздушного промежутка. В простейшем случае изменение  $dd_m$  может быть определено из формулы (II, 278). Для большой группы оптических систем, например для фотообъ-

Для большой группы оптических систем, например для фотообъективов, когда плоскость предметов бесконечно удалена  $\alpha_1 = 0$ , если принять нормировку  $h_1 = 1$  и f' = 1, выражение для коэффициента  $T_1$ , конечно, сохраняет свой вид (II, 279), но необходимо лишь привести все углы  $\alpha_k$  к нормировке  $\alpha_p' = 1$ , а все высоты  $h_k$  — к нормировке  $h_1 = 1$ . Величины  $h^2_1$  в формулах (II, 279) и (II, 280) также необходимо принять равными единице; расстояния d следует взять приведенными к нормировке f' = 1. Термооптическая аберрация положения определяется при этом из формулы (II, 271), в которой f' реальное фокусное расстояние системы.

## 3. Первая термооптическая аберрация объектива, состоящего из тонких линз.

Линза с номером j ограничена двумя преломляющими поверхностями, номера которых 2j—1 и 2j. Под знаком  $\Sigma$  для линзы с номером j, как следует из (II, 267), стоит выражение:

$$\begin{split} & \frac{h_{2j-1}^2}{h_1^2} \Bigg[ n_{2j} \Big( \frac{1}{r_{2j-1}} - \frac{1}{s_{2j-1}} \Big) \frac{dn_{2j}}{n_{2j}} + (n_{2j} - 1) \frac{dr_{2j-1}}{r_{2j-1}^2} \Bigg] + \\ & + \frac{h_{2j}^2}{h_1^2} \Bigg[ -n_{2j} \Big( \frac{1}{r_{2j}} - \frac{1}{s_{2j}} \Big) \frac{dn_{2j}}{n_{2j}} + (n_{2j} - 1) \frac{dr_{2j}}{r_{2j}^2} \Bigg] + \\ & + \frac{h_{2j-1}^2}{h_1^2} \frac{n_{2j-1}}{s_{2j-1}^2} dd_{2j-2} \,. \end{split}$$

Так как у тонкой линзы

$$h_{2j-1} = h_{2j}; \quad s_{2j-1}' = s_{2j}; \quad n_{2j-1} = 1; \frac{h_{2j-1}}{s_{2j-1}} = a_{2j-1},$$

где α<sub>2j-1</sub> — угол с оптической осью луча, вступающего в линзу с номером *j*, то под знаком Σ получим выражение:

$$\frac{h_{2j}^2}{h_1^2} \left[ n_{2j} \left( \frac{1}{r_{2j-1}} - \frac{1}{r_{2j}} \right) \frac{dn_{2j}}{n_{2j}} - (n_{2j} - 1) \left( \frac{dr_{2j-1}}{r_{2j-1}^2} - \frac{dr_{2j}}{r_{2j}^2} \right) \right] + \frac{h_{2j}^2}{h_1^2} \frac{dd_{2j-2}}{s_{2j-1}^2} \,.$$

где  $d_{2j-2}$  — воздушный промежуток, предшествующий *j*-й линзе, первая преломляющая поверхность которой имеет номер 2j—1; очевидно, для линзы с номером *j* предшествующий воздушный промежуток будет иметь номер *j*—1 (в эту нумерацию толщины линз не включены).

Итак, для j-й линзы выражение под знаком Σ примет вид:

$$\frac{h_j^2}{h_1^2} \left( \varphi_j \frac{dn_j}{n_j - 1} + d\varphi_j \right) + \frac{h_j^2}{h_1^2} \frac{dd_{j-1}}{s_j^2} ,$$

где  $n_j$  — показатель преломления материала линзы;  $d\phi_j$  — изменение оптической силы тонкой линзы, вызванное изменением радиусов ее поверхностей:

$$d\varphi_j = (n-1)\left(-\frac{hr_1}{r_1^2} + \frac{dr_2}{r_2^2}\right).$$
 (11,281)

Для системы, состоящей из в тонких линз, имеем:

$$T_{1} = \sum_{j=1}^{j=0} \frac{h_{j}^{2}}{h_{1}^{2}} \left[ \varphi_{j} \frac{dn_{j}}{n_{j}-1} + d\varphi_{j} \right] + \sum_{j=2}^{j=0} \frac{a_{j}^{2}}{h_{1}^{2}} dd_{j-1}.$$
(II,282)

$$d\varphi_{j} = -\alpha_{j}^{*}\varphi_{j} dt \approx -\alpha_{j}^{*}\varphi_{j} (t - 20^{\circ}),$$

получим:

$$T_{\rm I} = (t - 20) \sum_{j=1}^{j=0} \frac{h_j^2}{h_1^2} \varphi_j \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right) + \Delta T_{\rm I}, \qquad ({\rm II}.283)$$

где

$$\Delta T_{\mathrm{I}} = \sum_{j=2}^{j=0} \frac{\alpha_j^2}{h_1^2} \, dd_{j-1} \, .$$

Для вычисления  $\Delta T_1$  суммирование распространяется по всем воздушным промежуткам между  $\theta$  линзами.

Для бесконечно удаленной плоскости предмета  $\alpha_1 = 0$ ; если величины под знаком  $\Sigma$  привести к нормировке f' = 1 и  $h_1 = 1$ , из (II, 283) получим:

$$T_{I_{\infty}} = (t - 20) \sum_{j=1}^{j=0} h_j^2 \varphi_j \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right) + \Delta T_1. \quad (II, 284)$$

Воздушные промежутки берутся также приведенными к масштабу f' = 1. Величина термооптической аберрации системы определяется из (II, 271).

4. Термооптическая аберрация увеличения. При точной фотографии, в частности при топографической аэрофотосъемке, целесообразно учитывать термооптические аберрации объектива, вызывающие



Рис. II, 35. К определению термооптических аберраций

изменения линейных размеров изображения в некоторых плоскостях, например на поверхности приемника изображений. Эти аберрации могут быть исправлены в процессе разработки объектива. Пусть, например, при темперауре 20° С линейные размеры изобра-

Пусть, например, при темперауре 20° С линейные размеры изображения на поверхности приемника будут  $L'_{20}$  при линейном увеличении объектива  $\overline{\beta}_{20}$ .

Вследствие термооптической аберрации объектива изменение линейных размеров изображения на фиксирующей поверхности приемника при изменении температуры от 20° С до *t* выразится приближенной формулой:

$$L'_{t} - L'_{20} = \Delta \overline{\beta} \ l + \Delta \xi \operatorname{tg} \omega', \qquad (II, 285)$$

где l — линейный размер объекта;  $\Delta \overline{\beta} = \overline{\beta}_t - \overline{\beta}_{20}$  — изменение линейного увеличения, вызванное изменением температуры объектива;  $\Delta \xi = \Delta s_k' - \Delta a$  — температурное смещение плоскости изображения относительно фиксирующей плоскости приемника, вызванное термо-

оптической аберрацией  $\Delta s_k' = s' - s'_{20}$  положения изображения объектива и термическим изменением  $\Delta a$  размеров некоторого механического устройства, связывающего оптическую систему с фиксирующей плоскостью приемника (рис. II, 35). На рисунке S — положение фиксирующей плоскости приемника при начальной температуре 20° C, расположенной на расстоянии  $OS = s'_{20}$  от последней поверхности объектива; S' — положение плоскости изображения при температуре объектива t;  $AS = L'_{20}$ ;  $BS = L'_t$ ;  $BA = L'_t - L'_{20}$ ;  $O'S' = s'_t$ ;  $\Delta p'$  — смещение центра выходного зрачка, расстояние которого от плоскости приемника при температуре 20° C сравно  $PS = p'_{20}$ .

Формулу (II, 285) можно представить в виде:

$$\frac{L'_t - L'_{20}}{L'_{20}} = \frac{\Delta \overline{\beta}}{\overline{\beta}_{20}} + \frac{\Delta \xi}{L'_{20}} \operatorname{tg} \omega'.$$
 (II,286)

От термооптических свойств объектива зависит величина  $\frac{\Delta \overline{\beta}}{\overline{\beta_{20}}}$ , входящая

в эту формулу. Очевидно, эта аберрация определяет изменение размеров изображения, вызванное изменением температуры, если предположить, что аберрация в пространстве предметов отсутствует:

$$\frac{\overline{\Delta\beta}}{\overline{\beta}} = \frac{\Delta l'}{l'}, \qquad (II,287)$$

где  $\Delta l' = l'_t - L'_{20}$  — изменение линейных размеров изображения. Определим величину этой аберрации, которая необходима для по-

следующего нахождения термооптической аберрации увеличения на поверхности приемника или второй термооптической аберрации, из формулы (II, 286).

Линейное увеличение оптической системы может быть выражено зависимостью:

$$\overline{\beta} = \frac{l'_p}{l_1} = \frac{n_1}{n'_p} \prod_{k=1}^{k=p} \frac{s'_k}{s_k}, \qquad (II,288)$$

где  $n_1$  и  $n'_p$  — показатели преломления сред в пространстве предметов и изображений соответственно.

Логарифмическое дифференцирование этой формулы приводит к выражению:

$$\frac{d\overline{\beta}}{\overline{\beta}} = \frac{dl'_p}{l'_p} - \frac{dl_1}{l_1} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} + \sum_{k=1}^{k=p} \Delta \frac{ds_k}{s_k} .$$
(II,289)

Дифференциалы выражают изменения соответствующих величин при изменении температуры объектива.

Приняв во внимание, что при переходе от преломляющей поверхности с номером k—1 к k-й поверхности имеет место зависимость:

$$s_k = s'_{k-1} - d_{k-1}$$
, (II,290)

после некоторых преобразований (II, 289) находим:

$$\frac{d\,\overline{\beta}}{\overline{\beta}} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} + \frac{ds'_p}{s'_p} - \frac{ds_1}{s_1} + \sum_{k=2}^{k=p} \left(\frac{1}{s'_{k-1}} - \frac{1}{s_k}\right) ds'_{k-1} + \sum_{k=2}^{k=p} \frac{dd_{k-1}}{s_k}.$$
(I1,291)

Приняв во внимание (П, 290), получим:

$$\sum_{k=2}^{k=p} \left( \frac{1}{s'_{k-1}} - \frac{1}{s_h} \right) ds'_{k-1} = \sum_{k=2}^{k=p} \left( -\frac{d_{h-1}}{s'_{k-1}} \right) ds'_{k-1}. \quad (II,292)$$

Выражение для  $d_{k-1}$  может быть представлено в виде:

$$d_{k-1} = \frac{1}{I} \left( n'_{k-1} h_{k-1} y_k - n'_{k-1} h_k y_{k-1} \right).$$
(II,293)

где h и y — ординаты точек пересечения преломляющих поверхностей объектива первым и вторым параксиальными лучами. Через I обозначена инвариантная величина, устанавливаемая формулой Лагранжа— Гельмгольца:

$$I = \frac{n_1 h_1 y_1 (x_1 - s_1)}{s_1 x_1} = \frac{n_k h_k y_k (x_k - s_k)}{s_k x_k} = \frac{n'_k h'_k y_k (x'_k - s'_k)}{s'_k x'_k}.$$
 (II,294)

Из (11, 292) и (11, 293) имеем:

$$\sum_{k=2}^{k=p} \left( \frac{1}{s_{k-1}'} - \frac{1}{s_k} \right) ds'_{k-1} = -\frac{1}{l} \sum_{k=2}^{k=p} \left( \frac{n'_{k-1} h_{k-1} y_k}{s'_{k-1} s_k} - \frac{n'_{k-1} h_k y_{k-1}}{s'_{k-1} s_k} \right) ds'_{k-1}.$$
 (II,295)

Эту формулу можно преобразовать к виду:

$$\sum_{k=2}^{k=p} \left( \frac{1}{s_{k-1}'} - \frac{1}{s_k} \right) ds_{k-1}' = -\frac{1}{I} \left[ \sum_{k=1}^{k=p} \left( \frac{n_k h_k y_k ds_k}{s_k^2} - \frac{n_k' h_k y_k ds_k'}{s_k^2} \right) + \frac{n_p' h_p y_p ds_p'}{s_p'^2} - \frac{n_1 h_1 y_1 ds_1}{s_1^2} \right] + \frac{1}{I} \sum_{k=2}^{k=p} \frac{n_k h_k y_k dd_{k-1}}{s_k^2} .$$
(II,296)

Вместо (II, 291) получим:

$$\frac{d\,\overline{\beta}}{\overline{\beta}} = \frac{dn_{1}}{n_{1}} - \frac{dn'_{p}}{n'_{p}} + \frac{ds'_{p}}{s'_{p}} - \frac{ds_{1}}{s_{1}} + \frac{1}{I} \left[ \sum_{k=1}^{k=p} - h_{k} y_{k} \left( \frac{n'_{k} ds'_{k}}{s'_{k}} - \frac{n_{k} ds_{k}}{s'_{k}} \right) - \frac{n_{k} ds_{k}}{s'_{k}} \right] - \frac{n_{k} ds_{k}}{s'_{p}} + \frac{n'_{p} h_{p} y_{p} ds'_{p}}{s'_{p}} - \frac{n_{1} h_{1} y_{1} ds_{1}}{s'_{1}} - \frac{n_{k} ds_{1}}{s'_{1}} - \frac{n_{k} ds_{k}}{s'_{k}} \right] - \sum_{k=2}^{k=p} \left( \frac{n_{k} h_{k} y_{k} dd_{k-1}}{I s'_{k}} - \frac{dd_{k-1}}{s_{k}} \right).$$
(11,297)

207

Воспользовавшись (II, 294) и (II, 261), можно написать:

$$\frac{\overline{d\beta}}{\overline{\beta}} = \frac{dn_1}{n_1} - \frac{dn_p}{n_p} + \frac{ds_1}{x_1 - s_1} - \frac{ds_p}{x_p - s_p} - \frac{1}{r_p} \left[ \sum_{k=1}^{k=p} h_k y_k \left( Q_{s,k} \Delta \frac{dn_k}{n_k} - \frac{dn_k}{r_k^2} dr_k \right) + I \sum_{k=2}^{k=p} \frac{dd_{k-1}}{x_k - s_k} \right]. \quad (II,298)$$

Обозначив через T<sub>II</sub> выражения сумм, заключенных в прямых скобках, имеем:

$$\frac{\overline{d\beta}}{\overline{\beta}} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} + \frac{ds_2}{x_1 - s_1} - \frac{ds'_p}{x'_p - s'_p} - \frac{1}{I} T_{II}, \quad (II, 299)$$

где

$$T_{11} = \sum_{k=1}^{k=p} h_k y_k \left( Q_{s,k} \Delta \frac{dn_k}{n_k} - \frac{dn_k}{r_k^2} dr_k \right) + I \sum_{k=2}^{k=p} \frac{dd_{k-1}}{x_k - s_k} .$$
(II,300)

Назовем T<sub>1</sub> коэффициентом термооптической аберрации увеличения или вторым коэффициентом термооптической аберрации.

Величина ds'<sub>p</sub> в формуле (II, 299), очевидно, выражает термооптическую аберрацию положения изображения. Воспользовавшись (II, 268), получим:

$$\frac{d\,\overline{\beta}}{\overline{\beta}} = \frac{dn_1}{n_1} - \frac{dn_p}{n_p'} + \left(\frac{1}{x_1 - s_1} - \frac{\overline{\alpha}}{x_p' - s_p'}\right) ds_1 + \frac{\overline{\alpha} s_1^2}{n_1(x_p' - s_p')} T_1 - \frac{1}{I} T_{\text{II}} .$$
(II,301)

Применив известные преобразования:

$$x_{1} - s_{1} = -\frac{nf'}{n'_{p}} \left( \frac{\overline{\beta}_{p} - \beta}{\overline{\beta}_{p}} \right); \quad x'_{p} - s'_{p} = -f' \left( \overline{\beta}_{p} - \overline{\beta} \right), \quad (\text{II}, 301')$$

окончательно находим:

$$\frac{d\overline{\beta}}{\overline{\beta}} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} + \frac{\overline{\beta}}{\overline{f}} ds_1 + \frac{\overline{\beta^2} s_1^2}{n_1 f(\overline{\beta}_p - \overline{\beta})} T_1 - \frac{1}{7} T_{11} , \quad (II,302)$$

где  $\overline{\beta}_p$  и  $\overline{\beta}$  — линейные увеличения соответственно для плоскости зрач-ков и плоскости предметов.

Из формулы (II, 286), приняв  $\frac{d\overline{\beta}}{\overline{\beta}} \approx \frac{\Delta\overline{\beta}}{\overline{\beta}_{20}}$ , определяем относительную термооптическую аберрацию линейных размеров изображения в плоскости приемника *S* (см. рис. II, 35), остающейся неподвижной при изменении температуры.

Рассмотрим некоторые следствия формул (II, 302) и (II, 286). а) Для бесконечно удаленной плоскости предметов ( $s_1 = -\infty$ ) имеем:

$$\overline{\beta} = 0; \quad \lim_{s_1 \to -\infty} \left( \overline{\beta} s_1 \right) = \frac{n_1}{n'_p} f'; \quad \lim_{s_1 \to -\infty} I = -\frac{n_1 h_1 y_1}{x_1} . \quad (II,303)$$

После подстановки в (II, 302) и (II, 286) получим:

$$\frac{L'_{t} - L'_{20}}{L'_{20}} = -\frac{\Delta a \operatorname{tg} w'}{L'_{20}} + \frac{\Delta n_{1}}{n_{1}} - \frac{\Delta n'_{p}}{n'_{p}} + \frac{x_{1}}{n_{1} h_{1} y_{1}} T_{11 \infty}, \quad (\text{II}, 304)$$

где  $T_{11\infty}$  — коэффициент термооптической абєррации увеличения для бесконечно удаленной плоскости предметов.

б) Если преломляющие среды пространства предметов и изображений обладают одинаковыми температурными изменениями показателей преломления  $(dn_1 = dn'_p)$  и равными показателями преломления  $(n_1 = n'_p)$ , а температурные аберрации в пространстве предметов отсутствуют  $(ds_1 = 0)$ , то из (II, 302) находим:

$$\frac{d\,\overline{\beta}}{\overline{\beta}} = \frac{\overline{\beta^2} \, s_1^2}{n_1 f\left(\,\overline{\beta}_p - \overline{\beta}\,\right)} T_1 - \frac{1}{-1} T_{11} = -\frac{\Delta s_p'}{x_p' - s_p'} - \frac{1}{-1} T_{11} \,. \quad (II,305)$$

в) Если оптическая система помимо условий, оговоренных в предыдущем пункте, исправлена в отношении термооптической аберрации положения  $\Delta s'_p = 0$ , то

$$\frac{d\,\overline{\beta}}{\overline{\beta}} = -\frac{1}{I}T_{II}.$$
(II,306)

В случае бесконечно удаленной плоскости предметов из формулы (II, 304) находим:

,

$$\frac{L_t - L_{20}}{L'_{20}} = \frac{x_1}{n_1 h_1 y_1} T_{11 \infty} - \frac{\Delta a}{L'_{20}} \operatorname{tg} \omega'.$$
(II,307)

г) Температурное изменение фокусного расстояния системы может быть определено из формулы:

$$\frac{df'}{f'} = -\frac{f'}{n'_p \,\overline{\beta}_p} \, T_{1\,\infty} + \frac{x_1}{n_1 \,h_1 \,y_1} \, T_{11\,\infty} \,. \tag{11,308}$$

д) Определим температурное изменение dy углового увеличения у оптической системы. Угловое увеличение оптической системы, состоящей из р преломляющих поверхностей, определяется выражением

$$\gamma = \prod_{k=1}^{k=p} \frac{s_k}{s'_k}.$$
 (11,309)

Логарифмическое дифференцирование этого выражения приводит к зависимости:

$$\frac{d\gamma}{\gamma} = -\sum_{k=1}^{k=p} \Delta \frac{ds_k}{s_k} \,.$$

Из формул (II, 289) и (II, 302) находим:

$$\frac{d\gamma}{\gamma} = -\frac{dl_1}{l_1} - \frac{\overline{\beta}}{f} ds_1 - \frac{\overline{\beta^2} s_1^2}{n_1 f \left(\overline{\beta}_p - \overline{\beta}\right)} T_1 + \frac{1}{I} T_{11}. \quad (II,310)$$

Для бесконечно удаленной плоскости предметов, воспользовавшись (II, 303), имеем:

$$\frac{d\gamma}{\gamma} = \frac{f'}{n'_p \,\overline{\beta}_p} T_{1\,\infty} - \frac{x_1}{n_1 \,h_1 \,y_1} T_{11\,\infty}; \qquad (II,311)$$

при этом предполагалось, что термооптическая аберрация в пространстве предметов отсутствует ( $dl_1 = 0$ ).

e) Температурное изменение  $d\overline{\alpha}$  продольного увеличения оптической системы представится зависимостью:

$$\frac{d\overline{\alpha}}{\overline{\alpha}} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} + 2\sum_{k=1}^{k=p} \Delta \frac{ds_k}{s_k}, \qquad (II,312)$$

отсюда

$$\frac{a\,\overline{\alpha}}{\overline{\alpha}} = \frac{dn_1}{n_1} - \frac{dn'_p}{n'_p} - 2\,\frac{d\gamma}{\gamma}\,, \qquad (\text{II},313)$$

где значение  $\frac{d\gamma}{\gamma}$  определяется из формул (II, 310) и (II, 311).

5. Выражение второго коэффициента термооптических аберраций в форме, удобной для расчетов. Введя допущения, изложенные в начале этого параграфа, первую сумму, стоящую в правой части формулы (II, 300), можно привести к виду:

$$-(t-20)\sum_{k=1}^{k=p}\left(y_k\frac{\Delta\alpha_k}{\Delta\frac{1}{n_k}}\Delta\frac{\beta_k^*}{n_k}+y_k\alpha_k^*\Delta\alpha_k n_k\right).$$

Для второй суммы той же формулы, с учетом (II, 294), получим:

$$I\sum_{k=2}^{k=p} \frac{dd_{h-1}}{x_h - s_h} = \sum_{k=2}^{k=p} \frac{n_h h_k y_k}{s_h x_h} dd_{h-1} = \sum_{k=2}^{h=p} n_h \alpha_h \beta_k dd_{h-1}.$$
 (II,314)  
Так как  $y_k = h_h \frac{\Delta \beta_h n_h}{\Delta \alpha_h n_h},$ 

выражение (II, 300) преобразуется так:

$$T_{II} = -(t-20) \sum_{k=1}^{k=p} \frac{\Delta\beta_k n_k}{\Delta\alpha_k n_k} \left( h_k \frac{\Delta\alpha_k}{\Delta \frac{1}{n_k}} \Delta \frac{\beta_k^*}{n_k} + h_k \alpha_k^* \Delta \alpha_k n_k \right) + \sum_{k=2}^{k=p} n_k \alpha_k \beta_k dd_{k-1}.$$
(II,315)

Все входящие в эту формулу величины известны из расчета параксиального луча.

Для бесконечно удаленной плоскости предметов  $s_1 = -\infty$ ; если принять нормировку

$$\alpha_1 = 0, \quad h_1 = 1,$$
(II,316)
  
 $\beta_1 = 1, \quad y_1 = x_1,$ 

формула (II, 307) принимает вид:

$$\frac{L_{t} - L_{20}}{L_{20}'} = -\frac{\Delta a}{L_{20}'} \operatorname{tg} \omega' + T_{\mathrm{II} \, \infty}, \qquad (\mathrm{II}, 317)$$

Коэффициент *T*<sub>II∞</sub> также определяется при нормировке (II, 316). 6. Вторая термооптическая аберрация объектива, состоящего из тонких линз. Выражение коэффициента *T*<sub>II</sub>, представленное в виде (II, 300), можно преобразовать применительно к оптической схеме объектива, состоящей из отдельных линз. Выполнив упрощения, ана-логичные тем, которые были осуществлены в пункте 3 этого параграфа при преобразовании первого коэффициента *T*<sub>I</sub>, получим:

$$T_{\rm II} = (t - 20) \sum_{j=1}^{j=0} h_j y_j \varphi_j \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right) + \Delta T_{\rm II} , \qquad ({\rm II}, 318)$$

где

$$\Delta T_{II} = \sum_{j=2}^{j=0} \alpha_j \beta_j \, dd_{j-1}.$$

Для вычисления  $\Delta T_{11}$  суммирование производится по всем воз-душным промежуткам между  $\theta$  линзами.

7. Условия нерасстраиваемости оптической системы, в частности 7. Условия нерасстраиваемости оптической системы, в частности объектива, при изменении температуры. Пусть точка S (см. рис. II, 35) определяет положение некоторой плоскости приемника, например, положение плоскости фотографической пленки, которое должно оставаться неизменным при изменении температуры от 20° С до t. Предположим также, что при 20° С плоскость изображения совме-

щена с плоскостью приемника.

Температурное смещение (дефокусировка) плоскости изображения относительно плоскости приемника вызывается двумя причинами: наличием термооптической аберрации положения изображения  $\Delta s'_p$ и термическим изменением линейных размеров механического устройства, связывающего оптическую систему с плоскостью приемника и вызывающего изменение расстояния Δα от последней преломляющей поверхности оптической системы до плоскости приемника\*.

а) Для устранения эффекта температурного смещения плоскости изображения относительно плоскости приемника необходимо выполнить следующее условие (см. рис. II, 35):

$$\Delta \xi = \Delta s'_{\rho} - \Delta a = 0; \qquad (II,319)$$

отсюда

$$\Delta s'_{\rho} = \Delta a. \tag{II,320}$$

Таким образом, если термическое изменение линейных размеров механического устройства, связывающего оптическую систему с приемником, компенсирует изменение расстояния от последней преломляющей поверхности оптической системы до плоскости приемника<sup>\*</sup>, то, очевидно, условие (II, 319) будет выполнено. Это и явится общим условием нерасстраиваемости оптического прибора в отношении температурной дефокусировки изображения относительно плоскости приемника; в частности, если достигнуто, что  $\Delta a = 0$ , то также необходимо, чтобы  $\Delta s'_p = 0$ .

б) Условие нерасстраиваемости оптического прибора в отношении температурного изменения размеров изображения на фиксирующей поверхности приемника определится из формулы (II, 286):

$$L'_t - L'_{20} = 0.$$

Из формул (II, 286) и (II, 305) следует, что для оптического прибора, у которого смещение  $\Delta \xi = 0$ , выполняется условие:

$$\frac{L'_{t} - L'_{20}}{L'_{20}} = \frac{\Delta \overline{\beta}}{\overline{\beta}} = -\frac{\Delta a}{x'_{\rho} - s'_{\rho}} - \frac{1}{I}T_{11} = 0.$$
(II,321)

Заметим, что если  $\Delta \xi = \Delta s'_p - \Delta a \neq 0$  и, следовательно,  $\Delta s'_p \neq \Delta a$ , условие нерасстраиваемости будет выражаться той же формулой (II, 321); из этой формулы находим:

$$T_{\rm II} = -\frac{I}{x_{p}^{'} - s_{p}^{'}} \Delta a.$$
 (II,322)

Для бесконечно удаленной плоскости предметов, например для фотообъектива, условие (II, 322) принимает вид:

$$T_{II \infty} = \frac{n_1 h_1 y_1}{x_1 \left(x'_p - s'_p\right)} \Delta a.$$
(II,323)

<sup>\*</sup> Необходимо также учесть расширение корпуса объектива от опорной плоскости до оправы задней линзы.

При нормировке (II, 316)

$$T_{\Pi \infty} = \frac{\Delta a}{x'_{\rho} - s'_{\rho}}$$
. (II,323')

Если a = 0, то

$$T_{II\,\infty} = 0.$$
 (II,323")

Полученные формулы термооптических аберраций наряду с обычными формулами монохроматических и хроматических аберраций при-нимаются при проектировании аэрофотообъективов, не расстраивающихся при изменении температуры.

8. Термооптические аберрации систем, состоящих из тонких компонентов. На основе построенной нами теории термооптических аберраций рассмотрим формулы, относящиеся к нерасстраивающимся при изменении температуры оптическим системам, состоящим из тонких компонентов.

Коэффициенты термооптических аберраций положения и увеличения  $T_1$  и  $T_{11}$  оптической системы, состоящей из  $\theta$  тонких линз, могут быть представлены выражениями:

$$T_{I} = \frac{t - 20}{h_{1}^{2}} \sum_{j=1}^{j=0} h_{j}^{2} \varphi_{j} \left( \frac{\beta_{j}^{*}}{n_{j} - 1} - \alpha_{j}^{*} \right) + \Delta T_{I};$$
  

$$T_{II} = (t - 20) \sum_{j=1}^{j=0} h_{j} y_{j} \varphi_{j} \left( \frac{\beta_{j}^{*}}{n_{j} - 1} - \alpha_{j}^{*} \right) + \Delta T_{II},$$
(II,324)

где

$$\Delta T_{1} = \frac{1}{h_{1}^{2}} \sum_{j=2}^{j=0} \alpha_{j}^{2} dd_{j-1};$$

$$\Delta T_{11} = \sum_{j=2}^{j=0} \alpha_{j} \beta_{j} dd_{j-1}.$$
(11,325)

Для определения  $\Delta T_1$  и  $\Delta T_{11}$  суммирование необходимо произвести по всем  $\theta$ —1 воздушным промежуткам между  $\theta$  линзами. Обобщим формулы (II, 324) для оптической системы, состоящей из тонких компонентов. Пусть некоторый *i*-й компонент системы, состоящий из  $\theta$  соприкасающихся или близко друг к другу расположенных линз, имеет оптическую силу  $\varphi_i$ . Для этого компонента формулы (II, 324) запишутся в виде:

$$T_{1,i} = (t - 20) \frac{h_i^2}{h_1^2} \sum_{j=1}^{j=0} \varphi_j \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right);$$
  

$$T_{1,i} = (t - 20) h_j y_j \sum_{j=1}^{j=0} \varphi_j \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right),$$
(II,326)

где ф<sub>ј</sub> — оптическая сила ј-й линзы *i*-го компонента системы, сила которого ф<sub>i</sub>:

$$\varphi_i = \sum_{j=1}^{j=0} \varphi_j \,. \tag{II,327}$$

Обозначим через  $\overline{\phi}_{j}$  относительную (приведенную) силу *j*-й линзы, т. е. отношение оптической силы линзы  $\phi_{j}$  к оптической силе всего компонента  $\phi_{i}$ :

$$\overline{\varphi}_{j} = \frac{\varphi_{j}}{\varphi_{i}} . \tag{II,328}$$

После подстановки в (II, 326) получим:

$$T_{I,i} = (t - 20) \frac{h_i^2}{h_1^2} \varphi_i \sum_{j=1}^{j=0} \overline{\varphi_j} \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right);$$
  

$$T_{II,i} = (t - 20) h_1 y_1 \varphi_j \sum_{j=1}^{j=0} \overline{\varphi_j} \left( \frac{\beta_j^*}{n_j - 1} - \alpha_j^* \right),$$
(II,329)

где суммирование распространяется по всем  $\theta$  линзам *i*-го тонкого компонента. Таким образом, выражение коэффициентов термсоптических аберраций системы, состоящей из *m* тонких компонентов, разделенных *m*—1 воздушными промежутками, имеет вид:

$$T_{1} = \frac{t-20}{h_{1}^{2}} \sum_{i=1}^{i=m} h_{i}^{2} \varphi_{i} \sum_{j=1}^{j=0} \overline{\varphi}_{j} \left( \frac{\beta_{j}^{*}}{n_{j}-1} - \alpha_{j}^{*} \right) + \Delta T_{1};$$
  

$$T_{11} = (t-20) \sum_{i=1}^{i=m} h_{i} y_{i} \varphi_{i} \sum_{j=1}^{j=0} \overline{\varphi}_{j} \left( \frac{\beta_{j}^{*}}{n_{j}-1} - \alpha_{j}^{*} \right) + \Delta T_{11}.$$
(II,330)

Для обоих коэффициентов термооптических аберраций под знаками вторых сумм оказалось одно и то же выражение, относящееся к *i*-му компоненту:

$$V_{i} = \sum_{j=1}^{j=0} \overline{\varphi}_{j} \left( \frac{\beta_{j}^{*}}{n_{j}-1} - \alpha_{j}^{*} \right).$$
(II,331)

Величину V<sub>i</sub> назовем основным термооптическим параметром тонкого компонента.

В этом случае выражение коэффициентов термооптических аберраций системы, состоящей из *m* тонких компонентов, разделенных *m*—1 воздушными промежутками, может быть представлено в виде:

$$T_{I} = \frac{t - 20}{h_{1}^{2}} \sum_{i=1}^{i=m} h_{i}^{2} \varphi_{i} V_{i} + \Delta T_{I};$$
  

$$T_{II} = (t - 20) \sum_{i=1}^{i=m} h_{i} y_{i} \varphi_{i} V_{i} + \Delta T_{II},$$
(II,332)

214

где

$$\Delta T_{I} = \frac{1}{h_{1}^{2}} \sum_{l=2}^{i=m} \alpha_{l}^{2} dd_{i-1}; \quad \Delta T_{II} = \sum_{l=2}^{l=m} \alpha_{l} \beta_{l} dd_{l-1}. \quad (II,333)$$

Величины термооптических аберраций системы определятся из полученных выше формул:

$$ds'_{p} = \bar{\alpha} \, ds_{1} - \frac{\bar{\alpha} s_{1}^{2}}{n_{1}} T_{1}; \qquad (II,334)$$

$$\frac{dL'}{L'_{20}} = \frac{d\overline{\beta}}{\overline{\beta}_{20}} + \frac{d\xi}{L'_{20}} \operatorname{tg}\omega';$$

$$;\overline{\alpha} \qquad ;\overline{\alpha} \qquad ; (II, 335)$$

$$\frac{d \beta}{\overline{\beta}_{20}} = \frac{dn_1}{n_1} - \frac{dn_p}{n'_p} + \frac{\beta}{f} ds_1 - \frac{ds_p}{x'_p - s'_p} - \frac{1}{I} T_{11}.$$

Если аберрация в пространстве предметов отсутствует ( $ds_1 = 0$ ), а плоскость предметов бесконечно удалена, формулы принимают вид:

$$ds'_{p} = -f' T_{1_{\infty}}; 
\frac{dL'}{L'_{20}} = -\frac{da}{L'_{20}} tgw' + T_{11_{\infty}};$$
(II,336)

при этом предположено, что  $n_1 = n'_p = 1$ , а коэффициенты термооптических аберраций  $T_{1\infty}$  и  $T_{11\infty}$  определены при следующей нормировке начальных координат вспомогательных параксиальных лучей:

$$f' = 1; \quad \alpha_1 = 0; \quad h_1 = 1$$
  
 $\beta_1 = 1; \quad y_1 = x_1.$ 

9. Выражение коэффициентов термооптических аберраций сложного объектива через основные термооптические параметры его компонентов. Оптическая сила тонкого компонента выражается известной зависимостью:

$$\varphi_i = \frac{\alpha'_i - \alpha_i}{h_i} \,. \tag{II,337}$$

После подстановки (II, 337) в выражения (II, 332) находим:

$$T_{\rm I} = \frac{t-20}{h_1^2} \sum_{i=1}^{i=m} h_i V_i^* + \Delta T_{\rm I};$$
  

$$T_{\rm II} = (t-20) \sum_{i=1}^{i=m} y_i V_i^* + \Delta T_{\rm II},$$
(II,338)

где символом V<sub>i</sub>\* обозначено выражение:

$$V_i^* = \left(\alpha_i' - \alpha_i\right) V_i. \tag{II,339}$$

215
Для бесконечно удаленной плоскости предметов ( $\alpha_i = 0$ ) зависимость (II, 339) принимает вид:

$$V_i^* = \alpha_i' V_i. \tag{II,339'}$$

Обратив внимание, что  $\alpha_i' = h_i \varphi_i$ , находим:

$$V_i^* = h_i \varphi_i V_i. \tag{11,339''}$$

Как следует из (II, 327) и (II, 328):

$$\overline{\varphi}_i = \sum_{j=1}^{j=0} \overline{\varphi}_j = \frac{1}{\varphi_i} \sum_{j=1}^{j=0} \varphi_j = 1.$$

Следовательно, основной термооптический параметр V *i*-го компо-нента определяется при условии, что относительная оптическая сила компонента равна единице.

Воспользовавшись (II, 338) и (II, 339), можно выразить коэффициенты термооптических аберраций  $T_1$  и  $T_{11}$  сложного объектива, состоящего из *m* тонких компонентов, через их основные параметры V:

$$T_{I} = \frac{t - 20}{h_{1}^{2}} \sum_{i=1}^{i=m} h_{I} (\alpha_{i}' - \alpha_{i}) V_{i} + \Delta T_{I};$$
  

$$T_{II} = (t - 20) \sum_{i=1}^{i=m} y_{i} (\alpha_{i}' - \alpha_{i}) V_{i} + \Delta T_{II},$$
(II,340)

где параметры V компонентов определены при условии бесконечно удаленной плоскости предметов и при нормировке  $h_1 = 1$  и f' = 1. 10. Основной термооптический параметр простой линзы и двух-линзового компонента. Как следует из (11, 331), основной термооптический параметр простой линзы, фокусное расстояние которой равно единице, можно представить в виде:

$$V_{\lambda} = \frac{\beta_{\lambda}^{*}}{n_{\lambda} - 1} - \alpha^{*}. \qquad (II.341)$$

Этот параметр, зависящий от постоянных стекла  $n_{\lambda}$ ;  $\beta_{\lambda}^*$  и  $\alpha^*$ , рационально принять в качестве основной характеристики термооптических свойств оптических стекол. Это и было впервые введено по предложению автора в отечественный каталог стекол в 1957 г. (ГОСТ 3514—57). Величина параметра  $V_{\lambda}$  различна для лучей различных длин волн

 $\lambda$ . У оптических стекол разных марок величина параметра  $V_{\lambda}$  в видимой области спектра изменяется приблизительно в пределах

$$-10^{-5} < V_{\lambda} < 10^{-5}.$$
 (II,341')

У некоторых оптических стекол величина параметра V<sub>λ</sub> близка к нулю. Простая линза, изготовленная из подобных стекол, будет сво-

бодна от термооптических аберраций; у этих стекол, как следует из (II, 341):

$$\frac{\beta_{\lambda}^{*}}{n_{\lambda}-1} \approx \alpha^{*}.$$
 (II,342)

Интерес как теоретический, так и практический представляет простая система, состоящая из двух близко расположенных друг к другу линз.

Рассмотрим вначале задачу проектирования двухлинзовой несклеенной системы.

Двухлинзовая несклеенная система, как известно, дает возможность корригировать три аберрации: сферическую, кому и хроматизм по-ложения. Эти аберрации могут быть исправлены для любой комбинации оптических стекол типа крон-флинт.

Добавочное условие устранения термооптической аберрации поло-жения для длины волны λ приводит к системе уравнений:

$$\overline{\varphi_1} + \overline{\varphi_2} = 1;$$

$$\overline{\frac{\varphi_1}{\nu_1}} + \frac{\overline{\varphi_2}}{\nu_2} = -C;$$

$$V_{\lambda} = \overline{\varphi_1} V_{\lambda,1} + \overline{\varphi_2} V_{\lambda,2} = \frac{T_1}{t-20},$$

$$(11,343)$$

где V<sub>λ</sub> — основной термооптический параметр тонкого компонента.

Из (II, 343) находим выражения для  $\overline{\phi}_1$  и условие выбора дисперсий и термооптических параметров стекол:

$$\overline{\varphi}_{1} = \frac{\nu_{1} - \nu_{1} \nu_{2} C}{\nu_{1} - \nu_{2}} = \frac{V_{\lambda} - V_{\lambda,2}}{V_{\lambda,1} - V_{\lambda,2}}.$$
 (II,344)

Так как для ахроматического объектива C = 0, из (II, 344) получим:

$$\overline{\varphi}_{1} = \frac{\nu_{1}}{\nu_{1} - \nu_{2}} = \frac{V_{\lambda} - V_{\lambda,2}}{V_{\lambda,1} - V_{\lambda,2}} \quad (II,345)$$

Если термооптическая аберрация положения устранена ( $T_1 = V\lambda = 0$ ), то условие (II, 345) принимает вид:

$$\mathbf{v}_1 \boldsymbol{V}_{\lambda,1} = \mathbf{v}_2 \boldsymbol{V}_{\lambda,2} \,. \tag{II,346}$$

Получили условие для выбора термооптических параметров стекол, обеспечивающих исправление термооптической аберрации для длины волны λ ахроматического двухлинзового объектива.

Если при изменении температуры происходит изменение расстояния от объектива до некоторой фиксированной (неподвижной) плоскости приемника изображения, то влияние изменения этого расстояния должно быть компенсировано введением соответствующей термо-оптической аберрации объектива. Очевидно, в этом случае  $T_1 \neq 0$  и, следовательно, величина  $V_{\lambda}$  в формуле (II, 345) не равна нулю. Пусть расстояние *а* объектива до плоскости приемника изображе-ния изменилось на величину *da* в результате изменения температуры

от 20°С до t.

$$da = (t - 20) \gamma^* a.$$
 (II,347)

Величина термооптической аберрации объектива для бесконечно удаленной плоскости предметов выразится формулой:

$$ds'_p = -f' T_{1\infty}.$$

Для устранения эффекта температурного смещения плоскости изображения относительно плоскости приемника необходимо выполнить условие (11, 320):

$$da = ds'_{n}$$

Воспользовавшись последними тремя выражениями и положив a = f', находим:

$$V_{\lambda} = -\gamma^*. \tag{11,348}$$

После подстановки в (II, 345) получим:

$$\gamma^* = -\left(\frac{\nu_1 V_{\lambda,1} - \nu_2 V_{\lambda,2}}{\nu_1 - \nu_2}\right). \tag{II,349}$$

Это — условие для выбора дисперсий и термооптических постоянных стекол, обеспечивающих температурную нерасстраиваемость ахроматического двухлинзового объектива, если коэффициент расширения материала корпуса  $\gamma^*$  задан\*.

\* Как показали исследования автора, термохроматическая аберрация положения  $\Delta_{\mathbf{T}.\mathbf{x}.}$ , равная разности термооптических аберраций для некоторых длин волн  $\lambda$  и  $\lambda_0 \left( \Delta_{\mathbf{T}.\mathbf{x}.} = \delta s_{\lambda}' - \lambda s_{\lambda_0}' \right)$  двухкомпонентной системы определяется следующим выражением:

$$\Delta_{\mathbf{T},\mathbf{X},\mathbf{z}} = \frac{\left[ \left( V_{\lambda,2} - V_{\lambda,1} \right) - \left( V_{\lambda_0,2} - V_{\lambda_0,1} \right) \right] \delta s_{\lambda_0}^{\prime} - \overline{c} \left( V_{\lambda,2} V_{\lambda_0,1} - V_{\lambda,1} V_{\lambda_0,2} \right)}{V_{\lambda_0,2} - V_{\lambda_0,1}}$$

где  $\overline{c} = -\frac{f'}{n'_p}$  — сомножитель при коэффициенте  $T_{1\infty}$  в формуле (II, 271) и

 $\overline{c} = - \frac{\overline{a} s_1^2}{n_1}$  — сомножитель при коэффициенте  $T_1$  в формуле (II, 269).

При исправленной термооптической аберрации  $\delta s_{\lambda_6}' = 0$  для основной длины волны  $\lambda_0$  имеем;

$$\Delta_{\mathbf{T}\cdot\mathbf{x}} = \overline{c} \frac{\frac{V_{\lambda,2}}{V_{\lambda_0,2}} - \frac{V_{\lambda,1}}{V_{\lambda_0,1}}}{\frac{1}{V_{\lambda_0,2}} - \frac{1}{V_{\lambda_0,1}}}.$$

Отсюда следует условие коррекции термохроматической аберрации ( $\Delta_{{}_{\mathrm{T}}.{}_{\mathrm{T}}}=0$ )

Такая задача, как показано ниже, решается весьма просто. Вместе с тем она имеет общий интерес, поскольку к расчету двухлинзового объектива сводится большая группа задач проектирования более сложных оптических систем. Предлагается следующий графоаналитический способ решения.

По оси абсцисс прямоугольной системы координат откладываются показатели дисперсии  $v = \frac{n_D - 1}{n_F - n_C}$  (рис. II, 36) оптических стекол, по оси ординат — произведения  $N = vV_D \cdot 10^5$ . Имея построенный таким образом график, каждая точка которого характеризует соответствующие константы стекла, можно весьма просто определять пару стекол, отвечающих уравнениям (II, 346) и (II, 349) или их обобщенному выражению, являющемуся некоторым видоизменением уравнения (II, 344):

$$\frac{\nu_1 V_{\lambda,1} - \nu_2 V_{\lambda,2}}{\nu_1 - \nu_2} = V_\lambda - \nu_1 \nu_2 C \left( \frac{V_{\lambda,1} - V_{\lambda,2}}{\nu_1 - \nu_2} \right). \quad (\text{II},350)$$

На рис. II, 36 линия, соединяющая две любые точки с координатами ( $v_1$ ;  $v_1V_{D,1}$ ) и ( $v_2$ ;  $v_2V_{D,2}$ ), образует с осью абсцисс угол  $\theta$ , тангенс которого равен:

$$\lg \theta = \frac{v_1 V_{D,1} - v_2 V_{D,2}}{v_1 - v_2} \cdot 10^5.$$
 (II,351)

При C=0 и  $V_{\lambda}=-\gamma^{*}$  условие (II, 350) принимает вид:

$$tg \theta = -\gamma^* \cdot 10^5. \tag{II,351'}$$

Например, если корпус объектива изготовлен из стали ( $\gamma^* = 11, 5 \cdot 10^{-6}$ ), то из (II, 351') находим:

На рис. II, 36 проведена линия AB, образующая угол —49° с осью абсцисс и проходящая через точки, координаты которых приблизительно соответствуют константам стекол Ф1 ( $\nu = 36,9$ ;  $\nu V_D$  10<sup>5</sup> = = 5,2) и TK15 ( $\nu = 60,2$ ;  $\nu V_D 10^5 = -23$ ). Очевидно, любая пара точек, расположенных на прямой AB или ей параллельной, определит

при исправленной термооптической аберрации  $\delta s_{\lambda_0}' = 0$ :

$$\frac{V_{\lambda,2}}{V_{\lambda_0,2}} = \frac{V_{\lambda,1}}{V_{\lambda_0,1}}$$

Это условие выполнимо при существующих стеклах. Для ускорения выбора соответствующей пары «крон — флинт» удобно построигь диаграмму, отложив по оси абсцисс величины  $\frac{1}{V_{\lambda_6}}$ , а по оси ординат — величины  $\frac{V_{\lambda}}{V_{\lambda_6}}$ ; т. е. каждая марка стекла представлена точкой  $\left(\frac{1}{V_{\lambda_6}}; \frac{V_{\lambda}}{V_{\lambda_6}}\right)$ . Пара стекол может обеспечить исправление термохроматической аберрации, если у соответствующих стекол ординаты на диаграмме приблизительно равны.

комбинацию стекол, константы которых удовлетворяют условию (II, 351').

Если корпус объектива сделан из инвара ( $\gamma = 1,6\cdot 10^{-6}$ ), из (II,351') находим:

tg  $\theta = -0.16; \quad \theta \approx -9^{\circ}.$ 

Это условие выполняется также многими комбинациями пар стекол, в частности парой стекол БК10 и ТФ5; константам этих стекол соответствуют координаты точек; приблизительно лежащих на линии CD.

Если корпус объектива сделан из силумина марки АЛ8, имеющего  $\gamma^* = 24,5 \cdot 10^{-6}$ , то из (II, 351') находим:

$$tg \theta = -2,45; \quad \theta = 67^{\circ} 48'.$$

Этому требованию удовлетворяет пара стекол БФ26 и ЛК6, расположенная на прямой *EF*.

Любая пара точек, находящихся на прямой, параллельной линии *EF*, также определит комбинацию стекол, константы которых удовлетворяют условию (II, 351'). Сетка констант стекол, представленная на рис. II, 36, построена на основании данных, приведенных в новом каталоге стекол.

Очевидно, если коррекция монохроматических аберраций осуществляется не для линии D ( $\lambda = 589,3$  нм), а для другой длины волны (например, для линии C в случае аэрофотообъективов, работающих с оранжевым или красным светофильтром), то вместо параметра  $V_D$ , принятого в основу построения номограммы на рис. II, 36, принимают соответствующий термооптический параметр  $V_C$ ; соответствующие коэффициенты стекол  $\beta_C^*$ ,  $\beta_D^*$  и  $\beta_F^*$  по рекомендации автора были впервые включены в отечественный каталог оптических стекол еще в 1957 году (ГОСТ 3514—57).

Расчет двухлинзового объектива несколько усложняется, если хроматический параметр *C* в формуле (II, 350) не равен нулю. В этом случае задачу следует решать методом последовательных приближений. Обратив внимание, что величина хроматического параметра *C* обычно невелика, следует в первом приближении в формуле (II, 350) положить C=0 и определить по методу, изложенному выше, параметры  $v_1$ ,  $V_{D, 1}$  и  $v_2$ ,  $V_{D, 2}$ , соответствующие некоторой паре стекол. Это даст возможность вычислить при заданном *C* значение выражения, стоящего в правой части формулы (II, 350), и определить затем во втором приближении соответствующую новую (близкую к первой) комбинацию стекол. Таких приближений достаточно выполнить не более двух.

Несколько более сложной является задача расчета двухлинзового склеенного компонента. Температурные изменения у такой системы, очевидно, могут сопровождаться механическими деформациями преломляющих поверхностей линз. Характер изменения кривизны склеенных преломляющих поверхностей при возрастании или убывании температуры в значительной степени зависит от физических свойств склеивающего вещества и от упругих свойств оптических сред.

Возникающая при температурных изменениях разность радиусов кривизны склеенных поверхностей зависит от разности коэффициентов

расширения склеиваемых стекол, от кривизны склеиваемых преломляющих поверхностей линз, диаметра линз и интервала изменения температуры.

Пусть *r* — радиус склеиваемых поверхностей; *D* — диаметр линз;  $e \approx \frac{D^2}{8r}$  — величина «стрелки»;  $a^*_1$  и  $a^*_2$  — коэффициенты расширения оптических сред. При изменении температуры на величину  $\Delta t$  разность изменений радиусов выразится формулой:



$$\Delta \delta r = r \left( \alpha_2^* - \alpha_1^* \right) \Delta t. \tag{II,352}$$

Рис. II, 36. Номограмма для расчета нерасстраивающихся двухлинзовых объективов

Этому соответствует следующая разность изменения «стрелок»:

$$\Delta \delta e = -e\left(\alpha_2^* - \alpha_1^*\right) \Delta t. \tag{II,352'}$$

Чем меньше величина «стрелки», *e*, т. е. чем меньше кривизна склеиваемых поверхностей, тем больше могут отличаться друг от друга значения коэффициентов расширения  $a_1^* u a_2^*$  склеиваемых стекол. Выразим изменение  $\Delta \delta e$  в числе интерференционных колец  $\Delta N$ :

$$N\Delta = \frac{\Delta \delta e}{\frac{\lambda}{2}} = \frac{-2e\left(\alpha_{2}^{*} - \alpha_{1}^{*}\right)\Delta t}{\lambda} .$$
(II,353)

Как известно из практики оптического приборостроения, при склейке поверхностей малого и среднего диаметра (до 100—150 мм) допустима погрешность подгонки обработанной оптической поверхности линзы под пробное стекло в пределах до пяти интерференционных колец. Если принять, что для двух склеиваемых поверхностей допустима разность  $\Delta N = 10$ , возникающая при изменении температуры до —100°С, и положив  $\lambda = 600 \ \text{нм} = 6 \cdot 10^{-4} \ \text{мм}$ , из (II, 353) находим:

$$a_2^* - a_1^* = -\frac{\lambda \Delta N}{2e\Delta t} = \frac{3 \cdot 10^{-5}}{e}$$
.

Если далее принять, что у линз среднего диаметра (~150 *мм*) величина «стрелки» *е* не превышает  $\frac{1}{4} - \frac{1}{5}$  диаметра линзы, получим:

$$\alpha_2^* - \alpha_1^* = 1 \cdot 10^{-6}. \tag{II,354}$$

По-видимому, применение в склеиваемых компонентах стекол, имеющих разность коэффициентов расширения, не превышающую величины  $1 \cdot 10^{-6}$ , следует признать допустимым. Выполнение этого условия в конкретных разработках особого труда не представляет, в чем нетрудно убедиться, сопоставив величины температурных констант различных стекол. На рис. II, 37 приведена сетка, характеризующая термооптические константы различных марок стекол. У большинства оптических стекол различие в коэффициентах  $a^*$  не превышает величины  $1 \cdot 10^{-6} - 2 \cdot 10^{-6}$ , в то время как различие в величинах основного термооптического параметра V у разных марок стекол достигает  $4 \cdot 10^{-6} - 6 \cdot 10^{-6}$ . Отсюда следует, что условие (II, 354) во многих случаях конкретных разработок может быть выполнено.

Таким образом, к общеизвестным основным параметрам *P*, *W* и *C* двухлинзового компонента дополнительно подключается термооптический параметр *V*. Задача расчета двухлинзового склеенного компонента в своей принципиальной части сводится к определению такой комбинации оптических стекол, константы которых обеспечивают возможность получения наперед заданных численных значений основных параметров нерасстраивающегося компонента *P*, *W*, *C* и *V*. Ниже, при рассмотрении принципов проектирования нерасстраивающихся



Рис. II, 37. Сетка термооптических постоянных стекол

телеобъективов (см. главу VI), будет кратко изложен метод расчета склеенных компонентов нерасстраивающихся объективов.

11. О барической дефокусировке изображения. Развитая выше теория термооптических аберраций рассматривает, в частности, условия сохранения положения плоскости изображения при изменении температуры объектива, но при нормальном атмосферном давлении.

Дефокусировку изображения, вызываемую изменением показателя преломления воздуха при изменении его давления, например при аэросъемке на разных высотах, назовем барической дефокусировкой изображения.

При определении барической дефокусировки объектива принимается закон изменения давления воздуха и его температуры на разных высотах соответственно изменению этих параметров у так называемой стандартной атмосферы: в пределах тропосферы (до 11 км) температура снижается на 6,5° С на каждый километр высоты, а температура на земной поверхности равна 288 К. При других температурах на земной поверхности вопрос о температурном градиенте тропосферы становится менее определенным, так как в этих случаях в нижних слоях тропосферы неизбежны отступления от линейной зависимости температуры от высоты (явление температурной инверсии).

Таким образом, для стандартной атмосферы примем следующий закон изменения давления:

а) в пределах тропосферы (H<11 км):

$$\frac{p}{p_0} = \left(\frac{\overline{T} - 6, 5H}{\overline{T}}\right)^{5,2561},$$
 (II,355)

где H — высота в  $\kappa m$ ;  $\overline{T} = 288^{\circ}$  K; б) в пределах стратосферы ( $H > 11 \kappa m$ ):

$$\lg \frac{p}{p_{11}} = \frac{H - 11}{14.6} . \tag{II,356}$$

Знание давления воздуха *p* на разных высотах позволяет определить абсолютный показатель преломления воздуха *n*<sub>в</sub> как функцию давления *p* и температуры *t* по общеизвестной формуле:

$$(n_{\rm B})_{t,p} = 1 + \left(\frac{n_{\rm B,0} - 1}{1 + \beta_{\rm B} t}\right) \frac{\rho}{\rho_0},$$
 (II,357)

где  $n_{\rm B,0} = 1,0002919$  — абсолютный показатель преломления воздуха при 0°С и нормальном атмосферном давлении  $p_0 = 1$  at;  $\beta_{\rm B} = \frac{1}{273}$ бином расширения воздуха; t и p — соответственно температура и давление воздуха в межлинзовых промежутках объектива.

В самом начале отметим трудности, возникающие вследствие неопределенности характера изменения температуры воздуха в межлинзовых промежутках объектива (по сравнению с изменением температуры атмосферы на разных высотах); последнее будет определяться характером герметизации объектива, состоянием его термоизоляции, влияющей на скорость протекания процесса уравнивания температуры объектива и окружающей атмосферы. Очевидно, давление воздуха при не герметичной конструкции объектива будет уравниваться значительно быстрее.

Барическая дефокусировка изображения объектива вычисляется соответственно различным относительным показателям воздуха  $(n_{\rm B})_{t,p}$  в межлинзовых промежутках объектива при изменении давления *р* воздуха:

$$(\bar{n}_{\rm B})_{t,p} = \frac{1 + \frac{n_{\rm B,o} - 1}{1 + \beta_{\rm B} t} \frac{p}{p_0}}{1 + \frac{n_{\rm B,o} - 1}{1 + \beta_{\rm B} t}}.$$
 (II,358)

Заметим, что при  $\frac{p}{p_0} = 1$  относительный показатель преломления воздуха  $(\bar{n}_{\rm B})_t = 1$  при всех температурах *t*, как это обычно принимается при оптических расчетах, поскольку в каталоге оптических стекол приведены величины относительных показателей преломления стекол

относительно воздуха.

12. Термобарическая дефокусировка изображения. Рассмотрим общее решение задачи о термобарической дефокусировке изображения объектива.

Расстояние плоскости изображения s' от последней поверхности объектива является, в частности, функцией показателей преломления воздуха  $n_{\rm B}$  межлинзовых промежутков:

$$s' = F(n_{B,1}, n_{B,2}, n_{B,3}, \dots, n_{B,k}).$$

Изменение ds', вызванное изменением показателей преломления dn<sub>в</sub> межлинзовых промежутков, выразится формулой:

$$ds' = \frac{\partial F}{\partial n_{\mathrm{B},1}} dn_{\mathrm{B},1} + \frac{\partial F}{\partial n_{\mathrm{B},2}} dn_{\mathrm{B},2} + \dots + \frac{\partial F}{\partial n_{\mathrm{B},k}} dn_{\mathrm{B},k}.$$

Если во всех межлинзовых промежутках имеют место одинаковые изменения показателей преломления воздуха:

$$dn_{_{\mathrm{B},1}} = dn_{_{\mathrm{B},2}} = ... = dn_{_{\mathrm{B},k}} = dn_{_{\mathrm{B}}}$$

то можно написать:

$$ds' = \left(\frac{\partial F}{\partial n_{\mathrm{B},1}} + \frac{\partial F}{\partial n_{\mathrm{B},2}} + \dots + \frac{\partial F}{\partial n_{\mathrm{B},k}}\right) dn_{\mathrm{B}}, \qquad (II,359)$$

т. е. величина термобарической дефокусировки ds' пропорциональна изменению показателя преломления воздуха  $dn_{\rm B}$ , которое является функцией T и p (см. II, 357):

$$dn_{\rm p} = \frac{\partial n_{\rm B}}{\partial \rho} dp + \frac{\partial n_{\rm B}}{\partial T} dT, \qquad (II,360)$$

где T = t + 273 и  $T_0 = 273$ ; выражение (II, 357) может быть представлено в виде:

$$(n_{\rm B})_{T,p} = 1 + \frac{(n_{\rm B,0} - 1)T_0}{T} \frac{p}{p_0}$$

и следовательно:

$$\frac{\partial n_{\rm B}}{\partial p} = \frac{\left(n_{\rm B,0}-1\right)}{p_0} \frac{T_0}{T}; \quad \frac{\partial n_{\rm B}}{\partial T} = -\frac{\left(n_{\rm B,0}-1\right)}{T^2} \frac{p}{p_0}.$$

Из (II, 360) находим:

$$dn_{\rm B} = \frac{(n_{\rm B,0} - 1)}{p_0} \frac{T_0}{T} \left( dp - \frac{p}{T} \, dT \right). \tag{II,361}$$

Таким образом, величина термобарической дефокусировки ds' (II, 359) пропорциональна вариации dn<sub>в</sub> (II, 361). Из формул (II, 359) и (II, 361) следуют общие свойства объективов, представляющие практический интерес при проектировании и эксплуатации аэрофотообъективов.

А. Сопоставим величины барических дефокусировок, вызванных одинаковым изменением давления воздуха (например, при одинаковом изменении высоты аэросъемки) при некоторой температуре T и при температуре T = 293 К (соответствующей  $t = 20^{\circ}$  С). Положив в формуле (II, 361) dT = 0, определим отношение барических фокусировок:

$$\frac{(ds')_{T=293}}{(ds')_{T}} = \frac{\frac{(n_{\text{B},0}-1)}{293}}{\frac{(293)}{p_{0}}} \frac{T_{0}}{p_{0}}}{\frac{T_{0}}{T}} = \frac{T}{293} \cdot$$
(II,362)

Таким образом, достаточно вычислить барическую дефокусировку данного объектива при изменении давления воздуха в его межлинзовых промежутках от  $p_0$  до некоторого давления p (соответствующего высоте атмосферы H), воспользовавшись формулами (II, 355), (II, 356) и (II, 358); причем этот расчет достаточно выполнить лишь для одной какой-либо температуры, например, для  $t = 20^{\circ}$  С (или T = 293 K). Для любой другой температуры T величина барической дефокусировки определится из простой пропорции (II, 362).

Б. Сопоставим величины термобарических дефокусировок, вызванных одинаковым изменением температуры воздуха в межлинзовых промежутках объектива при некотором давлении *p* и при нормальном давлении *p*<sub>0</sub>.

Положив в формуле (II, 361) dp = 0, определим отношение термобарических дефокусировок:

$$\frac{(ds')_{p}}{(ds')_{p_{0}}} = \frac{\frac{(n_{\text{B},0}-1)}{T^{2}}}{\frac{(n_{\text{B},0}-1)}{T^{2}}} = \frac{p}{p_{0}}.$$
 (II,363)

Таким образом, вычислив дефокусировку изображения, вызванную изменением температуры dT воздуха в межлинзовых промежутках объектива при нормальном атмосферном давлении  $p_0$ , из простой пропорции (II, 363) можно определить дефокусировку изображения, вызванную тем же изменением температуры dT воздуха, но при давлении p. Полученные здесь формулы были проверены и применены при разработке ряда конкретных нерасстраивающихся объективов (глава VI). Большую помощь автору при выполнении этой работы оказали В. Матвеев и Ш. Печатникова.

13. Влияние температурного градиента в стекле линзы на изменение ее формы. Выше были рассмотрены явления, сопутствующие изменению температуры объективов или атмосферного давления в межлинзовых промежутках. При этом предполагалось, что в каждый данный момент оптическая система обладает определенной температурой, одинаковой у всех ее деталей.

Наибольшее влияние на изменение качества оптического изображения оказывает дефокусировка изображения относительно плоскости приемника, вызываемая изменением температуры или давления. Это влияние большее, чем влияние аберраций системы, например, сферической аберрации. Как было показано выше, волновая сферическая аберрация третьего и пятого порядков в плоскости наилучшей установки выражается формулой (II, 111'):

$$L_{\rm m} \approx 60 \, \delta s'_{\rm 30HM} \, u'_{\rm Kp}^2$$
,

в то время как волновая аберрация при дефокусировке <u>A</u> выразится формулой (II, 59):

$$\frac{L}{\lambda} = \frac{\Delta}{2\lambda} u_{\kappa p}^{\prime a}.$$

Величина коэффициента  $\frac{1}{2\lambda}$  более чем на порядок превышает величину множителя «60» у предыдущей формулы.

На практике не всегда удается обеспечить равномерное распределение температуры в отдельных оптических элементах и в системе в целом. Если не предпринять специальные меры, в стекле линз и зеркал оптической системы могут возникнуть температурные градиенты, что приводит к изменению формы оптических деталей, к возникновению градиентов показателей преломления, вызывающих искривление траекторий и отклонение хода лучей в оптической системе. Для упрощения задачи предположим, что в линзах объектива установился определенный режим, не меняювременем; предположим щийся со также,



Рис. II, 38 К определению изменения формы оптической детали при ее неравномерном нагревании

что в материале линз отсутствуют упругие натяжения, т. е. температурные деформации линз определяются лишь на основании линейного закона расширения. Кроме того, предположим, что температурные градиен-

ты направлены перпендикулярно оси симметрии линзы. Если же ось симметрии отсутствует, то направление градиента в каждом конкретном случае указывается. Наконец, предположим, что лучи в системе распространяются, образуя сравнительно малые углы u с оптической осью, косинусы которых (соs u) можно принять равными единице. При таких допущениях задача была решена  $\Gamma$ . Слюсаревым.

Пусть AB = l(h) — толщина детали на расстоянии h от оси или от некоторой другой прямой, которая при нагревании не подвергается смещению (рис. II, 38). Примем условно, что на оптической оси OO' температура равна нулю ( $t_0 = 0$ ); на расстоянии h от оси температура равна t(h). Изменение  $\delta l$  отрезка l равно:

$$\delta l = \alpha^* l(h) t(h).$$

Одновременно с изменением линейных размеров отрезок AB перемещается по высоте. Элементарный отрезок dh изменяется на величину  $\alpha^* dh t(h)$ ; следовательно, общее перемещение  $\Delta h$  на высоте h равно:

$$\Delta h = \alpha^* \int_0^h t(h) \, dh. \tag{II,364}$$

Таким образом, луч, падающий на оптическую деталь на расстоянии h от оптической оси, который до изменения температуры упал бы на элемент AB, вследствие изменения температуры в действительности пройдет через элемент  $A_1B_1$  (см. рис. II, 38), расположенный на расстоянии  $\Delta h$  от элемента AB. Разность толщин, вызываемая разностью высот  $\Delta h$ , равна  $\frac{dl(h)}{dh}\Delta h$ ; следовательно, полное изменение  $\Delta l$  длины отрезка l равно:

$$\Delta l = \alpha^* l(h) t(h) - \frac{dl(h)}{dh} \Delta h = \alpha^* \left[ l(h) t(h) - \frac{dl(h)}{dh} \int_0^h t(h) dh \right]. \quad \text{(II,365)}$$

Определим теперь отклонение луча от его первоначального направления.

Пусть фронт волны (рис. II, 39) проходит через оптический элемент  $\Delta l$ ; соответствующее изменение фронта волны равно  $(n - 1) \Delta l$ . При изменении на dh расстояния оптического элемента от оптической оси толщина элемента  $\Delta l$  изменяется на величину  $d\Delta l$ ; соответствующее изменение положения фронта волны равно  $(n - 1) (\Delta l + d\Delta l)$ . Следовательно, поверхность волны изменяет свой наклон на величину  $(n-1) \frac{d\Delta l}{dh}$  и отклонение луча  $\varepsilon_1$ , направленное вверх, равно:

$$\epsilon_1 = (n-1) \frac{d\Delta l}{dh}$$
.

Воспользовавшись (II, 365), находим уравнение, определяющее отклонение луча:

$$\varepsilon_{1} = (n-1) \alpha^{*} \frac{d}{dh} \left[ l(h) t(h) - \frac{dl(h)}{dh} \int_{0}^{h} t(h) dh \right].$$

Произведя дифференцирование выражения в квадратных скобках, находим окончательное выражение  $\varepsilon_1$ ;

$$\varepsilon_{1} = (n-1) \alpha^{*} \left[ \frac{dt}{dh} l(h) - \frac{d^{2}l(h)}{dh^{2}} \int_{0}^{h} t(h) dh \right].$$
(II,366)

Этим выражением воспользуемся ниже.

14. Влияние градиента показателя преломления на изменение траектории луча. Рассмотрим элемент объема оптически неоднородной среды, показатель преломления которой изменяется от точки к точке. Предположим, что это изменение показателя преломления происходит по линейному закону. Если показатель преломления мало и плавно изменяется, то величину градиента можно считать постоянной даже в пределах больших объемов среды, если градиент показателя направлен перпендикулярно оптической оси, а лучи света распространяются под малыми углами к оси.

Пусть *АВСD* — сечение малого объема меридиональной плоскостью (рис. II, 40); *GG'* — градиент показателя, который считаем постоянным; *i* — угол падающего луча *LM* с направлением градиента.

Как было показано выше (глава I, формула I, 5'), применительно к рассматриваемому случаю, положив  $\varphi = 90-i$ , получим:

$$\frac{1}{R} = \frac{g}{n} \sin i, \qquad (II,367)$$

где R — радиус кривизны траектории луча;  $g = \frac{dn}{dh}$  — градиент показателя преломления в направлении, параллельном оси h.



Из полученной там же общей формулы (1, 5''') находим (в принятых здесь обозначениях) угол отклонения луча  $\Delta \varphi = \delta$ , прошедшего в стекле путь s = l(h):

$$\delta = \frac{l(h)}{R} = \frac{l(h)}{n} \frac{dn}{dh};$$

при этом принято, что  $\varphi = 90 - i = 0$ , т. е. что лучи распространяются приблизительно нормально к направлению градиента показателя.

При переходе от стекла в воздух угол отклонения  $\delta$  увеличивается в *n* раз и угол отклонения  $\varepsilon_2$ , вызываемый непостоянством показателя преломления, определится формулой:

$$\epsilon_2 = l(h) \frac{dn}{dh} = l(h) \frac{dn}{dt} \frac{dt}{dh}$$

Приняв линейный закон изменения температуры

$$n = n_0 + \beta^* t; \quad \frac{dn}{dt} = \beta^*,$$

$$\varepsilon_2 = l(h) \beta^* \frac{dt}{dh}.$$
(II,368)

Очевидно, общее отклонение луча є равно сумме:  $\varepsilon_1 + \varepsilon_2$ . Заметим, что если градиент температуры направлен кверху, а коэффициенты  $a^*$  и  $\beta^*$  положительны, то оба отклонения имеют один и тот же знак: луч отклоняется кверху, точнее, в сторону возрастающих показателей преломления, такое отклонение луча (против часовой стрелки) следует считать отрицательным; получим:

$$\varepsilon = \varepsilon_1 + \varepsilon_2 = -(n-1) \alpha^* \left[ l(h) \frac{dt}{dh} - \frac{d^2 l(h)}{dh^2} \int_0^h t(h) dh \right] - -l(h) \beta^* \frac{dt}{dh}.$$

Упростим запись этого выражения, положив по-прежнему (см. главу I)  $\frac{dt}{dh} = \overline{\gamma}$ , и вместо l(h) и t(h) — соответственно l и t:

$$\varepsilon = -(n-1)\alpha^* \left[ l \overline{\gamma} - \frac{d^2 l}{dh^2} \int_0^h t dh \right] - l\beta^* \overline{\gamma},$$

или

получим:

$$\varepsilon = -l\overline{\gamma}\left[(n-1)\alpha^* + \beta^*\right] + (n-1)\alpha^* \frac{d^2l}{dh^2}\int_0^h tdh. \quad (\text{II},369)$$

15. Изменение направления лучей простейшими оптически неоднородными деталями. Рассмотрим оптическую деталь, ограниченную плоскими поверхностями, — параллельную пластинку или стеклянный клин с малым преломляющим углом, расположенные так, чтобы их грани образовывали небольшие углы с направлением градиента. В этом случае  $\frac{d^2l}{dh^2} = 0$  и формула (II, 369) принимает вид:

$$\boldsymbol{\varepsilon} = -l \, \overline{\boldsymbol{\gamma}} \left[ (n-1) \, \boldsymbol{\alpha}^* + \boldsymbol{\beta}^* \right]. \tag{II,370}$$

Если оптическая деталь изготовлена из материала, для которого  $(n-1)\alpha^* + \beta^* = 0$ , отклонение є луча равно нулю и деталь можно назвать нерасстраивающейся (при этом не учитывается влияние температурных напряжений). Указанным свойством, например, обладает кристалл флюорита.

В случае плоскопараллельной пластинки путь луча, образующего малые углы падения *i*, равен толщине пластинки *l* и отклонение луча пропорционально градиенту; если последний постоянен, отклонение также постоянно и плоскопараллельная пластинка действует как клин. Например, пластинка из стекла K8 ( $n_D = 1,5163$ ;  $a^* = 7,2 \cdot 10^{-6}$ ;

Например, пластинка из стекла К8 ( $n_D = 1,5163$ ;  $a^* = 7,2 \cdot 10^{-6}$ ;  $\beta^* = 2,8 \cdot 10^{-6}$ ) толщиной 10 см при градиенте температуры  $\overline{\gamma} = 1 \frac{e_{pad}}{c_{M}}$ отклонит луч на угол

$$\varepsilon = -10[0,516 \cdot 7,2 + 2,8] 10^{-6} = -65 \cdot 10^{-6} pad$$
, или  $-13''$ .

Если оптическая деталь является клином, отклонение луча растет пропорционально толщине. Возникает расфокусировка пучка: если пучок был параллельным, то становится сходящимся, когда градиент направлен кверху. Например, пусть клин диаметром 200 *мм* изготовлен из того же стекла К8. Толщина клина у верхнего края равна нулю, у нижнего 50 *мм*; градиент по-прежнему 1  $\frac{spad}{cM}$ . Пользуясь вычислениями предыдущего примера, получим: отклонение луча на верхнем крае клина равно нулю, на нижнем — 6,5". Такая разность отклонений при диаметре клина 200 *мм* соответствует радиусу кривизны *R* поверхности выходящей волны:

$$R = \frac{200 \text{ mm}}{6,5'' \cdot 0,5 \cdot 10^{-5}} = 6 \text{ km}.$$

16. Больший практический интерес представляет случай оптической линзы. Предположим, что при нагревании температура на оси линзы не меняется. Зависимость толщины *l* от высоты *h* имеет вид:

$$l = l_0 - \frac{h^2}{2(n-1)f'}, \qquad (II,371)$$

где  $l_0$  — толщина линзы в центре; f' — ее фокусное расстояние. Предположим, что градиент  $\overline{\gamma} = \frac{dt}{dh}$  постоянен. Согласно формуле (II, 369), получим:

$$\varepsilon = -l_0 \left[ (n-1) \, \alpha^* + \beta^* \right] \overline{\gamma} + \frac{h^2 \, \beta^* \, \overline{\gamma}}{2 \, (n-1) \, f'} \, . \tag{II,372}$$

Первый член выражения постоянен; второй, зависящий от  $\beta^*$ , — пропорционален  $h^2$ . Следовательно, отклонение луча є возрастает пропорционально квадрату координаты *h*; очевидно, здесь появляется аберрация типа комы.

Пусть, например, диаметр линзы 500 мм, f' - 1000 мм, стекло — K8; разность температур на краю и оси 10°, т. е.  $\overline{\gamma} = \frac{1}{5} \frac{pad}{cm}$ . Аберрация комы в угловой мере равна:

$$K = \frac{\beta * \overline{\gamma}}{2 (n-1) f'} h^2 = 0,34 \cdot 10^{-5} pa\partial$$
, или 0,7".

В фокальной плоскости поперечная кома составит 0,003 *мм*, т. е. величина очень малая. Однако в некоторых системах (например, в высокоразрешающих объективах) ее желательно исправить. Это можно сделать соответствующим выбором марок оптических стекол. Для двухлинзового тонкого объектива кома выразится формулой:

$$K = \frac{\beta_1^* \,\overline{\gamma} \, h_1^2}{2 \, (n_1 - 1) \, f_1'} + \frac{\beta_2^* \,\overline{\gamma} \, h_2^2}{2 \, (n_2 - 1) \, f_2'} \,,$$

где индексы 1 и 2 соответствуют номерам линз. Если  $h_1 = h_2$ , условие коррекции комы выразится уравнением:

$$\frac{\beta_1^*}{(n_1-1)f_1'} + \frac{\beta_2^*}{(n_2-1)f_2'} = 0.$$

Ввиду того, что в двухлинзовых объективах осуществляется также условие ахроматизма:

$$\frac{1}{\mathbf{v}_1 f_1'} + \frac{1}{\mathbf{v}_2 f_2'} = 0,$$

где v<sub>1</sub> и v<sub>2</sub> — коэффициенты дисперсии стекол, то должно быть соблюдено условие:

$$\frac{\beta_1^* \gamma_1}{n_1 - 1} = \frac{\beta_2^* \gamma_2}{n_2 - 1}$$

или

$$\frac{\beta_1^*}{\Delta n_1} = \frac{\beta_2^*}{\Delta n_2} , \qquad (II,373)$$

где *∆п* — дисперсия стекла.

Это условие может и должно быть выполнено при проектировании высокоразрешающих объективов (например, астрономических рефракторов и вообще длиннофокусных коллиматорных объективов).

17. Прохождение лучей в линзах с аксиально-симметричным распределением температуры. Большая теплопроводность металлической оправы объектива по сравнению с теплопроводностью стекла приводит к тому, что оправы сравнительно быстро принимают температуру окружающей среды, отличную от температуры стекла, вследствие чего в стекле устанавливается приблизительно симметричное относительно оптической оси распределение температуры. Предположим, что это распределение пропорционально квадрату расстояния *h* рассматриваемого элемента оптической детали от оси:

$$t = ch^2 \tag{11,374}$$

Отсюда определится градиент температуры:

$$\overline{\gamma} = \frac{dt}{dh} = 2 ch. \tag{II,374'}$$

Рассмотрим простейший случай плоскопараллельной пластинки, нормаль к которой образует с градиентом углы, близкие к 90°.

Из формулы (II, 369) следует:

$$\varepsilon = -l\bar{\gamma} [(n-1)\alpha^* + \beta^*] = -2 chl [(n-1)\alpha^* + \beta^*]. \quad (II,375)$$

Для плоскопараллельной пластинки *l* постоянно и, следовательно, отклонение луча є пропорционально величине *h*. Это соответствует расфокусировке или смещению плоскости изображения.

В случае оптического клина величина *l(h)* меняется по линейному закону, а є — по квадратичному. На оптической оси возникает аберрация кома.

Например, если максимальная толщина клина из стекла К8 равна: l = 100 мм и h = 250 мм, а разность температур в центре и на краю равна 10°, получим:

$$c = \frac{10^{\circ}}{(25)^2} \frac{2pa\partial}{cM^2}; \quad \epsilon_{h=250} = 0$$
 (так как  $l = 0$ );  
 $\epsilon_{h=-250} = 5, 2 \cdot 10^{-5} pa\partial$ , или 10".

Отсюда находим величину комы (в угловой мере):

$$K = \frac{\varepsilon_{h=250} + \varepsilon_{h=-250}}{2} - \varepsilon_{h=0} = 5'';$$

при этом  $\varepsilon_{h=0} = 0$ , поскольку h = 0.

Как было указано выше, применение оптического материала, у которого  $(n - 1)\alpha^* + \beta^* = 0$ , устраняет все последствия неравномерного нагрева, так как при любых градиентах  $\gamma$  величина  $\varepsilon = 0$ .

Для простой линзы справедлива зависимость толщины *l* от высоты *h* вида (II, 371). Предположив, что распределение температуры описывается формулой (II, 374), интеграл, входящий в выражение (II, 369), имеет следующее значение:

$$\int_{0}^{h} t(h) \, dh = c \int_{0}^{h} h^2 \, dh = \frac{1}{3} \, ch^3.$$

Обратим внимание, что

$$\frac{d^2l}{dh^2} = -\frac{1}{2(n-1)f'} \quad \mathbf{H} \quad \overline{\mathbf{\gamma}} = 2ch,$$

после подстановки в (II, 369) находим:

$$\varepsilon = -2 \operatorname{lch} \left[ (n-1) \alpha^* + \beta^* \right] - \frac{c \, \alpha^* \, h^3}{6f'} \,. \tag{II,376}$$

Обозначив через  $\delta s'$  продольную сферическую аберрацию, соответствующую углу отклонения є луча, проходящего через линзу на высоте h и образующего с оптической осью апертурный угол u', находим:

$$\delta s' = -\frac{h \varepsilon}{\sin^2 u'};$$

так как sin  $u' = \frac{h}{f'}$ , имеем:

$$\delta s' = -\frac{f'^2}{h} \varepsilon. \tag{II,377}$$

Эта формула определяет продольную сферическую аберрацию, соответствующую отклонению луча на угол є, определяемый из выражения (II, 376).

Рассмотренные в этой главе оптические и термооптические аберрации объектива определяют в совокупности качество оптического изображения, образуемого объективом.

## глава III

## КАЧЕСТВО ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ ОБЪЕКТИВОВ

Основным элементом при образовании изображения любого объекта является изображение точки. Однако оптическая система никогда не изображает точку в виде точки. С одной стороны, этому препятствуют аберрации оптической системы, с другой, — волновая природа света. Действие этих факторов приводит к тому, что изображение точки оказывается нерезким, расплывчатым; мелкая структура объектов передается неправильно: изображения двух очень близко расположенных точек сливаются в одно пятно; изображения решеток расплываются в серый фон и т. п. По этим сведениям получают грубое качественное представление об изобразительных свойствах объектива.

Чем меньше аберрации объектива, тем выше качество образуемого им изображения. Однако это очевидное соответствие нуждается в проведении более глубокого анализа, устанавливающего связь между некоторыми количественными оценками изображения и его психофизиологическим восприятием. На протяжении многих десятилетий основным критерием качества оптического изображения являлась разрешающая сила объектива.

## § 1. РАЗРЕШАЮЩАЯ СИЛА СОВЕРШЕННОГО ОБЪЕКТИВА

Сложный объект представляет совокупность бесконечно малых элементов объема или поверхности, т. е. в пределе точек. Знание структуры изображения точки, даваемого объективом, позволяет построить изображение любого более сложного оптического объекта.

1. Изображение точки совершенным объективом. Теория дифракции показывает, что даже при совершенном (безаберрационном) объективе изображение точки имеет вид некоторого светлого пятна, обладающего определенными габаритами и характерным распределением энергии в нем: пятно имеет центральный максимум освещенности, постепенно снижающейся до нуля, образуя вокруг центрального максимума темное кольцо; концентрично к последнему располагается светлое кольцо, максимум освещенности в котором не превышает нескольких сотых долей от величины освещенности центрального максимума, и т. д. Применение классического принципа Гюйгенса — Френеля к анализу явления формирования изображения точки показывает, что дифракция зависит от величины волновых аберраций, определяющих разности хода интерферирующих лучей, и от формы отверстия, ограничивающего фронт волны, вышедшей из объектива.

Предположим, что между источником колебаний (источником света) Q и точкой Q' пространства помещается плоский экран M, в котором имеется отверстие S произвольной формы, малое по сравнению с расстоянием s от источника света Q и с расстоянием s' от точки Q'. Напишем выражение для светового возмущения U в некоторой произвольной точке Q' пространства (рис. III, 1):

$$U = \frac{A}{2\lambda} \cdot \frac{\cos(n, s) - \cos(n, s')}{ss'} \int_{S} \sin 2\pi \left(\frac{t}{T} - \frac{s+s'}{\lambda}\right) dS, \quad \text{(III,1)}$$



где (n, s) и (n, s') — углы нормали к плоскости отверстия с направлениями к источнику света Qи рассматриваемой точке Q'; T — период колебаний;  $\lambda$  — длина волны; s и s' — расстояния соответственно от источника света Q до некоторой точки отверстия P и от этой точки до рассматриваемой произвольной точки Q'; t — время, в течение которого свет прошел расстояние s от источника Q до точки P; A — коэффициент, зависящий только от свойств источника света: сила света источника в данном направлении пропорциональна квадрату этого коэффициента  $A^2$ .

Рис. III, 1. Дифракция от отверстия

Если нормаль к плоскости отверстия составляет малые углы с направлениями на источник света Q и точку Q', получим:

$$U_{0} = \frac{A'}{\lambda s'} \int_{S} \sin 2\pi \left(\frac{t}{T} - \frac{s+s'}{\lambda}\right) dS, \qquad (\text{III}, 2)$$

где  $A' = \frac{A}{s}$ . Это выражение можно представить в следующем виде:

$$U_0 = \frac{A'}{\lambda s'} \left[ \sin 2\pi \frac{t}{T} \int_{S} \cos 2\pi \frac{s+s'}{\lambda} dS - \cos 2\pi \frac{t}{T} \int_{S} \sin 2\pi \frac{s+s'}{\lambda} dS \right].$$

Световое возмущение U<sub>0</sub> можно рассматривать как результат наложения двух волн, амплитуды которых пропорциональны:

$$C_0 = \int_{\mathcal{S}} \cos 2\pi \, \frac{s+s'}{\lambda} \, dS; \quad S_0 = \int_{\mathcal{S}} \sin 2\pi \, \frac{s+s'}{\lambda} \, dS \qquad (\text{III},3)$$

с разностью фаз  $\frac{\pi}{2}$ . Таким образом, освещенность в точке Q' будет пропорциональна сумме квадратов этих амплитуд:

$$E' = \frac{A'^2}{\lambda^2 s'^2} \left( C_0^2 + S_0^2 \right).$$
(III,4)

Иногда удобнее принять в качестве источника световых колебаний поверхность световой волны, проходящей через отверстие S (см. рис. III, 1). При этом результирующее колебание в точке Q' будет вызвано элементарными колебаниями, приходящими в точку Q' от бесконечно большого числа бесконечно малых элементов dS поверхности волны S, расположенных на расстояниях s' от точки Q'; вместо (III, 3) получим:

$$C_0 = \int_{\mathcal{S}} \cos 2\pi \frac{s'}{\lambda} \, dS; \quad S_0 = \int_{\mathcal{S}} \sin 2\pi \frac{s'}{\lambda} \, dS. \tag{III,5}$$

Пусть S (рис. III, 2) — сферическая волновая поверхность после выхода из оптической системы с центром в точке Q' и радиусом r'. Определим освещенность точки C', находящейся на расстоянии  $\sigma$  от оси волновой поверхности и на расстоянии  $\Delta$  от гауссовой плоскости изображения O'. Полярные координаты элемента M' равны p' и  $\theta'$ , где





 $\rho'$  — расстояние элемента волны до оси, а  $\theta'$  — угол между радиусом-вектором точки M' и меридиональной плоскостью.

Разность хода между лучами  $\overline{M'C'}$  и  $\overline{T'C'}$ :

$$\overline{M'C'} - \overline{T'C'} = \sqrt{(r' + \Delta - a^2) + (\rho' \cos \theta' - \sigma)^2 + {\rho'}^2 \sin^2 \theta'} - \sqrt{(R + \Delta)^2 + \sigma^2},$$

где a = T'K' — стрелка, определяемая из уравнения  $a(2r' - a) = \rho'^2$ . Умножим и разделим разность радикалов на их сумму:

$$\overline{M'C'} - \overline{T'C'} = \frac{-2(r' + \Delta)a + {\rho'}^2 - 2\sigma\rho'\cos\theta' + a^2 + \sigma^2}{\overline{M'C'} + \overline{T'C'}}$$

Это выражение можно упростить, так как величины  $\sigma$  и  $\Delta$  весьма малы по сравнению с r'; сумму в знаменателе можно заменить через 2r'; в числителе, пренебрегая  $\sigma^2$ , получаем:

$$\overline{M'C'} - \overline{T'C'} = -\frac{\Delta}{2} \frac{{\rho'}^2}{{r'}^2} - \frac{\sigma\rho'}{r'} \cos\theta' =$$
$$= -\frac{\Delta}{2} {u'}^2 - \sigma u' \cos\theta'. \qquad (III.6)$$

где  $u' = \frac{\rho'}{r'}$ .

Напишем интегралы (III, 5), приняв, что  $\overline{M'C'} = s'$  (см. рис. III, 2):

$$C_{0} = \int_{S} \cos \frac{2\pi}{\lambda} \left( \overline{T'C'} - \frac{\Delta}{2} u'^{2} - \sigma u' \cos \theta' \right) dS;$$

$$S_{0} = \int_{S} \sin \frac{2\pi}{\lambda} \left( \overline{T'C'} - \frac{\Delta}{2} {u'}^{2} - \sigma u' \sin \theta' \right) dS.$$

Так как присутствие постоянной  $\frac{2\pi T'C'}{\lambda}$  под знаком sin или cos не влияет на величину  $C_0^2 + S_0^2$ , можно ее отбросить:

$$C_0, S_0 = \int_{S} \cos, \sin \frac{2\pi}{\lambda} \left( -\frac{\Delta}{2} {u'}^2 - \sigma u' \cos \theta' \right) dS. \quad (III,7)$$

Предположим сначала, что дефокусировка изображения отсутствует ( $\Delta = 0$ ), т. е. что точка C' находится в гауссовой плоскости установки; тогда:

$$C_0, S_0 = \int_{S} \cos, \sin \frac{2\pi}{\lambda} (\sigma u' \cos \theta') \, dS; \qquad (III,8)$$

знак минус при аргументе sin и cos отброшен, так как он не влияет на сумму (III, 4).

Как увидим, в дальнейшем, на освещенность изображения E' влияет форма контура, ограничивающего волновую поверхность S. Рассмотрим здесь практически наиболее важный случай, когда поверхность S ограничена окружностью радиуса ρ'<sub>1</sub>, центр которой расположен на оптической оси. Приняв, что

$$dS = \rho' \, d\rho' \, d\theta', \tag{III,8'}$$

$$C_0, S_0 = \int_{0}^{\rho_1'} \int_{\theta'=0}^{\theta'=2\pi} \cos \sin \left(\frac{2\pi}{\lambda} \sigma u' \cos \theta'\right) d\theta' \rho' d\rho'. \quad (III,8'')$$

Вследствие симметрии волны относительно меридиональной плоскости интеграл  $S_0 = 0$ , так как каждому положительному элементу интегрирования соответствует элемент с тем же значением, но с отрицательным знаком. Интеграл  $C_0$  можно записать в виде:

$$C_{0} = \int_{0}^{\rho_{1}'} \int_{\theta_{=0}'}^{\theta_{=2\pi}'} \cos\left(\frac{2\pi}{\lambda} \sigma \frac{\rho'}{r'} \cos\theta'\right) \rho' d\rho' d\theta' =$$
$$= \int_{0}^{\rho_{1}'} \rho' d\rho' \int_{\theta_{=0}'}^{\theta_{=2\pi}'} \cos\left(\alpha \rho' \cos\theta'\right) d\theta', \qquad (III,9)$$

где  $\alpha = \frac{2\pi\sigma}{\lambda r'}$ .

Интегралы вида  $\int_{0}^{2\pi} \cos(\alpha \rho' \cos \theta') d\theta'$  хорошо исследованы и в целях

удобства практического применения они табулированы. Следующая функция от  $z = \alpha \rho'$ , обозначаемая символом  $I_0(z)$ , называется функцией Бесселя нулевого порядка:

$$I_0(z) = \frac{1}{2\pi} \int_0^{2\pi} \cos(z \cos \theta') d\theta'. \qquad (\text{III}, 10)$$

Эта функция может быть представлена следующим рядом:

$$I_0(z) = 1 - \frac{z^2}{2^2 \cdot 1!^2} + \frac{z^4}{2^4 \cdot 2!^2} - \frac{z^6}{2^6 \cdot 3!^2} + \dots$$
(III,10')

При больших значениях *г* можно применять для вычисления *I*<sub>0</sub>(*z*) следующую приближенную формулу:

$$I_{0}(z) = \frac{\cos\left(z - \frac{\pi}{4}\right)}{\sqrt{\frac{1}{2}\pi z}}.$$
 (III,10")

Рассмотрим еще одну функцию, которая понадобится ниже, — функцию Бесселя первого порядка I<sub>1</sub>(z), определяемую выражением:

$$I_1(z) = \frac{1}{2\pi} \int_0^{2\pi} \cos(z \sin \theta' - \theta') d\theta'. \qquad (III, 11)$$

Эта функция разлагается в следующий ряд:

$$I_{1}(z) = \frac{1}{2} z \left( 1 - \frac{z^{2}}{2^{2} \cdot 1 \cdot 2} + \frac{z^{4}}{2^{4} \cdot 1 \cdot 2 \cdot 2 \cdot 3} - \frac{z^{6}}{2^{6} \cdot 1 \cdot 2 \cdot 3 \cdot 2 \cdot 3 \cdot 4} + \dots \right)$$
(III,11')

а при больших значениях z:

$$I_1(z) = \frac{\sin\left(z - \frac{\pi}{4}\right)}{\sqrt{\frac{1}{2}\pi z}} \cdot \qquad (\text{III}, 11'')$$

Функции Бесселя  $I_0(\alpha \rho')$  и  $I_1(\alpha \rho')$  связаны соотношением:

$$\int_{0}^{\rho_{1}} \rho' I_{0}(\alpha \rho') d\rho' = \frac{\rho'_{1}}{\alpha} I_{1}(\alpha \rho'_{1}). \qquad (III, 12)$$

Таким образом, согласно определению функции Ι<sub>0</sub>(αρ') имеем:

,

$$C_0 = 2\pi \int_0^{\rho_1} I_0(\alpha \rho') \rho' d\rho'. \qquad (III,13)$$

239

Приняв во внимание (III, 12), находим:

$$C_{0} = 2\pi \frac{\rho_{1}}{\alpha} I_{1} \left( \alpha \rho_{1}' \right) = 2\pi \rho_{1}^{\prime 2} \frac{I_{1} \left( \alpha \rho_{1}' \right)}{\alpha \rho_{1}'}.$$
 (III,13')

Введенную выше переменную  $z = \alpha \rho' = 2\pi \frac{\sigma \rho'}{\lambda r'}$  удобно ввести в формулы дифракции; ее выражают в так называемых оптических единицах.

Для освещенности  $E_{\sigma}'$  в точке C' (см. рис. III, 2) находим (см. III, 4):

$$E'_{\sigma} = A'^{2} \frac{4\pi^{2} \rho_{1}'^{*}}{\lambda^{2} r'^{2}} \frac{I_{1}^{2}(z)}{z^{2}} \cdot \qquad (\text{III}, 14)$$

Освещенность  $E'_0$  в центре дифракционного пятна получим, положив  $\sigma = 0$ , z = 0 и обратив внимание, что при этом  $\frac{I_1(z)}{z} = \frac{1}{2}$ :

$$E'_{0} = A'^{2} \frac{\pi^{2} \rho_{1}'^{4}}{\lambda^{2} r'^{2}} . \qquad (III, 14')$$

Относительная освещенность  $\overline{E_{\sigma}}'$  в точке изображения на расстоянии  $\sigma$  от точки геометрического изображения (центрального максимума), расположенной на оптической оси, выразится формулой:

$$\overline{E}'_{\sigma} = \frac{E'_{\sigma}}{E'_{0}} = \frac{4}{z_{1}^{2}} I_{1}^{2}(z_{1}).$$
(III,15)

Для бесконечно удаленной точки-предмета можно принять

$$\frac{\rho_1}{r'} = \sin u' = \frac{D}{2f'},$$

так как в объективе условие синусов выполнено;  $f' - \phi$ окусное расстояние объектива;  $D - \mu$  диаметр его входного зрачка;  $u' - \mu$  апертурный угол в пространстве изображений. Величина  $z_1$  выразится формулой:

$$z_1 = \frac{\pi D}{\lambda f'} \,\sigma. \tag{III,16}$$

Для данного объектива и данной длины волны величина *z* пропорциональна расстоянию **с**.

Воспользовавшись таблицами бесселевых функций, можно убедиться, что в дифракционном пятне освещенности  $\overline{E}_{\sigma}$  обращаются в нуль при следующих значениях аргумента  $z_1$ : 3,83; 7,02; 10,17; 13,32; 16,47, т. е. эти значения аргумента  $z_1$  определяют положения соответственно 1-го, 2-го, 3-го и т. д. минимумов освещенности.

Максимумы освещенности E' имеют место при следующих значениях аргумента  $z_1$ : 5,13; 8,42;11,62; 14,80; 17,96; этим значениям  $z_1$  соответствуют следующие величины максимумов в %: 1,75; 0,416; 0,160; 0,078; 0,044, т. е. яркость первого светлого дифракционного кольца составляет меньше 2% от величины яркости центрального максимума.

Таким образом, изображение точки, даваемое идеальным объективом в монохроматическом свете, имеет вид светлого пятна диаметром  $2 \times 3,83$  оптических единиц, окруженного концентрическими чередующимися темными и светлыми кольцами убывающей яркости. Это центральное светлое пятно называется к р у ж к о м Э р и, впервые исследовавшего это явление в 1834 году.

Распределение энергии в этих кольцах пропорционально величине

$$dF' = 2\pi z_1 dz_1 = 8\pi \frac{l_1^2(z_1)}{z_1} dz_1,$$

где dF' — энергия, проходящая через бесконечно тонкое кольцо шириной  $dz_1$  и радиусом  $z_1$ , центр которого совпадает с центром дифракционного пятна.

Энергия *F*', проходящая через кольцо конечной ширины, у которого внутренний радиус равен *z*<sub>1</sub>, а внешний *z*<sub>2</sub>, выражается формулой:

$$F' = 8\pi \int_{z_1}^{z_2} \frac{I_1^2(z_1)}{z_1} dz_1.$$
 (III,17)

В теории бесселевых функций доказывается следующая интегральная зависимость:

$$2\int_{0}^{z_{1}} \frac{I_{1}^{2}(z)}{z} dz = 1 - \left[ I_{0}^{2}(z_{1}) - I_{1}^{2}(z_{1}) \right].$$
(III,18)

Применительно к выражению (III, 17) получим:

$$F' = 4\pi \left[ I_0^2 (z_1) + I_1^2 (z_1) - I_0^2 (z_2) - I_1^2 (z_2) \right];$$

количество энергии здесь выражено в произвольных единицах. Введем коэффициент пропорциональности *m*, при котором полная энергия, распределенная по всему дифракционному пятну, равна единице:

$$F' = 4\pi m \left[ I_0^2(0) + I_1^2(0) - I_0^2(\infty) - I_1^2(\infty) \right] = 1;$$

при этом величины *z* взяты от 0 до  $\infty$ , суммирование выражения в скобках производится согласно формулам (III, 10'), (III, 10'), (III, 11') и (III, 11''). Отсюда, очевидно, коэффициент  $m = \frac{1}{4\pi}$  и энергия  $\overline{F'}$  в кольцах определится из выражения:

$$\overline{F}' = I_0^2(z_1) + I_1^2(z_1) - I_0^2(z_2) - I_1^2(z_2).$$
(III,19)

Из формулы находим, что в центральном дифракционном максимуме сосредоточено 83,8% всей энергии; в первом светлом кольце — 7,2%

всей энергии; во втором кольце — 2,8%; в третьем кольце — 1,5%; во всех остальных светлых кольцах сосредоточено лишь 4,7% всей энергии. В заключение заметим, что согласно формуле (III, 14') освещенность  $E'_0$  в центре дифракционного кружка пропорциональна 4-й степени радиуса  $\rho'_1$  выходного зрачка; из формулы (III, 16) следует:

$$\sigma = \frac{z_1 \lambda}{\pi} \frac{f'}{D}, \qquad (III,20)$$

т. е. диаметры колец тем меньше, чем больше диаметр D входного зрачка объектива при неизменном его фокусном расстоянии. Величина  $\sigma$ зависит от длины волны  $\lambda$ , а следовательно, максимумы освещенности для лучей с различными длинами волн наступают при различных расстояниях  $\sigma$  от оптической оси: диаметры колец в красном свете больше, чем в синем; дифракционная картина изображения точки в белом свете представляется в виде белого пятна с красной каймой и внутренними цветными кольцами.

2. Разрешающая сила совершенного объектива в случае двух светящихся точек. Для оценки качества изображения, образуемого объективом, часто рассматривают воспроизведение изображения простейшего объекта, состоящего из двух одинаковых светящихся точек, расположенных на небольшом расстоянии друг от друга. Эти точки сближают до тех пор, пока их изображения объективом на данном приемнике (например, фотослое) перестают различать раздельно. Наименьшее расстояние  $\sigma_0$ , начиная с которого изображения двух точек сливаются, называется на име нь шимразрешаемым расстояния двух точек сливаются, насто в качестве меры так называемой разрешающей силы объектива принимают величину  $N_0$ , обратную  $\sigma_0$ :

$$N_0 = \frac{1}{\sigma_0} M M^{-1}, \qquad (III, 21)$$

определяющую число изображений простейших элементов (точек, щелей, полос и т. п.), различаемых раздельно на отрезке изображения единичной длины, например на 1 мм.

Дифракционная теория изображения позволяет теоретически определить наименьшее разрешаемое расстояние, если известно, при каких распределениях освещенности приемник (глаз, фотослой) воспринимает изображения раздельно. В частности, еще в 1879 году Рэлей принял, что два дифракционных пятна, соответствующие изображениям двух точек, разрешаются глазом, если центр одного пятна совпадает с серединой первого темного дифракционного кольца второго пятна. Если точки предмета самосветящиеся и излучают некогерентные (не могущие интерферировать) лучи, распределение освещенности в картине изображения двух одинаковых точек получается простым сложением освещенностей изображений, полученных от каждой точки в отдельности.

Принятое выше допущение Рэлея соответствует расстоянию  $\sigma_0$  между центрами пятен, равному  $z_1 = 3,83$  оптических единицы; в

этом случае максимум одного изображения совпадает с минимумом другого изображения (рис. III, 3). Отношение  $E'_{\rm мин}$ :  $E'_{\rm макс}$  составляет 74 %, т. е. разность освещенностей в двух рядом расположенных точках равна 26%. Такое допущение Рэлея до некоторой степени является произвольным и условным: фактически глаз уже различает два изображения, если отношение  $E'_{\rm макc}$ :  $E'_{\rm мин}$  не менее 95—97%, что соответствует величине  $z_1$ , равной 3,25, т. е. на 20% отличающейся от принятой Рэлеем.

Если же принять  $z_1 = 3,83$  и положить в формуле (III, 20), что  $\sigma = \sigma_0$ линейному пределу разрешения и  $\lambda = 556$  *нм*, получим:

$$\sigma_{0} = \frac{1,22\lambda}{\left(\frac{D}{f'}\right)} = \frac{1}{1475 \varepsilon} \text{ MM}, \quad (III,22)$$

или

$$N_0 = \frac{1}{\sigma_0} = 1475 \,\varepsilon \, \text{mm}^{-1}, \qquad \text{(III, 22')}$$



где  $\varepsilon = \frac{D}{f}$  — относительное отверстие объектива. Формула получена для точки изображения, расположенной на оптической оси. Нетрудно сообразить, что линейный предел разрешения при изображении двух точек, расположенных вне оптической оси — в точке гауссовой плоскости, определяемой главным лучом, образующим угол w' с оптической осью, определится:

$$\sigma_m = \frac{\sigma_0}{\cos^3 w'}; \quad \sigma_s = \frac{\sigma_0}{\cos w'},$$

где  $\sigma_m$  и  $\sigma_s$  — линейные пределы разрешения соответственно в меридиональном и сагиттальном направлениях. Отсюда находим:

$$N_m = \frac{1}{\sigma_m} = N_0, \ \cos^3 \omega'; \quad N_s = \frac{1}{\sigma_s} = N_0 \cos \omega'. \qquad \text{(III,23)}$$

Таким образом, разрешающая сила идеального объектива имеет наибольшую величину  $N_0$  в центре поля зрения. В точках вне центра поля разрешающая сила в меридиональном направлении в  $\cos^2 \omega'$  раз меньше, чем в направлении сагиттальном. Например, у идеального объектива с углом поля в пространстве изображений  $2\omega' = 60^\circ$  разрешающая сила на краю поля в сагиттальном направлении на 14%, а в меридиональном направлении на 35% меньше, чем в центре поля.

У реальных объективов вследствие наличия аберраций эти соотношения могут быть иными, но разрешающая сила в центре поля всегда наибольшая.

3. Влияние дефокусировки на дифракционную картину изображения точки. Если за плоскость установки принять не гауссову плоскость изображения, а какую-то иную, смещенную относительно гауссовой

на расстояние ∆, то дифракционная картина в смещенной плоскости изменится; освещенность  $E'_0$  в центре уменьшится, а разрешающая сила снизится. Воспользовавшись (III, 7) и (III, 8') и обратив внимание, что вследствие симметрии световой волны относительно меридиональной плоскости интеграл

$$\int_{S} \sin\left(\frac{2\pi}{\lambda} \, \sigma u' \, \cos \theta'\right) ds$$

равен нулю, находим:

$$C_{0} = \int_{\rho'=0}^{\rho^{1}=\rho_{1}} \int_{\theta'=2\pi}^{\theta'=2\pi} \cos \frac{\pi}{\lambda} \Delta u'^{2} \cos \left(\frac{2\pi}{\lambda} \sigma u' \cos \theta'\right) \rho' d\rho' d\theta';$$
  
$$S_{0} = \int_{\rho'=0}^{\rho'=\rho_{1}'} \int_{\theta'=2\pi}^{\theta'=2\pi} \sin \frac{\pi}{\lambda} \Delta u'^{2} \cos \left(\frac{2\pi}{\lambda} \sigma u' \cos \theta'\right) \rho' d\rho' d\theta'.$$

Пользуясь применявшимися выше обозначениями, получим:

$$C_{0} = 2\pi \int_{0}^{\rho_{1}} \cos \frac{\pi}{\lambda} \Delta u'^{2} I_{0}(\alpha \rho') \rho' d\rho';$$

$$S_{0} = 2\pi \int_{0}^{\rho_{1}} \sin \frac{\pi}{\lambda} \Delta u'^{2} I_{0}(\alpha \rho') \rho' d\rho',$$
(III,24)

где по-прежнему:  $\alpha = \frac{2\pi\sigma}{\lambda r'}$ ;  $u' = \frac{\rho'}{r'}$ .

Введя новую переменную  $k = \frac{p'}{p_1} = \frac{u'}{u_1}$ , где  $u'_1$  – выходной

апертурный угол объектива, находим:

$$\overline{C}_{0}, \, \overline{S}_{0} = 2\pi \int_{k=0}^{k=1} \cos, \, \sin\left(Pk^{2}\right) I_{0}\left(zk\right) \, k \, dk, \quad (\text{III}, 25)$$

где  $P = \frac{\pi}{\lambda} \Delta u_1'^2$ ;  $z = \alpha \rho' = \frac{2\pi \sigma}{\lambda} u_1'$ .

В центре дифракционного пятна z = 0 и вследствие того, что  $I_0(0) = 1$ , имеем:

$$\overline{C}_{\mathbf{0}}(0), \overline{S}_{\mathbf{0}}(0) = 2\pi \int_{k=0}^{k=1} \cos, \sin(Pk^2) k dk;$$

положив  $k^2 = x$ , получим:

$$\overline{C}_0(0) = \pi \int_0^1 \cos(Px) \, dx = \pi \frac{\sin P}{P};$$
  
$$\overline{S}_0(0) = \pi \int_0^1 \sin(Px) \, dx = \pi \frac{(1 - \cos P)}{P}.$$

Если радиус выходного зрачка объектива выразить не в относительной мере (k = 1), а его абсолютной величиной  $\rho'_1$ , получим:

$$C_0(0) = \pi \frac{\sin P}{P} \rho_1^{\prime 2}; \quad S_0(0) = \pi \frac{(1 - \cos P)}{P} \rho_1^{\prime 2}.$$
(III,26)

Освещенность в центре дифракционного пятна в плоскости, смещенной на величину  $\Delta$  относительно плоскости Гаусса, выразится форму-лой (III, 4), в которой следует положить s' = r':

$$E'_{\Delta} = \frac{A'^{2}}{\lambda^{2} r'^{2}} \left[ C_{0}^{2}(0) + S_{0}^{2}(0) \right] = A'^{2} \frac{\pi^{2} \rho_{1}^{\prime 4}}{\lambda^{2} r'^{2}} \left( \frac{\sin \frac{1}{2} P}{\frac{1}{2} P} \right)^{2}.$$

Освещенность в центре сечения гауссовой плоскости получим, положив  $\Delta = 0$  и P = 0:

$$E_0' = A'^2 \frac{\pi^2 \rho_1'^4}{\lambda^2 r'^2};$$

пришли, естественно, к формуле (III, 14'). Из последних двух выражений имеем:

$$\frac{E_{\Delta}^{1}}{E_{0}^{\prime}} = \left(\frac{\sin\frac{1}{2}P}{\frac{1}{2}P}\right)^{2}, \qquad (III,27)$$

где  $P = \frac{\pi}{\lambda} \Delta$  и  $u'_{1}^{2} = 2\pi \frac{L}{\lambda}$ ; L — величина волновой аберрации, соответствующая дефокусировке∆ (см. II, 59). Как видно, освещенность в центре дифракционной картины зависит от величины Р, которая пропорциональна расстоянию плоскости рассматриваемой картины от центра сферической световой волны, т. е. пропорциональна величине дефокусировки  $\Delta$  или соответствующей последней волновой аберрации  $L = -\frac{1}{2} \Delta u'_{1}^{2}$ 

Формула (III, 27) определяет отношение освещенностей в центрах дифракционных максимумов, образуемых идеальным объективом, так называемое число Штреля, или о пределительную яркость — в случае дефокусировки. Если экран, на котором наблюдается дифракционное пятно, перемещать вдоль оптической оси,

то освещенность в центре будет периодически меняться, проходя через максимумы и минимумы; эти экстремальные значения освещенностей получаются, когда  $P = 2n\pi$ , где n = 1, 2, 3..., т. е. первый минимум получается на расстоянии, для которого n = 1 и  $P = 2\pi$ , следующий — когда n = 2 и  $P = 4\pi$ .

В табл. III, 1 приведены величины чисел Штреля для различных значений аргумента P и соответствующих ему значений волновой аберрации  $\frac{L}{\lambda} = \frac{P}{2\pi}$  на краю круглого зрачка.

Как видим из таблицы, освещенности в точке на оптической оси объектива быстро падают по мере удаления от фокуса идеального объектива. Например, у объектива с относительным отверстием 1 : 10 (u' = 0.05) для длины волны  $\lambda = 555 \cdot 10^{-6}$  мм первый минимум освещенности наступает при  $P = 2\pi$ , что соответствует дефокусировке  $\Delta = 0.44$  мм и не зависит от фокусного расстояния объектива.

Таблица III,1

| Р                                    | 0,00 | 0,5 π | 1,0 π | 1,5 π | 2,0 π | <b>2,</b> 5 π | 3,0 π | 3,5 π | 4,0 π |
|--------------------------------------|------|-------|-------|-------|-------|---------------|-------|-------|-------|
| $\frac{L}{E'_{\Delta} \cdot E'_{0}}$ | 0,00 | 0,25  | 0,50  | 0,75  | 1,00  | 1,25          | 1,50  | 1,75  | 2,00  |
|                                      | 1,00 | 0,81  | 0,40  | 0,09  | 0,00  | 0,03          | 0,04  | 0,02  | 0,00  |

Распределение освещенности вдоль оптической оси

Величиной числа Штреля иногда пользуются в качестве критерия качества изображения точки, даваемого реальным объективом по отношению к изображению точки, образуемому идеальным объективом.

При убывании освещенности в центральном максимуме освещенность светлых дифракционных колец увеличивается, а темные кольца также заполняются светом. Например, при дефокусировке, соответствующей волновой аберрации  $\frac{3}{2}\lambda$  — полторы волны ( $P = 3\pi$ ), как следует из таблицы, освещенность в центре составляет только 4% той освещенности, какая получается в центре в плоскости идеального изображения; минимум освещенности, как показывают расчеты, в первом дифракционном кольце выражен отчетливо, но освещенность в нем не нуль, а 0,4%; чем больше дефокусировка, тем равномернее распределение освещенности по всему пятну рассеяния. Разрешающая сила объектива по сравнению с теоретической (III, 22) при этом существенно снижается.

4. Разрешающая сила и контраст изображения решетки совершенным объективом. Определение разрешающей силы из наблюдения наименьшего расстояния между изображениями двух точек (например, двойных звезд) принято главным образом в астрономии. При испытании фотографических и проекционных объективов различного назначения предпочитают определять разрешающую силу, рассматривая визуально или фотографируя изображения не точек, а полос одинаковой толщины, разделенных промежутками той же толщины. Эти полосы различно ориентированы (рис. III,4), образуя испытательный тестобъект (миру), позволяющий оценивать разрешающую силу испытуемого объектива при изображении им различно ориентированных полос — в меридиональном, сагиттальном и других направлениях.

Как показывает теоретический анализ, наименьшее разрешаемое расстояние между серединами изображений двух светлых полос оказывается более или менее близким к тому значению, какое получается для двух светящихся точек.



Рис. III, 4. Схема штриховой миры

Анализ существенно упрощается в случае определения лишь наибольших ( $E'_{\text{макс}}$ ) и наименьших ( $E'_{\text{мин}}$ ) значений освещенностей в серединах изображений темных и светлых полос равномерной решетки с бесконечно большим числом бесконечно длинных полос; расстояние *а* между соответственными точками изображений, например между серединами двух последовательных светлых или темных полос, назовем периодом решетки: ширина темной (или светлой) полосы равна  $b = = \frac{1}{2}a$ .

За единицу длины для измерения расстояний *a* и *b* удобно принять длину, равную  $\frac{\lambda r'}{2\pi \rho_1}$ , т. е. долю длины волны, определяемую относительным отверстием объектива:  $\frac{2\rho'_1}{r'} = \frac{D}{f'} = \varepsilon$  или, в более общем случае, удвоенным апертурным числом:  $2A = 2 \sin u' = \frac{2\rho_1'}{r'}$  в пространстве изображений. Согласно формуле (III, 16), всякая длина  $\sigma$  в плоскости изображений, измеренная в таких единицах, численно равна аргументу  $z_1$ , определяющему освещенность в точке на расстоянии  $\sigma$  от центра кружка Эри.

Действительно, обозначив меру длины о в новых единицах буквой о, имеем:

$$\overline{\sigma} = \frac{\sigma}{\left(\frac{\lambda f'}{\pi D}\right)} = z_{i}.$$
 (III, 28)

При таком выборе единиц длины, различных для разных объективов, выражения для освещенностей в соответственных точках остаются неизменными у всех идеальных объективов. Из теории дифракции следует, что если период изображения решетки  $\overline{a}$  в указанных единицах равен  $\pi$ , то освещенности во всех точках изображения решетки, даваемого идеальным объективом, одинаковы; в этом случае плоскость изображения решетки равномерно освещена и не отличается от изображения равномерно светящейся плоскости. Для этого предельного случая находим значение периода решетки a, положив в формуле (III, 28)  $\overline{\sigma} = \overline{a} = \pi$ :

$$a = \frac{\lambda}{\pi} \frac{f'}{D} \bar{a} = \frac{\lambda}{\varepsilon} = \frac{\lambda}{2A}; \qquad (III, 29)$$

таким образом, даже такой идеальный объектив с относительным отверстием  $\varepsilon = 1:1$  не может дать разрешаемого изображения решетки, если период изображения решетки *а* меньше длины волны  $(a \ll \lambda)$ .

Для соответственного предельного значения N<sub>0</sub> разрешающей силы идеального объектива — числа различаемых линий на 1 *мм* изображения решетки — находим:

$$N_p = rac{1}{a} = rac{arepsilon}{\lambda} = rac{2A}{\lambda},$$

или, положив  $\lambda = 555 \cdot 10^{-6}$  мм, имеем:

$$N_p = 2A \cdot 1800 = 1800 \,\varepsilon \, \text{mm}^{-1} \,. \tag{III, 30}$$

Для распознавания отдельных полос в изображении решетки имеет значение различие между указанными выше величинами освещенностей  $E'_{\text{макс}}$  и  $E'_{\text{мин}}$  и связанный с ними контраст изображения, так как возможность различения определяется контрастной чувствительностью приемника изображения (глаза, фотоэлемента, фотослоя).

Величину контраста изображения можно характеризовать выражением

$$\bar{k}' = \frac{E'_{\text{MARC}} - E'_{\text{MAR}}}{E'_{\text{MARO}}}.$$
 (III, 31)

В дальнейшем мы будем пользоваться другой характеристикой величины контраста:

$$k' = \frac{E'_{\text{Make}} - E'_{\text{MH}}}{E'_{\text{Make}} + E'_{\text{MH}}}.$$
 (III, 32)

Очевидно, величины k' и  $\bar{k}'$  взаимосвязаны простыми соотношениями:

$$k' = \frac{\overline{k'}}{2 - \overline{k'}}; \quad \overline{k'} = \frac{2k'}{1 + k'} \cdot \tag{III, 33}$$

В случае идеального объектива величина контраста  $\overline{k'}$  является простой функцией только периода *а* изображения решетки:

$$\overline{k}' = \frac{\frac{8}{\pi^2} M(a)}{1 + \frac{4}{\pi^2} M(a)},$$
 (III, 34)

где M(a) — некоторая функция, определяющая экстремальные значения освещенностей в средних точках изображений светлой и темной полос решетки одинаковой ширины (a = 2b):

$$E'_{\text{MARC}} = \frac{1}{2} \left[ 1 + \frac{4}{\pi^2} M(a) \right];$$
  

$$E'_{\text{MHH}} = \frac{1}{2} \left[ 1 - \frac{4}{\pi^2} M(a) \right];$$
  

$$M(a) = M_4 - \frac{1}{3} M_3 + \frac{1}{5} M_5 - \frac{1}{7} M_7 + \dots + \frac{(-1)^p}{2p+1} M_{2p+1},$$
  
(III, 35)

где

$$M_{2p+1} = \varphi_{2p+1} - \sin \varphi_{2p+1};$$
  

$$\cos \frac{1}{2} \varphi_{2p+1} = (2p+1) \frac{\pi}{a};$$
  

$$a \ge (2p+1)\pi; \qquad p = 0, 1, 2...$$
(III, 36)

Число членов функции M(a) зависит от значения a — периода решетки — и равно p + 1, причем p может иметь целые значения от нуля до бесконечности; при заданном периоде a число  $2p + 1 < \frac{a}{\pi}$ , т. е. значок функции  $M_{2p+1}$  равен ближайшему нечетному целому числу, меньшему, чем дробь  $\frac{a}{\pi}$ , или равному ему, если  $\frac{a}{\pi}$  — нечетное целое число; 2p + 1 не может быть больше, чем  $\frac{a}{\pi}$ , так как в таком случае уравнение, определяющее  $\cos \frac{1}{2} \varphi_{2p+1}$ , теряет смысл.

В заключение укажем, что функция (III, 34), определяющая контраст изображения  $\overline{k}'$ , не содержит величин, характеризующих объектив; это свойство функции  $\overline{k}'$  является следствием особого выбора единицы измерения периода решетки *а*. Обозначим величину периода решетки в миллиметрах буквой  $a_0$ ; согласно формуле (III,28), находим:

$$a_0 = \frac{\lambda}{\pi} \frac{f'}{D} a = \frac{\lambda}{\pi} \frac{a}{\epsilon} = \frac{\lambda}{\pi} \frac{a}{2A}.$$

Обозначим число светлых или темных полос, приходящихся на 1 *мм* поперечной длины изображения решетки, буквой N; отсюда

$$N = \frac{1}{a_0} = \frac{\pi}{\lambda} \frac{\varepsilon}{a} = \frac{2\pi A}{\lambda a}$$

Принимая по-прежнему длину волны  $\lambda = 555 \cdot 10^{-6}$  мм, находим:

$$\frac{N}{\varepsilon} = \frac{N}{2A} = \frac{1800\pi}{a} = \frac{5660}{a}$$
, (III, 37)

$$N = 5660 \quad \frac{\varepsilon}{a} \quad mm^{-1}. \tag{III, 37'}$$

Заметим, что в предельном случае при  $a = \pi$  формула (III,37') переходит в формулу (III, 30), причем  $N \rightarrow N_p$ . Пользуясь выражениями (III, 35), (III, 36) и (III, 37), можно опре-

Пользуясь выражениями (III, 35), (III, 36) и (III, 37), можно определить значения  $\overline{k'}$  контраста в изображении идеальным объективом бесконечно большой решетки со светящимися полосами, разделенными совершенно темными промежутками той же ширины, как функции величины  $\frac{N}{\epsilon}$  и периода *а* изображения решетки, выраженного в оптических единицах. Отдельные их значения приведены в табл. III, 2.

Таблица III,2

| <u>Ν</u><br>ε | a    | $\overline{k}'$ | <u>Ν</u><br>ε | a      | k'    |
|---------------|------|-----------------|---------------|--------|-------|
| 100           | 18 π | 0,977           | 1000          | 1,8 π  | 0,593 |
| 200           | 9 π  | 0,952           | 1200          | 1,5 π  | 0.436 |
| 300           | 6 π  | 0,924           | 1500          | 1,2 π  | 0,184 |
| 600           | 3 π  | 0,853           | 1700          | 1,06 π | 0,044 |
| 900           | 2 π  | 0,665           | 1800          | π      | 0,000 |

Возникает вопрос, в какой мере полученные результаты применимы к действительным решеткам, несветящимся и освещаемым рассеянным светом, имеющим конечные размеры и ограниченное число полос. Анализ показывает, что при определенных условиях освещения представляется возможность при испытании разрешающей силы объективов пользоваться мирами, представляющими рисунок с черными и белыми, чаще прозрачными полосами (см. рис. III, 4) различной ширины, расположенными на расстояниях, равных их ширине. Вычисление значений контраста  $\overline{k}'$  у изображений самосветящихся решеток с небольшим числом полос (5—15) дает результаты, мало отличающиеся (на 2—3%) от таковых для решеток с бесконечным числом полос. Это позволяет использовать на практике результаты к решеткам с ограниченным числом полос.

**5.** Разрешающая сила объектива при несамосветящемся объекте. Выше был рассмотрен вопрос о разрешающей силе при изображении светящихся точек и штрихов. Однако на практике часто при исследовании разрешающей силы объектива пользуются «искусственными звез-

дами», т. е. освещаемыми малыми отверстиями в расположенэкранах, ных в фокальной плоскости коллиматора, или специальными тестобъектами (мирами), состоящими из черных и светлых (прозрачных) полос, освещаемых проходящим светом. Теория показывает, что при пра-



Рис. III, 5. Распределение освещенности в изображении двух несамосветящихся точек

вильном освещении результаты, получаемые при подобных исследованиях объективов, оказываются достаточно близкими к таковым, полученным выше для светящихся точек.

Согласно изложенному выше (см. III, 15), распределение освещенности в изображении двух близко расположенных светящихся точек, посылающих вполне некогерентные лучи, выразится следующей формулой:

$$\overline{E}' = 4\left[\left(\frac{I_1\left(z_1'\right)}{z_1'}\right)^2 + \left(\frac{I_1\left(z_1''\right)}{z_1'}\right)^2\right], \quad (III, 38)$$

где  $z'_1$  и  $z''_1$  — расстояния (в оптических единицах) точки, в которой определяется освещенность от центров двух дифракционных изображений.

Рассмотрим теперь случай, когда отверстия  $A_1$  и  $A_2$  в непрозрачном экране (рис. III, 5) освещаются плоской волной S, доходящей от бесконечно удаленной светящейся точки (или из светящейся точки, установленной в фокусе объектива коллиматора). Пусть расстояние между отверстиями в экране равно e, а лучи  $S_1A_1$  и  $S_2A_2$  образуют угол  $\varphi$  с плоскостью экрана. В этом случае пара когерентных лучей ( $S_1A_1$  и  $S_2A_2$ ) имеет в точках  $A_1$  и  $A_2$  постоянную разность фаз  $\delta$ , определяемую формулой:

$$\delta = 2\pi \ \frac{e}{\lambda} \ \cos \varphi \ . \tag{III, 39}$$

Освещенность  $\overline{E'}$  в какой-нибудь точке A' плоскости изображения, образуемого объективом P' (см. рис. III, 5), определится выражением:
$$\overline{E}' = 4 \left[ \left( \frac{I_1(z_1')}{z_1'} \right)^2 + \left( \frac{I_1(z_1'')}{z_1''} \right)^2 + \frac{2I_1(z_1')I_1(z_1'')}{z_1'z_1''} \cos \delta \right].$$

Нетрудно видеть, что при разности хода лучей  $e \cos \varphi = \frac{1}{4}\lambda$  разность фаз  $\delta = \frac{\pi}{2}$ ; в этом случае последняя формула дает тот же результат как и формула (III, 38), т. е. при таком способе освещения пределы разрешения двух светящихся и несамосветящихся точек совпадают. Изменяя непрерывно значения угла  $\varphi$ , а следовательно величину  $e \cos \varphi$ , мы получим периодические изменения множителя соз  $\delta$  в пределах от +1 до -1; при этом освещенность  $\overline{E}'$  в данной точке изображения A'будет изменяться в пределах от

$$\overline{E}' = 4 \left[ \frac{I'(z_1)}{z_1'} + \frac{I_1(z_1')}{z_1'} \right]^2$$
(III, 40')

до значения

$$\overline{E}' = 4 \left[ \frac{I_1(z_1')}{z_1'} - \frac{I_1(z_1')}{z_1'} \right]^2, \quad (III, 40'')$$

где, очевидно,  $z'_1$  и  $z''_1$  — расстояния точки A' от центров двух дифракционных изображений; в свою очередь расстояние между этими центрами равно  $(z'_1 - z''_1)$ .

Положим далее, что те же отверстия  $A_1$  и  $A_2$  (см. рис. III, 5) освещаются круглой светящейся пластинкой, расположенной на таком большом расстоянии от экрана Q, что лучи, идущие из какой-нибудь точки пластинки, можно считать параллельными, а соответственные волны—плоскими.

Для этого случая теория дает следующее выражение освещенности  $\overline{E}'$  в какой-нибудь точке A' плоскости изображения, образуемого объективом:

$$\overline{E}' = 4\pi A_0^2 \left[ \left( \frac{I_1(z_1')}{z_1'} \right)^2 + \left( \frac{I_1(z_1')}{z_1'} \right)^2 + \frac{4I_1(z_1')I_1(z_1')I_1(c(z_1'-z_1'))}{z_1'z_1''c(z_1'-z_1')} \right], \quad (III, 40''')$$

где  $c = \frac{A}{A_0}$ ;  $A_0$  и A — апертурные числа соответственно осветителя и объектива.

В предельном случае плоской волны, когда вместо светящейся удаленной пластинки имеем удаленную точку,  $A_0 = 0$ , c = 0 и

$$\lim_{c \to 0} \left[ \frac{I_1 \left( c \left( z'_1 - z'_1 \right) \right)}{c \left( z'_1 - z'_1 \right)} \right] = \frac{1}{2}.$$

Выражение, стоящее в прямых скобках формулы (III, 40'''), обращается в квадрат суммы, т. е. совпадает со значением скобки в формуле (III, 40'). Множитель перед скобкой обращается в нуль, т. е. для плоской волны формула дает  $\overline{E}' = 0$ , так как пучок строго параллельных лучей не может обладать энергией: освещенность создается пучками параллельных лучей, заполняющих весьма малый телесный угол.

Для бесконечно большого светящегося экрана  $(A_0 = 1)$  третий член в скобках формулы (III, 40''') имеет малые значения и тем меньшие, чем больше  $z'_1 - z''_1$  — растояние между изображениями отверстий; практически освещенность при этом мало отличается от освещенности, создаваемой светящимися некогерентными точками, как это видно из сравнения с формулой (III, 38).

Таким образом, меняя условия освещения обоих отверстий в непрозрачном экране, можно изменять освещенность в точках между изображениями отверстий, а следовательно, и предел разрешения; от такого, какой получается при когерентном освещении несамосветящихся точек, почти до такого предела, какой соответствует случаю светящихся точек, излучающих некогерентный свет. Полного приближения в точном математическом смысле к некогерентному освещению получить нельзя; степень приближения к нему определяется величиной отношения апертурных чисел — осветителя  $A_0$  и объектива A. Д. С. Рождественский, занимавшийся этой проблемой, назвал отно-

Д. С. Рождественский, занимавшийся этой проблемой, назвал отношение  $c = \frac{A_0}{A}$  коэффициентом некогерентности и показал, что при строгом математическом анализе явления оба числа ( $A_0$  и A) входят в выражение освещенности в виде отношений: осветитель с апертурой  $A_0$ может давать когерентное освещение и, следовательно, снижать разрешающую силу объектива, если апертура  $A_0$  слишком мала по сравнению с апертурой A объектива, и в то же время может обеспечить полное использование разрешающей силы другого объектива, с меньшим апертурным числом A. При испытаниях объективов можно пользоваться также и несамосветящимися тестобъектами (мирами), обеспечивая их правильное освещение в пределах широкой апертуры.

## § 2. РАЗРЕШАЮЩАЯ СИЛА РЕАЛЬНОГО ОБЪЕКТИВА

Сферическая световая волна после прохождения через объектив приобретает сложную несферическую форму; пучки лучей, ортогональные к волновой поверхности, перестают быть гомоцентрическими. Волновая поверхность приобретает определенные отступления от идеальной сферической поверхности волны, измеряемые по нормалям к последней и называющиеся волновыми аберрациями; они однозначно связаны с аберрациями геометрическими, рассмотренными в главе II. Как там было показано, волновая аберрация L является функцией от m' и M' координат пересечения луча с плоскостью выходного зрачка.

1. Освещенность в точке на оси при сферической аберрации. Зная зависимость между сферической аберрацией и волновой аберрацией *L*, выражающейся формулой (II, 6):

$$L = \frac{1}{r'} \int \delta g' dm' \tag{III, 41}$$

или формулой (II, 56):

$$L = \int \delta s' u' du', \qquad (III, 41')$$

где для объектива  $u' = \frac{m'}{f'}$  и r' = f', можно вывести выражение для вычисления освещенности в точке на оси системы, обладающей остаточной сферической аберрацией. После простых преобразований, аналогичных тем, которые были выполнены при выводе формулы дефокусировки (II, 7), получим:

$$C_{\theta}, S_{\theta} = \int_{S} \cos, \sin \frac{2\pi}{\lambda} (L + \sigma u' \cos \theta') dS. \qquad (III, 42)$$

Заметим, что к этой формуле приходим из (III, 7) и непосредственно, если вместо выражения  $\frac{1}{2}\Delta u'^2$ , соответствующего величине дефокусировки в волновой мере, напишем волновую аберрацию *L* вообще и переменим в (III, 7) знак у аргумента, что не повлияет на величину освещенности, пропорциональную сумме квадратов:  $C_0^2 + S_0^2$ .

Если светящаяся точка объекта расположена на оси и оптическая система центрирована, то последняя формула принимает следующий вид:

$$C_0, S_0 = 2\pi \int_0^{\rho_1} \cos, \sin\left(\frac{2\pi}{\lambda} L\right) I_0(\alpha \rho') \rho' d\rho', \qquad (III, 43)$$

где по-прежнему  $\alpha = \frac{2\pi\sigma}{\lambda r'}$ .

В центральной точке дифракционного пятна a = 0 и  $I_0(0) = 1$  находим:

$$C_0, S_0 = 2\pi \int_0^{\rho_1} \cos \sin \left(\frac{2\pi}{\lambda} L\right) \rho' dp'. \qquad (III, 44)$$

Волновая аберрация *L* определяется (III, 41') и для объектива  $u' = \frac{\rho'}{r'} = \frac{\rho'}{f'}$  выражается формулой:

$$L=\frac{1}{f'^2}\int_0^{\rho}\delta s'\rho'd\rho'.$$

Для волновой аберрации третьего порядка, как было показано в главе II (см. II, 57), имеем:

$$L_{\rm III} = -\frac{S_1}{8n'} u_1^{\prime 4} = \overline{M} \rho_1^{\prime 4},$$

где

$$\overline{M} = -\frac{S_1}{8n'f'^4}$$

Введем вспомогательную переменную:

$$v^{2} = 4 \frac{L}{\lambda} = 4 \frac{\overline{M}}{\lambda} {\rho'}^{4} . \qquad (III, 45)$$

После элементарных преобразований из (III, 44) находим:

$$C_0, S_0 = \frac{\pi}{2} \sqrt{\frac{\lambda}{\overline{M}}} \int_0^v \cos, \sin \frac{\pi v^2}{2} dv; \qquad (III, 46)$$

пришли к известным в теории дифракции интегралам Френеля, таблицы численных значений которых можно найти в различных местах, в частности в известных таблицах Янке и Эмде.

Из (III, 4) и (III, 14') получим удобное для численных расчетов выражение отношения освещенностей — величину числа Штреля при наличии сферической аберрации:

$$\frac{E'_{L}}{E'_{0}} = \frac{1}{v^{2}} \left[ \left( \int_{0}^{v} \cos \frac{\pi v^{2}}{2} \, dv \right)^{2} + \left( \int_{0}^{v} \sin \frac{\pi v^{2}}{2} \, dv \right)^{2} \right], \quad \text{(III, 47)}$$

где  $v^2 = 4\frac{L}{\lambda}$ . Задаваясь значениями волновой аберрации  $\frac{L}{\lambda}$  и определив величину вспомогательной переменной v, находим из таблиц численных значений интегралов Френеля величины, входящие в формулу (III, 47), приведенные в табл. III, 3.

Таблица III,3

| $\frac{L}{\lambda}$      | 0    | 0,25 | 0,50 | 0,75  | 0,90                      | 1,00 | 1,50 | 1,96                      |
|--------------------------|------|------|------|-------|---------------------------|------|------|---------------------------|
| υ                        | 0    | 1,00 | 1,41 | 1,73  | 1,90                      | 2,00 | 2,50 | 2,80                      |
| $E'_{\mathbf{L}}:E'_{0}$ | 1,00 | 0,80 | 0,40 | 0, 13 | 0,08<br>первый<br>минимум | 0,09 | 0,09 | 0,05<br>второй<br>минимум |

Освещенность на оси при наличии сферической аберрации

Из сопоставления данных этой таблицы с полученными выше (глава III, § 1) значениями коэффициентов Штреля при дефокусировке видно, что в области малых волновых аберраций (до  $\frac{L}{\lambda} = 0,5$ ) значения чисел Штреля совпадают как в результате дефокусировки, так и при наличии сферической аберрации; лишь при больших волновых аберрациях ( $\frac{L}{\lambda} = 1$  и более) величины чисел Штреля при сферической аберрации оказываются несколько бо́льшими, чем при дефокусировке; на-

пример, при волновой аберрации в полторы волны  $\frac{L}{\lambda} = 1,5$  число Штреля при дефокусировке составляет около 4%, а при сферической аберрации — 9%.

Из сопоставления данных табл. III,1 и III,3 следует, что если волновая аберрация не превышает четверти волны ( $\frac{L}{\lambda} = 0,25$ ), то как при дефокусировке, так и при сферической аберрации числа Штреля сравнительно мало отличаются от единицы: если принять освещенность в центре гауссового изображения совершенного объектива за 100%, то в обоих рассматриваемых случаях освещенности понизятся лишь до 80%. Это послужило основанием считать реальный объектив близким к оптическим свойствам идеального объектива, если волновые аберрации первого не превышают 0,25 $\lambda$  (условие Рэлея).

Однако более подробный анализ распределения освещенности в дифракционном пятне показывает, что как при дефокусировке, так и при наличии сферической аберрации, а тем более аберраций другого вида (астигматизма, комы и т. п.), ни числа Штреля, ни критерий Рэлея не дают исчерпывающей оценки качества изображения. При одинаковых величинах волновых аберраций и даже при одинаковых величинах чисел Штреля, но при наличии аберраций различного вида распределение освещенности в изображении точки оказывается различным. В рассмотренных примерах при совпадающих критериях Штреля качество изображения при дефокусировке будет несколько ниже, чем при наличии сферической аберрации. При одинаковых волновых аберрациях (например, даже при  $\frac{L}{\lambda} = 0,25$ ) числа Штреля при астигматизме будут меньше, чем при сферической аберрации: в первом случае величины  $E'_L: E'_0$  снижаются до 70—60%, а во втором случае, как видели выше, — до 80%.

Иными словами, признак Штреля вполне достаточен для оценки качества очень хороших объективов с большими численными значениями этого коэффициента (80% и более). Объективам удовлетворительного качества соответствуют числа Штреля около 70—60%. При средних и малых (меньших 50%) значениях чисел Штреля последние уже перестают характеризовать качество изображения точки, так как распределение энергии в изображении оказывается сложной функцией вида аберраций; во внешние дифракционные кольца начинает переходить из центрального максимума большая часть энергии и освещенность этих колец делается сравнимой с освещенностью центрального максимума.

Как показывает анализ, в плоскости наименьшей волновой аберрации, достигающей двух длин волн, число Штреля не превышает 20%; однако даже при таких малых числах Штреля разрешающая сила для высококонтрастных объектов остается практически такой же, как у идеального объектива, но изображение получается на фоне рассеянного света, вследствие чего малоконтрастные детали не изображаются.

2. Распределение освещенности в изображении точки в общем случае. Первичным критерием качества изображения является распределение освещенности в изображении точки, на основе которого могут

быть установлены описываемые ниже способы оценки качества изображения — разрешающая сила, пограничная кривая, частотно-контрастная характеристика и др. Вместе с тем, как показывают исследования, наиболее полный и строгий способ, учитывающий явление дифракции и аберрации системы, основан на предварительном определении волновых аберраций.

Для общего случая, когда волновая аберрация L луча является функцией координат m' и M' (или  $\rho'$  и  $\theta'$ ) точки пересечения луча с плоскостью выходного зрачка, а центр сферы сравнения с поверхностью реальной волны расположен в некоторой фиксированной точке вне оптической оси, вместо интеграла (III, 42) можно написать:

$$C_0, S_v = \int_{S} \cos, \sin \frac{2\pi}{\lambda} L(\rho', \theta') dS$$

или в виде двойного интеграла:

$$C_{0}, S_{0} = \int_{\rho'=0}^{\rho'=\rho_{1}'} \int_{\theta'=0}^{\theta'=2\pi} \cos \sin \left(2\pi \frac{L}{\lambda}\right) \rho' d\rho' d\theta'.$$
(III, 48)

Волновая аберрация L для некоторой точки P волновой поверхности в плоскости выходного зрачка определяется достаточно точно из выражения:

$$L = \frac{\cos \omega'}{\lambda \rho'} \int_{0}^{P} \left( \delta g' dm' + \delta G' dM' \right), \qquad (III, 49)$$

где

$$m' = \rho' \sin \theta'; \quad dm' = \rho' \cos \theta' d\theta' + \sin \theta' d\rho'; M' = \rho' \cos \theta'; \quad dM' = -\rho' \sin \theta' d\theta' + \cos \theta' d\rho',$$
(II1, 50)

где  $\omega'$  — угол главного луча с оптической осью; p' — расстояние от выходного зрачка до гауссовой плоскости.

Подставив выражения дифференциалов dm' и dM' в формулу (III, 49), получим:

$$L = \frac{\cos \omega'}{\lambda \rho'} \left[ \rho'_{P} \int_{0}^{\theta'_{P}} (\delta g' \cos \theta' - \delta G' \sin \theta') d\theta' + \int_{0}^{\theta'_{P}} (\delta g' \sin \theta' + \delta G' \cos \theta') d\rho' \right],$$

где  $\rho_P'$  и  $\theta_P'$  — полярные координаты точки *P*. Разбив второй интеграл на два и приняв во внимание, что соз  $\theta'_0 = = 1$  и sin  $\theta'_0 = 0$ , находим:

$$L = \frac{\cos w'}{\lambda \rho'} \left[ \rho'_{P} \int_{0}^{\theta'_{P}} (\delta g' \cos \theta' - \delta G' \sin \theta') d\theta' + \int_{0}^{\rho'_{P}} \delta G' d\rho' \right].$$
(III, 51)

В этом выражении волновая аберрация *L* определена в плоскости Гаусса.

Волновая аберрация в плоскости, смещенной на величину  $\Delta$  относительно плоскости Гаусса, определится выражением, аналогичным (III, 51), но при новых значениях составляющих аберраций  $\delta g'_{\Delta}$  и  $\delta G'_{\Delta}$ , определяемых обычным способом и при  $p'_{\Delta} = p' + \Delta$ . Интегрирование выражения (III, 51) проводится по радиусу-вектору и по дуге окружности до точки  $P(\rho'_{P}; \theta'_{P})$ , расположенной в плоскости выходного зрачка. С помощью электронных вычислительных машин (ЭВМ) численное определение величин волновых аберраций проще всего выполняется путем вычисления первого интеграла (III, 51) по приближенной формуле:

$$\int_{0}^{\theta_{P}} (\delta g' \cos \theta' - \delta G' \sin \theta') \, d\theta' \approx \sum_{k=1}^{k=p} \left( \delta g'_{k} \cos \theta'_{k} - \delta G'_{k} \sin \theta'_{k} \right) \Delta \theta'_{k}.$$

Для вычисления второго интеграла (III, 51) удобно воспользоваться формулой Симпсона.

Величины составляющих аберраций δg' и δG' определяются путем непосредственных расчетов на ЭВМ пучка лучей, выходящих из данной точки предмета и заполняющих входной зрачок.

Координаты точек пересечения плоскости зрачка лучами пучка могут быть заданы различными способами; важно лишь задаться достаточно большим числом лучей достаточно равномерно распределенных по площади зрачка объектива. Как показали опыты подобных расчетов, это должна быть совокупность из нескольких сот (300—600) лучей.

Можно, например, задаться квадратной решеткой, в вершинах которой расположены точки пересечения лучей пучка с плоскостью входного зрачка. Очевидно, сама ЭВМ в процессе расчета определит действующую часть входного зрачка, пропустив через систему лишь те лучи, координаты которых  $\overline{m}$  и  $\overline{M}$  в плоскости действующей диафрагмы удовлетворяют условию

$$\overline{m}^2 + \overline{M}^2 \ll \overline{\rho}^2, \qquad (III, 52)$$

где  $\overline{\rho}$  — радиус действующей диафрагмы; приближенно имеем:

$$\rho_{1} \approx \overline{\beta}_{3p} \overline{\rho}; \quad \rho_{1}' \approx \overline{\beta}_{3p}' \overline{\rho}; \quad m \approx \overline{\beta}_{3p} \overline{m}; \quad m' \approx \overline{\beta}_{3p}' \overline{m}; \qquad (III, 53)$$
$$M \approx \overline{\beta}_{3p} \overline{M}; \quad M' \approx \overline{\beta}_{3p}' \overline{M},$$

где  $\overline{\beta}_{3p}$  и  $\overline{\beta}'_{3p}$  — линейные увеличения соответственно во входном и выходном зрачках.

Следовательно:

$$m' \approx \beta_{3p}m; \quad M' \approx \beta_{3p}M; \quad \rho' \approx \beta_{3p}\rho;$$
 (III, 53')

где  $\beta_{3p} = \frac{\overline{\beta}'_{3p}}{\overline{\beta}_{3p}}$  — увеличение в зрачках всей системы.

Можно задаться пучком лучей, пересекающих плоскость входного зрачка в точках, координаты которых определены выражениями:

$$m = \pm \rho_1 \frac{k}{10} \sin \frac{\pi n}{20}; \quad M = \rho_1 \frac{k}{10} \cos \frac{\pi n}{20}, \qquad (III, 54)$$

где k = 1, 2, ..., 10 и n = 1, 2, ..., 10. После определения значений волновой аберрации L одним из методов численного интегрирования определяются значения интегралов Френеля (III, 48), позволяющие вычислить распределение освещенности в изображении (III, 4).

Для вычисления  $C_0$  и  $\dot{S}_0$  двойное интегрирование заменяем суммированием, выполняемым ЭВМ:

$$C_{0} \approx \sum \rho_{i}^{\prime} \Delta \rho_{i}^{\prime} \sum \cos \frac{2\pi}{\lambda} L \Delta \theta_{i}^{\prime};$$

$$S_{0} = \sum \rho_{i}^{\prime} \Delta \rho_{i}^{\prime} \sum \sin \frac{2\pi}{\lambda} L \Delta \theta_{i}^{\prime}.$$
(III, 55)

При расчете дифракционного распределения освещенности в изображении миры величина  $E'(z_0''; y_0'')$  рассматривается как функция разности координат ( $z''-z_0''$ ) и ( $y''-y_0''$ ), где z'' и y'' — текущие координаты в плоскости изображения (см. рис. II, 1), а  $z''_0, y''_0$  — координаты некоторой фиксированной точки изображения тестобъекта (миры), в которой определяется освещенность:

$$E'(z_{0}; y_{0}) \approx \Sigma \Sigma E_{i}'[(z'' - z_{0}), (y'' - y_{0})] \Delta z'' \Delta y''.$$
 (III, 56)

В этой формуле интегрирование заменено также двойным суммированием.

Описанный здесь в общих чертах метод расчета весьма прост по идее, но представлял в свое время большие трудности чисто техническокого характера, так как требовал выполнения большого объема вычислений. Появление ЭВМ позволило повсеместно — и у нас, и за рубежом — решать эти задачи в повседневной практике оптика-разработчика. Применение теории дифракции для определения освещенности в изображении точки абсолютно необходимо в оптических системах, обладающих малыми аберрациями (меньшими 1/4 λ); эта теория применима также в системах с аберрациями до 3—5λ; впрочем, последние величи-ны следует считать ориентировочными. К оптическим системам, обладающим большими аберрациями — бо́льшими 5 $\lambda$ , — уже могут быть применены чисто геометрические (лучевые) методы определения освещенности в изображении.

Применение ЭВМ позволит накопить достаточный материал для уточнения условий и границ применения дифракционных и лучевых методов.

Изложим кратко идею лучевого метода. Пусть из некоторой точки предмета поступает пучок лучей во входной зрачок оптической систе-

мы. Разделим одним из возможных способов зрачок системы на достаточно большое число элементарных равновеликих площадок. Если число этих площадок велико, а следовательно, их площади малы, то можно считать, что все лучи, принадлежащие одной площадке, пересекают плоскость изображения в одной точке. Нанеся на чертеже все эти точки, координаты которых определены в результате непосредственного расчета с помощью ЭВМ хода лучей пучка через оптическую систему, получим фигуру рассеяния лучей — геометрическое изображение точки.

Если общее число точек в фигуре рассеяния было взято большим (несколько сот точек), то число точек, расположенных в пределах весьма малой площадки изображения  $\Delta S'$ , деленное на общее число точек, очевидно, пропорционально освещенности в данном элементе фигуры рассеяния.

Для экономии машинного времени можно избежать необходимости расчета ЭВМ сотен лучей, а воспользоваться интерполяционными формулами, в частности, рекомендованными нами в главе II для определения составляющих геометрических аберраций  $\delta g'$  и  $\delta G'$  и волновой аберрации L.

3. Разрешающая сила реального объектива. Распределение энергии в изображении предмета любой структуры является результатом сложения освещенностей, получаемых в данной точке изображения от всех элементарных точек, образующих структуру предмета.

Метод определения освещенностей несколько упрощается, когда явлениями дифракции можно пренебречь и определять освещенности различных элементов изображения по плотности распределения лучей. Такой анализ применим: 1) если объектив обладает большими аберрациями; 2) если предмет обладает грубой структурой, точнее, состоит из элементов, размеры которых в несколько раз превышают размеры диска Эри. В последнем случае наложение друг на друга дифракционных пятен приводит к сглаживанию тонкой структуры изображения, т. е. к такому распределению световой энергии, как если бы дифракция отсутствовала.

Тем не менее в целях упрощения анализа явления обычно выбираются элементарные объекты простой структуры; в частности, очень распространены решетки, состоящие из параллельных светлых и темных полос различной ширины и разной ориентировки: параллельно меридиональной и сагиттальной плоскостям и в направлениях, образующих угол в 45° с предыдущим (см. рис. III, 4).

Построив, как было описано выше, фигуру рассеяния, наложим на эту фигуру контур формы прямоугольника, одна из сторон которого бесконечна, а другая — шириной о. Такой контур соответствует узкой полосе или щели бесконечно большой длины. Подсчитывая число точек фигуры рассеяния, расположенных на площади, ограниченной контуром, и перемещая контур по всей фигуре рассеяния, получим распределение освещенности по пятну рассеяния. Передвигая этот контур (щель) параллельно самому себе в желаемом направлении, можно определить распределение освещенности, а затем — разрешающую силу объектива для миры в виде решетки. Для этого необходимо определить (методом подсчета числа точек) зависимость освещенности E'(x) как функции x при различной ширине  $\sigma$  щели (рис. III, 6). Начертив вторую кривую E'(x), отстоящую от первой на расстоянии  $\sigma$ , путем сложения ординат определим суммарную освещенность от двух щелей. Если минимум этой кривой  $E'_{\text{мин}}$  на 5—10% меньше, чем ее максимум  $E'_{\text{макс}}$ , то можно считать, что объектив разрешает две полосы решетки шириной  $\sigma$ . Этот давно известный метод лишь в наши дни начинает находить повседневное применение, так как основная трудоемкая работа — расчет большого числа лучей широкого пучка — выполняется с помощью ЭВМ.

Исследование распределения освещенностей изображений в различных сечениях пучков плоскостями, перпендикулярными оптической оси

объектива, дает возможность выбрать такие сечения, в которых освещенности как в центре поля, так и для разных углов поля имеют наибольшие значения. Обычно эти плоскости не совпадают друг с другом, но в хорошо корригированном объективе расположены близко друг к другу.

В объективах, обладающих большими аберрациями, например у светосильных объективов, аберрации которых превышают три-пять волн в наилучшей плоскости установки, картина распределения энер-



Рис. III, 6. Определение разрешающей силы объектива

гии в фигуре рассеяния значительно отличается идеального OT распределения: центре фигур освещенности в не превыша-15 - 20%ют ОТ освещенностей в совершенном объективе основная часть энергии перераспределяется И во внецентральные зоны фигуры рассеяния; у последней появляется ореол значиинтенсивности, служит ЧТО причиной снижения тельной контраста оптического изображения. Это имеет первостепенное значение при фотографировании объектов малого контраста, яркости которых мало отличаются от яркостей фона. Эти же факторы приводят к снижению разрешающей силы системы объектив - приемник, которая оказывается в несколько раз меньше теоретической, а у светосильных объективов — иногда на порядок меньше, чем у идеальных систем той же апертуры.

4. О повышении разрешающей силы объектива аподизацией. За последние десятилетия было выполнено большое число работ, посвященных исследованиям возможностей уменьшения размеров центрального дифракционного пятна с целью повышения теоретической разрешающей силы и понижения освещенностей в дифракционных кольцах для повышения контраста изображения слабого точечного источника, расположенного по соседству со светящейся точкой большой яркости. Возможные искусственные приемы, принципиально приводящие к этим эффектам, получили название аподизации дифракционной фигуры.

Эффекты аподизации возможны в результате применения амплитудно-фазовых фильтров в плоскости апертурной диафрагмы (или одного из зрачков) или экранов с отверстиями, ограниченными контурами определенной формы. Однако, как показали анализы, во всех случаях аподизация приводит к большой потере светосилы оптической системы. Уменьшение интенсивности дифракционных колец приводит к некоторому расширению центрального дифракционного максимума, в результате чего выигрыш в обнаружении слабого источника, расположенного на близком расстоянии от источника большой яркости, сопровождается увеличением предела разрешения о двух источников одинаковой интенсивности. Наоборот, уменьшение в результате аподизации размеров центральной дифракционной фигуры приводит к некоторому увеличению освещенности колец, в результате чего повышение разрешающей силы для точечных источников достигается ценою потери контраста изображения протяженных объектов. Эти результаты взаимосвязаны: уменьшение предела разрешения сопровождается потерей света и контраста: выигрыш ограничивается здесь двумя-тремя десятками процентов.

Интересен рассмотренный Д. Гальперном предельный случай возможного уменьшения диаметра диска Эри в результате введения в зрачок объектива амплитудно-фазового фильтра, обладающего соответствующими значениями коэффициента пропускания в различных точках. Такой фильтр вводит определенную волновую аберрацию и требуемое распределение амплитуд. Интегралы Френеля S и C, сумма квадратов которых определяет освещенность изображения E' точки на оптической оси, представятся выражением, аналогичным (III, 43):

$$C, S = 2\pi \int_{\rho'=0}^{\rho'=\rho'_1} \overline{A}(\rho') \cos, \sin\left(\frac{2\pi}{\lambda}L\right) I_0(\alpha \rho') \rho' d\rho', \quad \text{(III, 57)}$$

где  $\overline{A}(\rho')$  — коэффициент пропускания фильтра в данной точке зрачка.

Полагая, что объектив идеальный  $(L < \frac{1}{4}\lambda)$  и что  $\overline{A}(\rho') > 0$ , можно показать, что никаким фильтром нельзя уменьшить центральное дифракционное пятно более чем в 1,6 раза.

На основании теоремы о среднем, выражение (III, 57) можно записать:

$$C = I_{0} \left( \alpha \, \overline{\rho'} \right) \int_{0}^{\overline{\rho'}} \overline{A} \left( \rho' \right) \cos \left( \frac{2\pi}{\lambda} L \right) \rho' d\rho';$$

$$S = I_{0} \left( \alpha \, \overline{\rho'} \right) \int_{0}^{\overline{\rho'}} \overline{A} \left( \rho' \right) \sin \left( \frac{2\pi}{\lambda} L \right) \rho' d\rho',$$
(III, 58)

где  $\overline{\rho'}$  и  $\overline{\overline{\rho'}}$  — величины, лежащие в пределах  $0 \leqslant \overline{\rho'} \leqslant \rho'_1$  и  $0 \leqslant < < \overline{\overline{\rho'}} \leqslant \rho_1'$ .

Из (III, 57) для точки на оси имеем:

$$C(0) = \int_{0}^{\rho_{1}} \overline{A}(\rho') \cos\left(\frac{2\pi}{\lambda} L\right) \rho' d\rho';$$

$$S(0) = \int_{0}^{\rho_{1}'} \overline{A}(\rho') \sin\left(\frac{2\pi}{\lambda} L\right) \rho' d\rho'.$$
(III, 59)

Сопоставление (III, 58) и (III, 59) дает:

$$C^{2} = I_{0}^{2} \left( \alpha \ \overline{\rho'} \right) C^{2} (0); \quad S^{2} = I_{0}^{2} \left( \alpha \ \overline{\rho'} \right) S^{2} (0), \quad (III, 60)$$
 где  $\alpha = \frac{2\pi\sigma}{\lambda r'} = \frac{2\pi\sigma}{\lambda f'}.$ 

Предположим, что наименьшее разрешаемое расстояние σ меньше радиуса диска Эри (см. III, 20), т. е. что

$$\sigma < \frac{1,22\lambda}{2u_1'}, \qquad (III,61)$$

где

$$\frac{z_1}{\pi} \frac{f'}{D} = \frac{3.88}{3.14} \frac{1}{2u'_1} = \frac{1.22}{2u'_1}; \quad u'_1 = \frac{p'_1}{f'} = \frac{D}{2f'}.$$

Выбрав число  $\rho'$ , равное наименьшему из чисел  $\rho'$  и  $\overline{\rho'}$ , каждое из которых меньше  $\rho_i$ , имеем:

$$C^{2} + S^{2} \ge I_{0}^{2} (\alpha \ \widetilde{\rho}') [C^{2}(0) + S^{2}(0)].$$

Отсюда для относительной освещенности  $\overline{E'}$  находим:

$$\overline{E}' = \frac{C^2 + S^2}{C^2(0) + S^2(0)} \ge I_0^2 \left( \alpha \ \widetilde{\rho}' \right).$$

Заменив в этом выражении  $\widetilde{\rho'}$  на  $\rho'_1$ , мы только усилим неравенство:

$$\overline{E}' \gg I_0^2 \left( \alpha \rho_1' \right). \tag{III, 62}$$

Приведенный вывод, очевидно, справедлив только для значений  $\sigma_0,$  меньших величины

$$\sigma_0 < \frac{x_1 \lambda}{2 \pi u_1'}$$
 ,

где  $x_1 = 2,40$  — первый корень функций Бесселя  $I_0$  нулевого порядка, так как только при этих значениях функция  $I_0$  положительная. Из (111, 62) следует, что освещенность  $\overline{E}'$  при изменении  $\sigma$  от нуля до  $\sigma_0$  не меньше квадрата функции  $I_0^2$  для тех же значений  $\sigma$ . Таким образом, радиус центрального дифракционного диска при

Таким образом, радиус центрального дифракционного диска при любых значениях коэффициента пропускания фильтра  $\overline{A(\rho')}$ , определяющего распределение амплитуды в зрачке, и при волновых аберрациях меньших  $L \ll \frac{1}{4} \lambda$  не может быть меньше величины

$$\overline{\sigma} = \frac{x_1 \lambda}{2\pi u_1'} \,.$$

Для диска Эри, получаемого в совершенном объективе,  $L < \frac{1}{4} \lambda$  с прозрачным зрачком  $\overline{A}(\rho') = 1$ , как видели выше (III, 20):

$$\sigma = \frac{z_1 \lambda}{2\pi u_1},$$

где *z*<sub>1</sub> — корень функции Бесселя первого порядка; отсюда:

$$\frac{\sigma}{\sigma} = \frac{z_1}{x_1} = \frac{3,83}{2,40} = 1,6.$$
 (III, 63)

Следовательно, при указанных выше условиях центральный дифракционный диск можно аподизацией уменьшить никак не более чем в 1,6 раза. При этом нужно учесть, что светосила объектива вследствие введения амплитудно-фазового фильтра быстро падает, значительно быстрее, чем уменьшение диаметра центрального дифракционного диска; снижается также контраст изображения в результате некоторого перехода энергии в дифракционные кольца. По мнению А. Марешаля и М. Франсона [9], улучшение предела разрешения всегда сопровождается весьма существенными потерями света и контраста, ограничивающими выигрыш в разрешении величинами лишь порядка 25%.

Появление лазеров и возможность получения когерентного и достаточно мощного излучения стимулировали появление принципиально новых работ по расширению возможностей, ограничиваемых дифракцией света; эти работы, с одной стороны, по-прежнему направлены на повышение разрешающей силы систем, с другой стороны, — на повышение контраста оптического изображения мелких деталей; более того, ведутся работы по повышению качества изображения первичных фотоснимков методом последующей их специальной вторичной обработки; появление высокоразрешающих фотослоев, когерентного излучения и методов автоматического управления процессами стимулировали появление работ этого направления в различных вариантах и на новых основах, результаты которых пока еще трудно предвидеть.

## § 3 ХАРАКТЕРИСТИКИ КАЧЕСТВА ИЗОБРАЖЕНИЯ ОБЪЕКТИВА

На протяжении многих десятилетий одним из основных критериев качества объектива являлось экспериментальное определение его разрешающей силы. Методом ли непосредственного наблюдения с помощью

микроскопа изображений тестобъектов (мир) определенных структур или путем фотографирования этих мир определяли соответственно визуальную или фотографическую разрешающую силу, т. е. или самого испытуемого объектива, или системы объектив — фотослой.

Последующее развитие объективостроения и расширение областей применения фотографической и проекционной оптики показало, что критерий качества объектива на основании определения его разрешающей силы не всегда является оценкой исчерпывающей и универсальной для объективов различного назначения. Здесь должна быть учитываема не только специфика работы визуальных, фотографических и проекционных систем, использующих приемники изображений разных типов, но и более тонкие различия, имеющиеся в пределах каждой из названных групп.

Например, не идентичны условия работы объективов, применяющихся для аэрофотографии, художественной ландшафтной съемки и портретной фотографии.

В первом случае глубина изображаемого пространства обычно невелика, но необходимо высокое разрешение объектов съемки, обладающих малым контрастом. Во втором случае весьма существенна пластика снимка. В третьем случае необходимо получение мягкого изображения пониженного разрешения и убывающей резкости от центра к краю снимка. И тем не менее все эти факты не дают оснований для исключения критерия разрешающей силы, как одной из важных характеристик качества объектива.

За последние годы, в связи с развитием фотоэлектрических, телевизионных и электронно-оптических приемников, были разработаны и другие способы оценки оптических качеств объективов.

В самом начале укажем, что критика критерия разрешающей силы была бы беспочвенной, если бы не появились принципиально новые экспериментальные и вычислительные средства. Изобретение различных фотоприемников, в частности высокочувствительных фотоэлектронных умножителей, и высокий уровень электронной техники позволили создать методы и аппаратуру для регистрации слабых световых потоков,что сделало возможным непосредственное измерение распределения освещенности и контраста в оптическом изображении элементарных объектов.

Электронные вычислительные машины дают возможность выполнять расчеты тысяч косых лучей, что позволяет определять в процессе разработки объектива не только распределение освещенности в фигурах рассеяния, но и контраст оптического изображения.

В результате наряду со старыми классическими методами исследований объективов были предложены новые способы оценки. Все эти способы могут быть объединены в две группы:

А. Способы, основанные на расчетных исследованиях аберраций объектива, т. е. до изготовления образцов.

Б. Способы, основанные на результатах лабораторных исследований изготовленных экспериментальных образцов объектива.

Способы, относящиеся к группе А, предполагают, что имеются конструктивные элементы оптики объектива и достаточно подробный расчет всех его аберраций. Соответствующая обработка этих результатов (см. главу II) приводит к некоторой абстрагированной модели объектива; при этом можно назвать три способа оценки качества этой модели: 1) чисто геометрическая интерпретация, основанная на анализе распределения лучей в аберрационной фигуре рассеяния в изображении точки. Эти представления приводят к математической модели объектива; 2) определение волновых аберраций и формы вышедшего из объектива деформированного фронта волны; 3) анализ распределения освещенности в изображении точки. Последние два способа оценки позволяют построить физическую модель объектива.

Способы, относящиеся к группе Б, предполагают исследование образца объектива экспериментальным путем. Можно и здесь условно назвать также три способа: 1) способы определения геометрических путей лучей, точнее, распределения «следов» лучей в изображении точки; эти методы, в сущности, экспериментально проверяют теоретически построенную математическую модель объектива; 2) интерферометрические способы определения формы деформированной световой волны, вышедшей из испытуемого объектива; 3) способы исследования сильно увеличенного изображения точки и распределения энергии (с использованием фотоумножителя) в дифракционном пятне. Аналогичные же измерения могут быть проведены и для изображений других простейших объектов — линии, границы полуплоскости, «ступенчатой» штриховой решетки, синусоидальной решетки и т. п. Очевидно, последние способы дают экспериментальный материал для формирования представления о физической модели объектива.

В результате обработки полученных данных (аналитической, графической или графоаналитической), определенных расчетным или экспериментальным путем, могут быть получены разные способы оценки, представляемые обычно в форме некоторой функции, характеризующие в различных интерпретациях свойства изображений элементарных объектов.

1. Способы оценки качества оптического изображения. Сложность проблемы оценки качества оптического изображения заставляет на практике прибегать к некоторым упрощенным критериям, которые хотя и не универсальны, но вполне пригодны для сравнительной оценки качеств объективов в конкретных областях их применения. Отправное свойство любого объектива заключается в том, что светящаяся точка изображается им в виде пятна конечных размеров и сложного распределения освещенности.

Объекты самосветящиеся или некогерентного освещения можно рассматривать как совокупности светящихся точек, яркости которых могут зависеть любым образом от координат точек в плоскости объектов. В результате может нарушиться фотометрическое подобие между распределением освещенности в изображении и распределением яркости в объекте: освещенность в изображении изменяется более плавно; резкие контуры объекта оказываются в изображении размытыми. В этом смысле мерой качества оптического изображения объектива может служить степень несоответствия распределения освещенности в изображении распределению яркости в объекте. На протяжении многих десятилетий астрономические объективы, обладающие волновыми аберрациями, не превышающими небольших долей длины световой волны, оценивались по их разрешающей силе; величина последней приближалась к таковой у идеальных систем. Для подобных объективов критерий разрешающей силы полностью себя оправдывает. Неполноценность этого критерия начала сказываться при его применении к оценке не предельно разрешающих объективов различного назначения, т. е. предназначенных для работы с разными приемниками изображений.

Предложены различные другие способы оценки качества изображе-

ния. Их сопоставление показывает, что во всех случаях о качестве объектива можно судить по анализу изображения любого предмета; однако для упрощения возможности проведения количественной оценки предлагается анализировать изображения простейших объектов: светящейся точки, линии, границы полуплоскости, решетки с П-образным или синусоидальным распределением освещенности и т. п.

Как будет показано ниже, функция, описывающая распределение освещенности в изображении точки или линии (функция рассеяния), является той элементарной характеристикой объектива, на основе которой могут быть установлены любые возможные способы оценки качества оптического изображения разрешающая сила, концепция пограничного градиента, частотно-контрастная характеристика и др.



Рис. III, 7. Распределение освещенности в изображении края полуплоскости

2. Функция рассеяния и распределение освещенности в изображении полуплоскости. Функция рассеяния описывает изображение одиночной точки или линии; изображение некоторого объекта может быть определено путем соответствующего сложения функций рассеяния для всех точек или линий, которые в совокупности образуют объект.

Рассмотрим простейший случай изображения полуплоскости (рис. III,7). Каждый светящийся элемент 1, 2, 3, 4, ... дает свою элементарную функцию рассеяния, которые в результате суммирования образуют изображение края полуплоскости *ab*. На рисунке такое суммирование произведено для точки  $x_0$ . Очевидно, сумма ординат всех элементарных функций рассеяния в данной точке равна сумме всех расположенных левее  $x_0$  ординат одной функции рассеяния. Если A'(x) выражает для данного объектива функцию рассеяния в изображении линии, освещенность  $E(x_0)$  в точке  $x_0$  изображения края выразится интегралом:

$$E(x_{0}) = \int_{-\infty}^{x_{0}} A'(x) \, dx. \qquad (III, 64)$$

Нижний предел интегрирования взят равным — ∞, так как функция рассеяния, строго говоря, бесконечно простирается в обе стороны; практически за нижний предел принимается точка, в которой ордината становится достаточно малой величиной.

Из последнего выражения следует обратное соотношение:

$$A'(x) = \frac{dE(x)}{dx}, \qquad (III, 65)$$

т. е. если известна функция распределения освещенности E(x) в изображении полуплоскости, то производная от этой функции представляет собой элементарную функцию рассеяния.



Рис. 111, 8. Процесс свертки функции R(x) распределения светности в объекте с функцией рассеяния A'(є)

Знание функции рассеяния позволяет особенно просто установить распределение освещенности в изображении любого одномерного объекта, как это имеет место, например, в мире (см. рис. III, 4) для определения разрешающей силы.

Очевидно, чем больше крутизна кривой E(x), тем больше величина A'(x), а следовательно, тем будет резче изображение точки или линии.

3. Образование изображения некогерентно излучающего объекта. Ограничимся здесь рассмотрением процесса образования изображения, когда элементы объекта излучают некогерентный свет. Как было сказано выше, освещенность в каждой из точек плоскости изображе-

ния определяется как результат суммирования освещенности элементарных изображений от различных точек объекта.

Далее предположим, что при передаче освещенностей оптическая система обладает свойством линейности (к ней применим принцип суперпозиции). Наконец, предположим, что объектив обладает свойствами изопланатизма (см. главу II), когда в сопряженных плоскостях существуют хотя бы небольшие, но конечные участки, в пределах которых вид функции рассеяния не изменяется. В целях упрощения записи математических выражений ограничимся анализом распределения освещенности в изображении одномерного объекта, например штриховой миры, у которой яркость изменяется лишь в направлениях, поперечных направлениям штрихов.

Учитывая сделанные выше замечания, можно представить, что каждому линейному элементу объекта P, Q, R (рис. III, 8) соответствует некоторая функция рассеяния  $A'(\xi)$ , причем  $\xi$  отсчитывается от той точки изображения, в которой определяется освещенность. Пусть функция R(x) описывает распределение светности вдоль оси x в плоскости одномерного объекта. Очевидно, аргументу x в пространстве предметов будет соответствовать величина  $\beta x$ , где  $\beta$  — поперечное увеличение объектива; в дальнейшем в целях упрощения записи масштаб изображения  $\overline{\beta}$  опустим. Для определения освещенности в точках изображения с координатой x все элементарные функции рассеяния  $A'(\xi)$  должны быть суммированы, но с предварительным их умножением на соответствующие значения функций распределения на предмете  $R(x-\xi)$ :

$$E(x) = \int_{-\infty}^{\infty} A'(\xi) R(x-\xi) d\xi.$$
 (III, 66)

Этот интеграл определяет свертку функции R(x) распределения света в объекте с функцией рассеяния  $A'(\xi)$ . Это выражение описывает процесс формирования изображения, если элементы объекта излучают некогерентный свет. Такой линейный процесс записывается методом преобразования Фурье и приводит к идеям о действии объектива (и любой оптической системы), как фильтра пространственных частот.

Функция A'(ξ) иногда называется также функцией прибора, или аппаратной функцией, которая по сути дела является математической моделью оптической системы. Эта функция отображает влияние таких факторов, как аберрация, дифракция, светорассеяние в плоскости приемника изображения; иными словами, влияние тех явлений, к которым можно применить закон аддитивности в отношении действия отдельных элементов объекта.

4. Частотно-контрастная характеристика\* (ЧКХ) объектива. Как было сказано выше, о качестве объектива можно судить по изображению любого предмета; однако для количественной оценки удобнее применять тестобъекты простейшей геометрической формы. Особое положение среди этих тестобъектов занимает косинусоидальная решетка, у которой светность распределена по закону

$$R(x) = R_{\rm d} + R_{\rm a} \cos 2\pi N x$$
, (III, 67)

где  $R_{\phi}$  — светность равномерного фона;  $R_a$  — амплитуда колебания светности в плоскости предмета вдоль оси *x*; *N* — частота решетки, т.е. число периодов решетки в единице длины. Очевидно, предельные значения светности решетки будут:  $R_{\text{макс}} = R_{\phi} + R_a$  и  $R_{\text{мкн}} = R_{\phi} - R_a$ ; отсюда получим величину контраста в плоскости предмета (см. III, 32):

$$k = \frac{R_{\text{Marc}} - R_{\text{Mult}}}{R_{\text{Marc}} + R_{\text{Mult}}} = \frac{R_{a}}{R_{\Phi}}; \qquad (\text{III, 68})$$

отношение k амплитудного значения светности  $R_a$  к ее среднему значению (фону)  $R_{\phi}$  называют также коэффициентом модуляции.

Применяя операцию свертки для косинусоидального распределения света в объекте, из (III, 66) находим распределение освещенности в плоскости изображения:

<sup>\*</sup> Или функция передачи модуляции (ФПМ).

$$E(x) = R_{\Phi} \int_{-\infty}^{\infty} A'(\xi) d\xi + R_{a} \int_{-\infty}^{\infty} A'(\xi) \cos 2\pi N (x - \xi) d\xi =$$
  
=  $E_{\Phi} \int_{-\infty}^{\infty} A'(\xi) d\xi + E_{a} \cos 2\pi N x \int_{-\infty}^{\infty} A'(\xi) \cos 2\pi N \xi d\xi +$   
+  $E_{a} \sin 2\pi N x \int_{-\infty}^{\infty} A'(\xi) \sin 2\pi N \xi d\xi.$  (III, 69)

Выражение (III, 69) может быть записано более кратко:

$$E(x) = R_{\phi} + R_{a} | T(N) | \cos [2\pi N x - \varphi(N)], \qquad \text{(III, 70)}$$

где

$$|T(N)|^{2} = [T_{c}(N)]^{2} + [T_{s}(N)]^{2};$$

$$T_{c}(N) = \frac{\int_{-\infty}^{\infty} A'(\xi) \cos 2\pi N\xi d\xi}{\int_{-\infty}^{\infty} A'(\xi) d\xi};$$

$$T_{s}(N) = \frac{\int_{-\infty}^{\infty} A'(\xi) \sin 2\pi N\xi d\xi}{\int_{-\infty}^{\infty} A'(\xi) d\xi};$$

$$\sin \varphi(N) = \frac{T_{s}(N)}{|T(N)|}; \quad \cos \varphi(N) = \frac{T_{c}(N)}{|T(N)|};$$

$$\operatorname{tg} \varphi(N) = -\frac{T_{s}(N)}{T_{c}(N)}.$$
(III, 71)

Из сопоставления выражений (III, 67) и (III, 70) следует, что косинусоидальная решетка изображается объективом также в виде косинусоидальной решетки. Изображение отличается от оригинала в двух отношениях: во-первых, амплитуда колебаний освещенности в изображении в |T(N)| раз меньше, чем в самой решетке, и, во-вторых, вне оптической оси изображение решетки может не совпасть с его положением, рассчитанным по законам оптики идеальной системы, на что указывает присутствие смещения фазы  $\varphi(N)$  в формуле (III, 70).

Действительно, если функция рассеяния  $A'(\xi)$  четная, т.е. если  $A'(-\xi) = A'(\xi)$ , что, очевидно, всегда имеет место для точки на оптической оси, то третий интеграл в выражении (III, 69) ввиду нечетности функции синуса обращается в нуль и, следовательно,  $\sin_{\Phi}(N) = T_s(N) = 0$  — смещения фазы не будет. Смещение фазы указывает на несоответствие координаты точки изображения относительно идентичной точки объекта. Оно может быть вызвано двумя причинами:

1) вызвавшими перемещение центра пятна рассеяния и не зависящими от частоты *N*, и 2) вызвавшими возникновение асимметричного распределения освещенности в фигуре рассеяния, вследствие чего функция рассеяния оказалась нечетной  $(A'(-\xi) \neq A'(\xi))$ .

Очевидно, смещение, не зависящее от частоты N, может быть вызвано дисторсией; смещение фазы, вследствие возникновения асимметрии в фигуре рассеяния и зависящее от частоты, — аберрациями комы и астигматизмом.

Из (III, 70) следует, что контраст изображения решетки равен:

$$k' = \frac{E_{\text{marc}} - E_{\text{muh}}}{E_{\text{marc}} + E_{\text{muh}}} = \frac{R_{a}}{R_{\Phi}} |T(N)| = k |T(N)|$$

или

$$|T(N)| = \frac{k'}{k}, \qquad (\text{III}, 72)$$

т. е. функция |T(N)|, входящая в формулу (III, 70), характеризует отношение контраста изображения решетки к контрасту самой решетки; эту функцию, зависящую от пространственной частоты N решетки, называют частотно-контрастной характеристикой (ЧКХ) объектива. Ее называют также функцией передачи модуляции (ФПМ).

Из рассмотрения соотношений (III, 71) нетрудно заметить, что функция передачи модуляции |T(N)| и смещение фазы $\varphi(N)$  являются соответственно модулем и аргументом комплексной функции:

$$T(N) = \int_{-\infty}^{\infty} A'(\xi) e^{-i2\pi N\xi} d\xi, \qquad (III, 73)$$

которую в обозначениях (III, 71) можно записать и так:

$$T(N) = |T(N)| e^{-i\varphi(N)}.$$
 (III, 74)

Функцию T(N) называют комплексной функцией передачи контраста, или оптической передаточной функцией (ОПФ); модуль этой функции |T(N)| был назван выше ЧКХ, или функцией передачи модуляции; функция  $\varphi(N)$  называется частотно-фазовой характеристикой\* (ЧФХ), поскольку она характеризует смещение фазы в изображении косинусоидальной решетки при изменении пространственной частоты.

В заключение заметим, что при написании формулы (III, 70) не учтены ни геометрический, ни фотометрический масштабы, что обычно делается для упрощения записи. В действительности равномерный фон изображения  $E_{\phi}$  и амплитуда колебания освещенности в плоскости изображения  $E_{a}$  выразятся следующими зависимостями, справедливыми при условии выполнения закона Ламберта:

$$E_{\phi} = \frac{n^2}{{n'}^2} \frac{\tau}{\bar{\beta}^2} R_{\phi}; \quad E_{a} = \frac{n^2}{{n'}^2} \frac{\tau}{\bar{\beta}^2} |T(N)| R_{a}, \qquad (III, 75)$$

<sup>\*</sup> Или функцией передачи фазы (ФПФ)

где т — коэффициент пропускания объектива; *п* и *n'* — показатели преломления сред пространства предметов и изображений;  $\overline{\beta}$  — линейное увеличение; геометрические масштабы:  $x' = \overline{\beta} x$  и  $N' = \frac{N}{\overline{\beta}}$ . При учете этих масштабов вместо выражения (II, 70) получим фактическое распределение освещенности в плоскости изображения:

 $E'(x') = E_{\oplus} + E_{a} \cos [2\pi N' x' - \varphi(N')], \qquad (III, 76)$ 

где E<sub>ф</sub> и E<sub>a</sub> выражаются зависимостями (III, 75).

## § 4. АБЕРРАЦИИ ОБЪЕКТИВА И КОНТРАСТ ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ

Уже более 30 лет со времени появления в свет монографии Дюфье в 1947 году многие исследователи оценивают изображающие системы частотно-контрастной характеристикой. Эти понятия были перенесены в оптику из общей теории связи. Они послужили основой для нового подхода к оценке оптического изображения и действия оптических приборов. Старый критерий, находивший широкое распространение в оптике и фотографии — критерий разрешающей силы, — неудобен по двум причинам: во-первых, разрешающая сила зависит от контраста тестобъекта и, во-вторых, этой оценкой трудно пользоваться для анализа сложных оптических систем, работающих с разными приемниками изображений. Как увидим в дальнейшем, от этих недостатков свободен критерий частотно-контрастных характеристик. Применение общей теории связи в оптике позволило в несколько другом аспекте подойти к проблеме обнаружения и опознавания объектов в изображении и несколько по-новому производить оценку оптических систем в процессе их разработки.

С точки зрения теории связи оптическая система и приемник изображения являются каналом для передачи информации. При некогерентном освещении распределение яркости объекта может рассматриваться как результат наложения бесконечно большого числа синусоидальных распределений яркости, отличающихся по амплитуде, частоте, фазе и азимуту, т. е. ориентировке в плоскости объекта. При когерентном или частично когерентном освещении рассматриваются не яркости (освещенности) точек, а амплитуды и фазы колебаний.

Распределение освещенности в плоскости изображения некогерентного источника получается в результате наложения элементарных изображений соответствующих объектов, очень часто — искусственных объектов — решеток с П-образным или синусоидальным распределением яркости. Изображение решетки, как видели выше, характеризуется отношением ее контраста к контрасту самой решетки\* и смещением ее максимумов относительно их положения в параксиальном изображении решетки. На очень малых частотах изображений КПМ

<sup>\*</sup> Так называемым коэффициентом передачи контраста (КПК) или коэффициентом передачи модуляции (КПМ).

близок к единице. С увеличением частоты КПМ уменьшается и при некоторой предельной частоте обращается в нуль. Эта предельная частота определяет разрешающую силу объектива. В свете новых представлений объектив можно рассматривать как фильтр изображений низких частот, так как он способен давать изображение решеток с частотой не выше частоты, соответствующей разрешающей силе.

1. Аберрации и ЧКХ (или ФПМ). Как показывают расчетные исследования, аберрации всех видов слабо влияют как на контраст изображения малых частот, так и частот, близких к предельным. Они оказывают сильное влияние на контраст при промежуточных частотах, понимая под последними частоты, приблизительно в два раза меньшие предельных. В области невысоких частот, соответствующих, в частности, частотам объективов, работающих с телевизионными приемниками изображений, электронно-оптическими преобразователями и т. п., вид функции рассеяния  $A'(\xi)$  сравнительно мало влияет на частотно-контрастную характеристику объектива. В этом можно убедиться, исследуя при невысоких частотах контраст изображения различным образом корригированных объективов и выполняя численное интегрирование выражений (III, 71), задаваясь различными формами функций рассеяния  $A'(\xi)$ . Соответствующие формулам (III, 71) выражения для  $T_c$  (N) или  $T_s$  (N) для последовательного суммирования имеют вид:

$$T_{\mathcal{C}}(N) = \frac{\sum_{i=-m}^{l=n} A'(\xi_i) \cos 2\pi N \xi_i \Delta \xi_i}{\sum_{i=-m}^{l=n} A'(\xi_i) \Delta \xi_i}, \qquad (III, 77)$$

где *i* изменяется от —*m* по одну сторону от максимума функции  $A'(\xi)$ до *n* по другую сторону, охватывая диапазон, в котором функция рассеяния заметно отличается от нуля. Процесс вычисления повторяется для несколько последовательно возрастающих частот *N*, причем знаменатель должен быть определен всего один раз. В результате получают косинус-преобразование  $T_C(N)$  (III, 77). В начале расчета определяется величина  $A'(\xi_0)$ , т. е. значение в точке, в которой помещено начало отсчета  $\xi_0 = 0$ ; эта величина умножается на соответствующее значение функции соз  $2\pi N\xi$  (которое при  $\xi_0 = 0$  равно единице). Также определяют синус-преобразование  $T_S(N)$ , комбинируя  $A'(\xi_i)$  и sin  $2\pi N\xi_i$ .

Если функция рассеяния  $A'(\xi)$  симметрична, что, в частности, всегда имеет место при изображении точки (или линии), расположенной на оптической оси объектива, то синус-преобразование при всех частотах окажется равным нулю:  $T_S(N) = 0$ , поскольку отрицательные и положительные члены суммируемого ряда взаимно уничтожаются, а  $\sin 2\pi N\xi_0 = 0$  при  $\xi_0 = 0$ . В этом случае  $|T(N)| = \sqrt{[T_C(N)]^2 + [T_S(N)]^2} =$  $= T_C(N)$ , т. е. косинус-преобразование уже само по себе равно КПМ, а смещение фазы при всех N частотах  $\varphi(N) = 0$ , так как  $T_S(N) = 0$ . Для получения всей ЧКХ расчет должен быть выполнен для нескольких последовательно возрастающих частот.

Иногда удобнее определить КПМ на основе известной для данного объектива формы волновой поверхности L(m', M') как функции коор-

динат *m*' и *M*' в его выходном зрачке (см. главу II). При решении этой задачи используются те же преобразования Фурье, переводящие на математический язык природу явления дифракции: переход от распределения амплитуд на зрачке к распределению амплитуд на изображении представляет собой задачу гармонического анализа, сводящуюся к разложению амплитуд на зрачке на синусоидальные составляющие.

В отличие от приведенных выше зависимостей напишем выражение для двухмерного объекта частотно-контрастной характеристики, которое может быть представлено модулем следующего интеграла [9]:

 $|T(N')| = \left| \int \int F(\beta', \gamma') \cdot F^* \left[ \left( \beta' - \lambda N'_m \right); (\gamma' - \lambda N'_s) \right] d\beta' d\gamma' |,$ (III, 78)



Рис. III, 9. К определению предела интегрирования произведения комплексных функций



Рис. III, 10. К замене переменных в преобразовании Фурье

где  $\beta'$  и  $\gamma'$  — направляющие косинусы радиуса сферы волны сравнения, пересекающего плоскость выходного зрачка в некоторой точке  $(m'; M'); N'_m$  и  $N'_s$  — пространственные частоты меридионально- и сагиттально-ориентированных изображений штрихов миры; F и  $F^*$ — комплексные функции распределения амплитуд на выходящей из зрачка объектива волновой поверхности. Область интегрирования распространяется лишь на часть площади зрачка [9]. Действительно, функция F равна нулю вне контура зрачка и произведение  $FF^*$  может иметь не равное нулю значение, если два контура , представленные на рис. III, 9, имеют общую (заштрихованную на рисунке) область: один из них является контуром зрачка, другой — также контуром зрачка, но смещенным соответственно на величины  $\lambda N'_m$  и  $\lambda N'_s$ . Функции F и  $F^*$  можно представить следующим образом, если относительные отверстия объективов невелики и принять нормировку F(0, 0) = 1 при L = 0:

$$F(\beta', \gamma') = exp\left[\frac{-2\pi i}{\lambda} L(\beta', \gamma')\right];$$
  

$$F^*\left[\left(\beta' - \lambda N'_{m}\right); \left(\gamma' - \lambda N'_{s}\right)\right] = exp\left[-\frac{2\pi i}{\lambda} L\left(\beta - \lambda N'_{m};\right)\right]$$

$$\gamma' - \lambda N'_{s} \Big], \qquad (III, 79)$$

где L — волновая аберрация луча, координаты которого в выходном зрачке m' и M' следующим образом связаны с величинами  $\beta'$  и  $\gamma'$  и радиусом r' сферы сравнения (см. рис. III, 10):

$$\frac{m'}{r'} = \frac{\rho' \cos \theta'}{r'} = u' \cos \theta' = \beta';$$

$$\frac{M'}{r'} = \frac{\rho' \sin \theta'}{r'} = u' \sin \theta' = \gamma'.$$
(III, 80)

Символом exp с целью удобства записи обозначена «функция-винт»  $e^{ix} = exp(ix)$ .

В результате получим:

$$|T(N')| = \frac{1}{r'^2} \left| \int \int exp\left[\frac{2\pi i}{\lambda} L\left(\frac{m'}{r'}; \frac{M'}{r'}\right)\right] \times exp\left[-\frac{2\pi i}{\lambda} L\left(\frac{m'}{r'}-\lambda N'_{m}; \frac{M'}{r'}-\lambda N'_{s}\right)\right] dm' dM' \right|.$$
(III, 81)

В соответствии с вышесказанным необходимо, чтобы интегрирование проводилось по всем значениям *m*' и *M*', при которых выполняются неравенства:

$$m'^{2} + M'^{2} \leqslant \rho_{1}'^{2}; \ (m' - \overline{m}')^{2} + (M' - \overline{M'})^{2} \leqslant \rho_{1}'^{2},$$

где  $\overline{m}' = \lambda N'_m r'$  и  $\overline{M}' = \lambda N'_s r'; \rho'_1$  — радиус выходного зрачка объектива.

В случае одномерной структуры объекта, например простой штриховой решетки и квадратного зрачка объектива со стороной 2р'<sub>1</sub>, из (III, 81) получим:

$$|T(N')| = C \left| \int_{-u_1' + \lambda N_m'}^{u_1'} exp\left\{ \frac{2\pi i}{\lambda} \left[ L(u') - L(u' - \lambda N_m') \right] \right\} du' \right|,$$
(III, 82)

где  $u' = \frac{m'}{r'}$  и  $u'_1 = \frac{p'_1}{r'}$  — апертурный угол объектива, сторона зрачка которого  $2p'_1$ ; C — некоторый множитель, определяемый при конкретных вычислениях из условия нормировки: |T(N')| = 1 при  $N'_m \to 0$ .

Как известно, модуль этого выражения равен:

$$|T(N')| = C \sqrt{\left[\int_{-u_1'+\lambda N'_m}^{u_1'} \sin \frac{2\pi}{\lambda} \Phi(u') du'\right]^2} + \left[\int_{-u_1'+\lambda N'_m}^{u_1'} \cos \frac{2\pi}{\lambda} \Phi(u') du'\right]^2}, \quad (III, 83)$$

где функция  $\Phi(u') = L(u') - L(u' - \lambda N'_m).$ 

Если выражение волновой аберрации представляет симметричную функцию L(u') = L(-u'), то первый интеграл, стоящий под знаком радикала, обращается в нуль и выражение (III, 83) принимает вид:

$$|T(N')| = C \int_{-u'_1 + \lambda N'_m}^{u'_1} \cos \frac{2\pi}{\lambda} \Phi(u') du'.$$
 (III, 83')

Эти формулы удобны для применения, если известны выражения для волновой аберрации L(u') объектива.

2. Приближенная оценка влияния аберраций на ЧКХ (или ФПМ). Рассмотрим примеры применения формул (III, 71) и (III 83), первая из которых приспособлена, если известна функция рассеяния, а вторая — если известно распределение волновой аберрации в зрачке объектива.

Пусть объектив с остаточными (как монохроматическими, так и хроматическими) аберрациями изображает светящуюся геометрическую точку в виде круглого диска диаметром d', освещенность в котором распределена равномерно. При таком предположении распределение освещенности в изображении линии выражается формулой:

$$A'(\xi) = \frac{2}{\pi r^2} \sqrt{r^2 - \xi^2}, \qquad (III, 84)$$

где  $0 \leqslant \xi \leqslant r = \frac{d'}{2}$ . Множитель  $\frac{2}{\pi r^2}$  в выражении функции рассеяния  $A'(\xi)$  введен для того, чтобы выполнялось условие нормировки:

$$\int_{-r} A'(\xi) d\xi = 1.$$
 (III, 84')

Коэффициент передачи модуляции (КПМ) при изображении синусоидальной миры определится формулой (III, 71):

$$|T(N')| = [T_C(N')]^2 + [T_S(N')]^2.$$

Так как A'(ξ) — функция четная, то, как было сказано выше,

 $T_{s}(N') = 0$  и, следовательно, при нормировке (III, 84') имеем:

$$|T(N')| = T_C(N') = \int_{-r}^{r} A'(\xi) \cos 2\pi N' \xi d\xi = \frac{2I_1(\pi N' d')}{\pi N' d'}, \quad (\text{III}, 85)$$

где N' — пространственная частота в изображении синусоидальной миры;  $I_1$  — функция Бесселя первого порядка. Ограничившись двумя первыми членами ряда разложения этой функции (III, 11'), получим:

$$d'_{II} \approx \frac{2}{\pi N'} \sqrt{2(1 - T(N'))}$$
. (III, 86)

Эта приближенная формула, обладающая небольшой погрешностью при достаточно высоких контрастах изображения T(T > 0,5), позволяет оценить допустимые габариты фигуры рассеяния d' при заданной пространственной частоте N' и требуемой величине T(N').

Рассмотрим второй пример, когда объектив с аберрациями изображает светящуюся точку в виде круглого диска диаметром d', освещенность в изображении которого равномерно (линейно) снижается от некоторого максимума до нуля. При таком предположении распределение освещенности в изображении линии выразится формулой («функция треугольник»):

$$A'(\xi) = \frac{1}{r} \left( 1 - \left| \frac{\xi}{r} \right| \right), \qquad (\text{III}, 87)$$

где  $0 < \xi < r = \frac{d'}{2}$ . Множитель  $\frac{1}{r}$  в выражении  $A'(\xi)$  введен для приведения к нормировке (III, 84'). И здесь функция  $A'(\xi)$  четная и, следовательно:

$$|T(N')| = T_{\mathcal{C}}(N') = \int_{r}^{r} \frac{1}{r} \left(1 - \left|\frac{\xi}{r}\right|\right) \cos 2\pi N' \,\xi d\xi =$$
$$= \left(\frac{\sin \pi N' r}{\pi N' r}\right)^{2}. \tag{III, 88}$$

Отсюда приближенно имеем:

$$d'_{\Delta} \approx \frac{2}{\pi N'} \sqrt{3(1 - T(N'))}, \qquad (III, 89)$$

где  $d_{\Delta} = 2r$ .

Сопоставляя величины  $d_n'$  (III, 86) и  $d_{\Delta}'$  (III, 89), приходим к выводу, что при одинаковых величинах пространственных частот в изображении синусоидальной миры N' и одинаковых величинах коэффициентов передачи модуляции |T(N')| габариты фигуры рассеяния сравнительно мало изменяются при различном характере распределения освещенности в изображении — как П-образном, так и равномерно спадающем («функция — треугольник»). Иными словами, характер распределения аберраций в пределах заданных габаритов d' фигуры рассеяния лучей

сравнительно мало влияет на величину коэффициента передачи модуляции изображения *Т*. Действительно, из (III, 86) и (III, 89) находим:

$$\frac{d'_{\Delta}}{d'_{\Pi}} = \sqrt{\frac{3}{2}} = 1,22,$$

т. е. габариты фигур рассеяния отличаются лишь на ~20%.

Для практических расчетов можно принять среднее квадратичное этих величин:

$$d' = \sqrt{\frac{d_{\rm II}^{\prime 2} + d_{\Delta}^{\prime 2}}{2}} = \frac{2}{\pi N'} \sqrt{2,5(1-T)}.$$
 (III, 90)



Рис. III, 11. Кривые зависимости размеров d' фигур рассеяния лучей от пространственных частот N' и коэффициентов передачи модуляций T (N') изображений решетки

На рис. III, 11 представлены кривые зависимости размеров фигур рассеяния лучей d' от пространственных частот N' и величин коэффициентов передачи модуляции T изображений синусоидальной решетки.

Эти приближенные зависимости рационально использовать для предварительной оценки качества объектива на основании анализа его аберраций, что важно как разработчику, так и потребителю объектива. Более точные определения КПМ производятся на основе приведенных выше точных формул, расчет по которым выполняется с помощью ЭВМ.

На рис. III, 12 приведены примеры поперечных аберраций в центре поля и аберраций широких наклонных пучков в меридиональном *M* и главном сагиттальном *S* сечениях.

Пунктирными кривыми ограничены эффективные габариты d' фигуры рассеяния; эти кривые проведены параллельно линии аа', определяющей положение предполагаемой плоскости наилучшей установки (см. главу II).

3. Хроматические аберрации и ЧКХ (ФПМ). Выше было рассмотрено определение ФПМ объектива в монохроматическом свете. Определим ФПМ при излучении объектом белого света или излучении в спектральной области от  $\lambda_1$  до  $\lambda_2$  при наличии хроматической аберрации объектива.

Пусть распределение спектральной светности в плоскости предмета попрежнему задано косинусоидальной зависимостью:

$$R_{\lambda}(x) = R_{\phi, \lambda} + R_{a, \lambda} \cos 2\pi N x, \qquad (III, 91)$$

где  $R_{\phi,\lambda}$  и  $R_{a,\lambda}$  — соответственно спектральная светность фона и амплитуда колебания спектральной светности в плоскости предмета вдоль оси x.

Интегральные значения этих величин в данной точке х будут равны:

$$R(x) = \int_{\lambda_1}^{\lambda_2} R_{\lambda}(x) d\lambda; \ R_{\phi} = \int_{\lambda_1}^{\lambda_2} R_{\phi, \lambda} d\lambda; \ R_{a} = \int_{\lambda_1}^{\lambda_2} R_{a, \lambda} d\lambda.$$
(III, 92)

Как было показано выше, распределение спектральной освещенности в плоскости изображения выразится также косинусоидальной зависимостью:

$$E_{\lambda}(x') = E_{\phi, \lambda} + E_{a, \lambda} \cos\left[2\pi N'x' - \varphi'_{\lambda}(N')\right]$$
,



Рис. III, 12. Эффективные размеры d' фигур рассеяния лучей в плоскости установки aa'

где приближенно можно положить, что  $x' = \overline{\beta x}$  и  $N' = \frac{N}{\overline{\beta}}; \overline{\beta}$  — ли-

нейное увеличение оптической системы.

Распределение освещенности изображения для широкой области спектра, очевидно, выразится зависимостью:

$$E(x') = \int_{\lambda_{1}}^{\lambda_{2}} E_{\phi,\lambda} d\lambda + \int_{\lambda_{1}}^{\lambda_{2}} E_{a,\lambda} \cos\left(2\pi N'x' - \varphi_{\lambda}'\right) d\lambda = E_{\phi} + \cos\left(2\pi N'x'\right) \int_{\lambda_{1}}^{\lambda_{2}} E_{a,\lambda} \cos\left(\varphi_{\lambda}'d\lambda + \sin\left(2\pi N'x'\right)\right) \int_{\lambda_{1}}^{\lambda_{2}} E_{a,\lambda} \sin\left(\varphi_{\lambda}'d\lambda\right) d\lambda$$

где  $E_{\Phi} = \int_{\lambda_1}^{\lambda_2} E_{\Phi, \lambda} d\lambda$ . Последнее выражение можно записать в следующем простом виде:

$$E(x') = E_{\phi} + E_{a} \cos(2\pi N' x' - \varphi'),$$
 (III, 93)

где

$$E_{a} = \sqrt{\left(\int_{\lambda_{1}}^{\lambda_{2}} E_{a, \lambda} \cos \varphi_{\lambda}' d\lambda\right)^{2} + \left(\int_{\lambda_{1}}^{\lambda_{2}} E_{a, \lambda} \sin \varphi_{\lambda}' d\lambda\right)^{2}}; \quad (III, 94)$$
$$\operatorname{tg} \varphi' = \frac{\int_{\lambda_{1}}^{\lambda_{2}} E_{a, \lambda} \sin \varphi_{\lambda}' d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} E_{a, \lambda} \cos \varphi_{\lambda}' d\lambda}. \quad (III, 95)$$

Аналогично написанному выше выражению (III, 75), для спектральных величин находим:

$$E_{a,\lambda} = \frac{n_{\lambda}^{2}}{n_{\lambda}^{\prime 2}} \frac{\tau_{\lambda}}{\overline{\beta}_{\lambda}^{2}} |T_{\lambda}(N')| R_{a,\lambda}, \qquad (III, 95')$$

где τ<sub>λ</sub> — спектральный коэффициент пропускания объектива и светофильтра.

Подставив это выражение в (III, 94), получим:

$$E_{a} = \sqrt{\left[\int_{\lambda_{1}}^{\lambda_{2}} \frac{n_{\lambda}^{2}}{n_{\lambda}^{2}} \frac{\tau_{\lambda}}{\overline{\beta}_{\lambda}^{2}} |T_{\lambda}(N')| R_{a, \lambda} \cos \varphi_{\lambda}' d\lambda\right]^{2}} + \left[\int_{\lambda_{1}}^{\lambda_{2}} \frac{n_{\lambda}^{2}}{n_{\lambda}^{2}} \frac{\tau_{\lambda}}{\overline{\beta}_{\lambda}^{2}} |T_{\lambda}(N')| R_{a, \lambda} \sin \varphi_{\lambda}' d\lambda\right]^{2}}.$$
 (III, 95")

Воспользовавшись тем же выражением (III, 75), определим интегральное, т. е. для области спектра  $\lambda_2 - \lambda_1$ , выражение ФПМ:

$$|T(N')| = \frac{n'^2}{n^2} \frac{\overline{\beta}^2}{\tau} \frac{E_a}{R_a}.$$

Приняв во внимание выражения для  $E_a$  (III, 95'') и  $R_a$  (III, 92) и положив, что  $n_{\lambda} = n'_{\lambda} = n = \text{const}$  для всех длин волн и что  $\overline{\beta}_{\lambda} = \overline{\beta} = \text{const}$ , находим:

$$|T(N')| = \frac{\sqrt{\left[\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} | T_{\lambda}(N') | R_{a,\lambda} \cos \varphi_{\lambda}' d\lambda\right]^{2} + }}{\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} R_{a,\lambda} d\lambda}$$

$$= \frac{\left[\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} | T_{\lambda}(N') | R_{a,\lambda} \sin \varphi_{\lambda}' d\lambda\right]^{2}}{\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} R_{a,\lambda} d\lambda} \cdot (III, 96)$$

Эта формула позволяет определить интегральную величину  $\Phi\Pi M$  объектива в спектральном интервале от  $\lambda_1$  до  $\lambda_2$ .

Если объектив обладает симметричными аберрациями, то изображение решетки не будет иметь фазового сдвига ( $\phi' = 0$ ). Из (III, 96) получим:

$$|T(N')| = \frac{\int_{\lambda_{j}}^{\lambda_{2}} \tau_{\lambda} |T_{\lambda}(N')| R_{a,\lambda} d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} R_{a,\lambda} d\lambda}.$$
 (III, 97)

Дальнейшее упрощение получим, если предположить, что  $R_{a,\lambda} \approx const$  (например, дневной солнечный свет) и коэффициент пропускания объектива  $\tau_{\lambda}$  также постоянен для всех длин волн:

$$|T(N')| = \frac{\int_{\lambda_1}^{\lambda_2} |T_{\lambda}(N')| d\lambda}{\lambda_2 - \lambda_1}.$$
 (III, 97')

Как было показано выше (III, 83'), при квадратном зрачке и симметричной фигуре рассеяния:

$$|T_{\lambda}(N')| = C \int_{-u'_1+\lambda N'}^{u'_1} \cos \frac{2\pi}{\lambda} \Phi(u') du',$$

где  $\Phi(u') = L(u') - L(u' - \lambda N').$ 

Зная выражение волновой аберрации L(u'), можно из последней формулы определить ФПМ.

Рассмотрим простейший случай, когда функция L(u') четная и выражается одним членом:

$$L(u') = \frac{\Delta u'^2}{2}, \qquad (\text{III}, 98)$$

где <u>∧</u> — продольная аберрация осевого пучка, которая может иметь различный смысл: она может выражать величину дефокусировки, хроматическую аберрацию положения, величину вторичного спектра или, наконец, сферохроматическую аберрацию.

Пусть, например, Δ (λ) выражает хроматическую аберрацию:

$$\Delta(\lambda) = s'_{\lambda} - s'_{\lambda_{o}}, \qquad (\text{III}, 98')$$

где  $s'_{\lambda}$  — расстояние параксиального изображения, соответствующего длине волны  $\lambda$  от последней поверхности объектива;  $\lambda_0$  — длина волны, принятая за основную.

Отсюда находим:

$$\Phi(u') = \frac{\Delta u'^2}{2} - \frac{\Delta}{2} (u' - \lambda N')^2 = \frac{\Delta}{2} \lambda N' (2u' - \lambda N').$$

После подстановки в (III, 83') и интегрирования получим:

$$|T_{\lambda} (N')| = C \int_{-u'_{1}+\lambda N'}^{u'_{1}} \cos \pi \Delta N' (2u' - \lambda N') du' =$$
$$= C \frac{\sin \left[\pi N' \Delta \left(\lambda N' - 2u'_{1}\right)\right]}{\pi N' \Delta}.$$

При  $N' \to 0$ , |T(N')| = 1 имеем:

$$C = -\frac{1}{2u_1'};$$

отсюда:

$$|T_{\lambda}(N')| = \frac{\sin\left[\pi N' \Delta \left(2u'_{1} - \lambda N'\right)\right]}{2\pi N' \Delta u'_{1}} \,. \tag{III, 99}$$

После подстановки (III, 99) в (III, 97') находим\*:

$$|T(N')| = \frac{\int_{\lambda_1}^{\lambda_2} \frac{\sin[c_1(1-c_2)\Delta(\lambda)]}{c_1\Delta(\lambda)} d\lambda}{\lambda_2 - \lambda_1}, \quad (III, 100)$$

где

$$c_1 = 2\pi N' u'_1; \qquad c_2 = \frac{1}{2} \frac{N'}{u'_1}.$$

\* Как известно, ЧКХ идеального объектива с круглым входным зрачком выражается формулой:

$$T_{\lambda}(N') = \frac{2}{\pi} \left\{ \arccos \frac{N'_{\lambda}}{2u'_{\rm kp}} - \frac{\lambda N'}{2u'_{\rm kp}} \left[ 1 - \left(\frac{\lambda N'}{2u'_{\rm kp}}\right)^2 \right]^{0.5} \right\},\$$

где  $u'_{\rm кр}$  — апертурный угол объектива. Как видим, формула не удобна для применения при анализе многозвенной системы. Исследования автора показали, что при приближенных расчетах удобно применять формулы (111, 100) и (111, 101) для пространственных частот  $N' < 0.7N'_{\rm пред}$ , где  $N'_{\rm пред} = \frac{2u'_{\rm кр}}{\lambda}$ , при условии, что площади круглого и квадратного зрачков равновелики:

$$\pi u'_{\mathbf{kp}}^{2} = 4 u'_{\mathbf{k}}^{2}; \quad u'_{\mathbf{kp}} = \frac{2}{\sqrt{\pi}} u'_{\mathbf{l}},$$

где  $u'_1$  — апертурный угол, соответствующий квадратному зрачку в формуле (III, 100):

$$c_1 = 2\pi N' u'_1 = \pi \sqrt{\pi} N' u'_{KP}$$
  $c_2 = \frac{1}{2} \frac{N'}{u'_1} = \frac{N'}{\sqrt{\pi} u'_{KP}}$ 

Таким образом, имея для объектива с апертурой  $u'_1$  график продольного хроматизма $\Delta(\lambda)$  и задавшись интересующей нас частотой изображения решетки N' (при условии, что  $N' \ll N_0' = \frac{u_1'}{0.61\lambda_0}$  предельной частоты, разрешаемой идеальным объективом), из (III, 100) вычисляем ФПМ, соответствующую данной частоте N'. Этот расчет выполняется элементарно просто (здесь достаточна точность логарифмической линейки); спектральный интервал  $\lambda_2 - \lambda_1$  делится на k зон  $\Delta \lambda = \frac{1}{k} (\lambda_2 - \lambda_1)$  и суммируется k + 1 соответствующих ординат:

$$|T(N')| = \frac{1}{k+1} \sum_{i=1}^{l=k+1} \left( \frac{\sin\left[c_1\Delta\left(\lambda\right)\left(1-c_2\lambda\right)\right]}{c_1\Delta\left(\lambda\right)} \right)_i. \quad \text{(III, 100')}$$

Заметим, что  $\Phi\Pi M$  безаберрационного объектива ( $\Delta(\lambda) = 0$ ) определится из выражения:

$$|T(N')| = \frac{1}{k+1} \sum_{i=1}^{k+1} (1 - c_2 \lambda)_i.$$
 (III, 101)

При сложном спектральном излучении объекта  $R_{a,\lambda}$  и селективном пропускании объектива из (III,97) и (III, 99) находим\*:

$$|T(N')| = \frac{\int_{\lambda_1}^{\lambda_2} \tau_{\lambda} R_{a,\lambda}}{\int_{\lambda_1}^{\lambda_2} \tau_{\lambda} R_{a,\lambda}} \frac{\sin [c_1 (1 - c_2 \lambda) \Delta(\lambda)]}{c_1 \Delta(\lambda)} d\lambda$$
(III, 101')

Как показали численные исследования, точность аппроксимации повысится, если в выражение с<sub>2</sub> ввести поправочный сомножитель с:

$$\overline{c}_{2} = \overline{c} c_{2} = \frac{\overline{c}N'}{\sqrt{\pi} u'_{\mathrm{KP}}}$$

где для идеального в дифракционном смысле объектива  $\overline{c}=1,06$  при круглом зрачке:

$$T_{\lambda} (N') = 1 - \overline{c}_{\mathbf{2}} \lambda = 1 - \frac{\overline{c}}{\sqrt{\pi}} \frac{\lambda N'}{u'_{\mathrm{KP}}}$$

Для реального, но достаточно хорошо корригированного объектива c > 1,06. В более общем случае для реального объектива

$$T(N') = 1 - AN' + BN'^2$$

где

$$A = \frac{\overline{c}\lambda}{\sqrt{\pi} u'_{\rm KD}} \,.$$

\* Если как оптическая система, так и приемник изображения селективного действия, то вместо  $\tau_{\lambda}$  следует принять  $\tau_{\lambda}\left(\frac{S_{\lambda}}{S_{0,\lambda}}\right)$ , где  $\frac{S_{\lambda}}{S_{0,\lambda}}$  относительные величины спектральной чувствительности приемника, приведенные к максимальной их величине  $S_{0,\lambda}$  в интервале от  $\lambda_1$  до  $\lambda_2$ . Рассмотрим пример расчета ФПМ объектива ахромата с фокусным расстоянием 500 *мм* и относительным отверстием 1 : 5 ( $u'_1 = 0,1$ ), обладающего нормальным вторичным спектром, в области от линии G' до линии C. В качестве основной линии, вблизи которой находится точка перегиба кривой вторичного спектра, примем  $\lambda_0 = 0,560 \cdot 10^{-3}$  *мм*; спектральный интервал от  $\lambda_1 = 0,440 \cdot 10^{-3}$  *мм* до  $\lambda_2 = 0,660 \times 10^{-3}$  *мм* разделим на равные зоны  $\Delta \lambda = 0,020 \cdot 10^{-3}$  *мм*.

В табл. III, 4 приведены результаты расчетов, выполненных для частот изображений  $N' = 50 \text{ мm}^{-1} \text{ и } N'_0 = 293 \text{ мm}^{-1}$  без светофильтра и со сложным светофильтром C3C10 + ЖС18 при равноэнергетическом источнике света.

Рассмотрение данных таблицы и результирующих значений, приведенных в последней строке, показывает, что КПМ безаберрационной системы в белом свете равен |T(N')| = 0,86 (столбец 3 таблицы) при частоте  $N' = 50 \text{ мм}^{-1}$ ; при частоте  $N'_0 = 293 \text{ мм}^{-1}$  величина |T(N')| = 0,19 (столбец 5 таблицы). В столбцах 4 и 6 приведены соответствующие значения ФПМ при нормальном вторичном спектре ахромата (данные спектра приведены в столбце 2 таблицы). Как видим, хроматическая аберрация объектива при освещении белым светом приводит к значительному снижению ФПМ объектива: до значения |T(N')| = 0,33 при  $N' = 50 \text{ мм}^{-1}$  и до |T(N')| = 0,06 при  $N'_0 = 293 \text{ мм}^{-1}$ . В нашем примере взят объектив с относительным отверстием 1 : 5; очевидно, для светосильных объективов влияние хроматизма оказывается еще более существенным. Картина значительно улучшается при применении светофильтра: величина ФПМ при частотах  $N' = 50 \text{ мм}^{-1}$ 

Д. Гальперн, решавший эту задачу для визуальных систем, показал, что вследствие селективности глаза хроматические аберрации объектива меньше влияют на ФПМ.

**4.** Функции передачи модуляций реальных объективов. На ФПМ реальных объективов влияют не только их монохроматические и хроматические аберрации, но и ряд факторов, связанных с технологией изготовления, сборки и точностью установки в соответствующей аппаратуре.

Неоднородность оптических стекол, местные погрешности чистоты обработки преломляющих и отражающих поверхностей, нарушение микрогеометрии поверхности в результате ее просветления, «паразитное» светорассеяние от оптических поверхностей, торцов и фасок линз, погрешности центрировки поверхностей объективов при их сборке и т. п. — все это вызывает дополнительное снижение ФПМ объективов, а следовательно, качества оптического изображения.

Наш опыт в области объективостроения показал, что при переходе к промышленному выпуску фотографическая разрешающая сила объектива обычно снижается в лучшем случае приблизительно на 10% по сравнению с разрешающей силой эталонных опытных образцов. При недостаточно строгом контроле всего процесса изготовления и сборки отклонение может достигать 20% и более. Оценка качества серийных объективов и их отбраковка методом измерения ФПМ представляется нам весьма рациональной и менее трудоемкой, чем опреде-

| •  |
|----|
| •  |
| -  |
|    |
| _  |
| _  |
|    |
|    |
| 3  |
| -  |
| -  |
| -  |
|    |
| -  |
| 5  |
| ~  |
| U. |
| -  |
| 60 |
|    |
| H  |
|    |

## Расчет КПМ объектива в белом свете

| Со светофильтром C3C10 + ЖС18<br>толщиной 1 + 2 мм<br>N' = 50 мм <sup>-1</sup> | $\begin{bmatrix} \tau_{\lambda} & \sin\left[c_{1}\Delta\left(\lambda\right)\left(1-c_{2}\lambda\right)\right] \\ & c_{1}\Delta\left(\lambda\right) \end{bmatrix}$ | 8                                                                                                                        | 0 | 0     | 0     | 0,11  | 0,68  | 0,75  | 0,67  | 0,54  | 0,10  | -0,04  | 0,02  | 0,03   | 1 0,68 |                         |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|-------------------------|
|                                                                                |                                                                                                                                                                   | ۴ペ                                                                                                                       | 7 | 0     | 0     | 0     | 0,19  | 0,80  | 0,87  | 0,78  | 0,64  | 0,39   | 0,22  | 0,18   | 0,00   | $\Sigma \tau_{,} = 4.1$ |
| Без светофильтра<br>N' = 50 жм <sup>-1</sup> N' = 293 ж м <sup>-1</sup>        | = 293 мм <sup>-1</sup>                                                                                                                                            | $\frac{\sin \left[c_1 \Delta \left(\lambda\right) \left(1-c_2 \lambda\right)\right]}{c_1 \left(\Delta\right) \lambda}$   | 6 | 0,011 | 0,014 | 0,013 | 0,017 | 0,208 | 0,205 | 0,180 | 0,149 | 0,014  | 0,015 | 0,002  | 0,006  | 0,06                    |
|                                                                                | N <sup>0</sup>                                                                                                                                                    | 1 — c, λ                                                                                                                 | ъ | 0,355 | 0,327 | 0,297 | 0,268 | 0,238 | 0,209 | 0,180 | 0,150 | 0, 120 | 0,092 | 0,063  | 0,033  | 0,19                    |
|                                                                                | = 50 . <i>M.M<sup>-1</sup></i>                                                                                                                                    | $\frac{\sin \left[c_1 \Delta \left(\lambda\right) \left(1 - c_2 \lambda\right)\right]}{c_1 \Delta \left(\lambda\right)}$ | 4 | 0,001 | 0,121 | 0,052 | 0,602 | 0,854 | 0,860 | 0,860 | 0,847 | 0, 251 | 0,210 | 0, 121 | 0,075  | 0,33                    |
|                                                                                | , N                                                                                                                                                               | $1-c_2 \lambda$                                                                                                          | 3 | 0,890 | 0,885 | 0,880 | 0,875 | 0,870 | 0,865 | 0,860 | 0,855 | 0,850  | 0,845 | 0,840  | 0,835  | 0,86                    |
|                                                                                | Δ(λ)                                                                                                                                                              |                                                                                                                          | 2 | 0,34  | 0,20  | 0,12  | 0,06  | 0,02  | 0,01  | 0,00  | 0,01  | 0,08   | 0,16  | 0,28   | 0,44   | 1                       |
|                                                                                | Лики                                                                                                                                                              |                                                                                                                          | - | 0,440 | 0,460 | 0,480 | 0,500 | 0,520 | 0,540 | 0,560 | 0,580 | 0,600  | 0,620 | 0,640  | 0,660  | [T (N')]                |

ление их фотографической разрешающей силы. Эта методика оценки является также весьма действенной при установлении требуемых точностей фокусировки объективов в фотоаппаратах. Подобные задачи возникают, например, при необходимости контроля температурной и барической дефокусировок изображений относительно приемника.

Задача решается применением формул (III,83) и (III, 83'). Последняя имеет особенно простой вид при симметричной функции волновой аберрации L(u'), что, в частности, соответствует изображению точки на оптической оси. Например, в плоскости приемника, смещенного на величину  $\Delta$  относительно плоскости Гаусса, волновая аберрация объектива L выражается следующей формулой (см. главу II, формулу (II, 106) и последующие при сферической аберрации третьего  $\delta s'_{111}$  и пятого  $\delta s_V'$ ) порядков:

$$L = \frac{1}{2} \Delta u'^{2} + \frac{1}{4} \delta s'_{\rm III} u'^{2} + \frac{1}{6} \delta s'_{\rm V} u'^{2}.$$

Воспользовавшись этой формулой и построив функцию  $\Phi(u') = L(u') - L(u - \lambda N')$ , из выражения (III, 83') непосредственно определяем величину  $\Phi \Pi M$  объектива.

Для простой дефокусировки ∆ имеем:

$$L = \frac{1}{2} \Delta u'^{2}; \quad \Phi(u') = \frac{1}{2} \Delta \lambda N' (2u' - \lambda N');$$

после подстановки в (III, 83') и интегрирования приходим к формуле, аналогичной (III, 99):

$$|T(N')| = \frac{\sin\left[\pi N'\Delta\left(2u'_1 - \lambda N'\right)\right]}{2\pi\Delta N'u'_1} = \frac{\sin\left[c_1\Delta\left(1 - c_2\lambda\right)\right]}{c_1\Delta}, \quad \text{(III, 102)}$$

где  $c_1 = 2\pi N' u_1'; \quad c_2 = \frac{1}{2} \frac{N'}{u_1'}$ . Конечно, и в этих случаях спра-

ведливо замечание, приведенное на стр. 282-283.

Например, при относительном отверстии объектива 1 : 5 (u' = 0,1) и  $\lambda = 560$  мнм для пространственной частоты N' = 50 мм<sup>-1</sup> и при $\Delta =$ = 0 из (III, 102) находим КПМ: |T(N')| = 0,86; при  $\Delta = 0,1$  мм уже имеем |T(N')| = 0,13 (!).

Существует много экспериментальных способов непосредственного и косвенного определения ФПМ реальных объективов. Прямой экспериментальный метод определения ФПМ заключается в том, чтобы образовать изображение синусоидальной миры и затем сканировать полученное синусоидальное изображение с помощью микрофотометра; функция передачи модуляции определяется в результате фотометрирования из отношений коэффициентов модуляции изображения и объекта (см. III, 68 и III, 72).

Установка для проведения таких измерений содержит синусоидальную миру, испытуемый объектив и сканирующую щель, перемещающуюся в плоскости изображения синусоидальной миры испытуемого объектива. Свет, прошедший через щель, регистрируется фотоэлементом, соединенным с самописцем. Поскольку проходящий через сканирующую щель свет интегрируется по всей длине щели, здесь может быть применена мира, выполненная в виде маски с прозрачной дорожкой переменной ширины. Очевидно, если в подобной установке синусоидальную миру заменить узкой щелью, самописец будет вычерчивать функцию рассеяния объектива.

Другой способ определения ФПМ состоит в том, что на неподвижный синусоидальный тестобъект проецируется изображение узкой щели и измеряется весь прошедший световой поток; затем тест сдвигается на  $\frac{\pi}{2}$  и прошедший световой поток измеряется вторично; по результатам определяются функция передачи модуляции |T(N')| и функция передачи фазы  $|\varphi(N')|$ . Однако все эти способы, давая хорошие результаты, обладают невысокой производительностью.

Более распространенные способы основаны на движении ряда синусоидальных тестобъектов с такой скоростью, чтобы синусоидальные кривые, представляющие распределение освещенности в изображении, или даже сама частотно-контрастная характеристика (ФПМ) могли быть записаны с помощью осциллографа.

Большое влияние на точность результатов оказывают погрешности изготовления синусоидальных мир. Поэтому более предпочтительны измерения, в которых вместо синусоидальных мир применяют прямоугольные миры, изготовление которых не вызывает затруднений. Эти миры также могут быть использованы для определения ФПМ.

В результате быстрого движения П-образного теста с фотоэлемента, стоящего позади сканирующей щели, снимается сигнал переменного тока. Высшие гармоники его могут быть отфильтрованы с помощью узкополосных электрических фильтров, включаемых перед осциллографом; результирующий сигнал на экране осциллографа оказывается таким же, как если бы был применен синусоидальный тестобъект.

Установки такого типа подчас имеют сложную конструкцию, сложную электрическую схему (узкополосный фильтр, усилитель и т. п.), содержат помимо испытуемого объектива дополнительные оптические компоненты (коллиматор для изображения тестобъекта в бесконечность, микрообъектив для увеличения изображения, систему призм) и обычно требуют специального изготовления высококачественных тестобъектов.

Наиболее подходящим тестобъектом является радиальная П-образная прямоугольная (см. рис. III, 4) или радиальная мира (см. рис. III, 13). Она может быть приведена во вращение, после чего ток фотоэлемента можно профильтровать электрическими методами. Можно также получать требуемые пространственные частоты, изменяя скорость движения одного и того же тестобъекта так, чтобы частота настройки фильтра соответствовала сначала основной пространственной частоте, затем второй гармонической составляющей и т. д.

Таким образом, электрические способы в принципе позволяют пользоваться прямоугольными мирами, а на выходе получать сигналы, эк-
вивалентные таким, как если бы был применен синусоидальный тестобъект.

Если пользоваться прямоугольной мирой, то на выходе электронного устройства получается синусоидальный сигнал в результате двойного интегрирования фототока. Действительно, разложив прямоугольные импульсы фототока в ряд Фурье (рис. III, 14, *a*), можно записать:



Рис. III, 13. Мира радиальная



Рис. III, 14. Получение синусоидального сигнала из прямоугольного путем двойного интегрирования фототока

$$F(N', x') = \frac{2}{\pi} \left[ \cos 2\pi N' x' - \frac{1}{3} \cos (3 \cdot 2\pi N' x') + \frac{1}{5} \cos (5 \cdot 2\pi N' x') - \cdots \right] =$$
$$= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} (-1)^{n+1} \cos \left[ (2n-1) 2n N' x' \right].$$

После первого интегрирования получается (рис. III, 14, б):

$$F_{1}(N', x') = \frac{1}{\pi^{2}N'} \left[ \sin 2\pi N' x' - \frac{1}{3^{2}} \sin (3 \cdot 2\pi N' x') + \frac{1}{5^{2}} \sin (5 \cdot 2\pi N' x') - \cdots \right] =$$
$$= \frac{1}{\pi^{2}N'} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{2}} (-1)^{n+1} \sin \left[ (2n-1) 2\pi N' x' \right].$$

Наконец, после второго интегрирования получаем синусоидальный сигнал (рис. III, 14, в):

$$F_{2}(N', x') = \frac{1}{2\pi^{3}N'^{2}} \left[ -\cos 2\pi N' x' + \frac{1}{3^{3}} \cos (3 \cdot 2\pi N' x') - \frac{1}{5^{3}} \cos (5 \cdot 2\pi N' x') \dots \right] =$$
$$= \frac{1}{2\pi^{3}N'^{2}} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^{3}} \cos \left[ (2n-1) 2\pi N' x' \right].$$

Не останавливаясь на других возможных способах определения ФПМ объективов, укажем лишь, что в некоторых случаях, например при испытании фотографических материалов, пользуются способом непосредственного определения ФПМ, микрофотометрированием изображений П-образных (прямоугольных) решеток разных частот с последующим перерасчетом полученного значения  $T_{\rm np}(N')$  для прямоугольной решетки для значения  $T_{\rm син}(N')$ , соответствующего синусоидальной решетке:

$$T_{\text{cuH}}(N') = \frac{\pi}{4} \left[ T_{\pi p}(N') + \frac{1}{3} T_{\pi p}(3N') - \frac{1}{5} T_{\pi p}(5N') + \frac{1}{7} T_{\pi p}(7N') - \cdots \right]$$
(III, 103)

Это выражение иногда называют формулой Кольтмана.

За последние годы накопился расчетный и экспериментальный материал по определению ФПМ объективов различных оптических характеристик и разного назначения. Эти данные будут нами приводиться при описании свойств некоторых конкретных объективов. Приведем здесь для иллюстрации функцию передачи модуляции одного из лучших любительских фотообъективов — объектива «Мир-1» (см. рис. III, 15) (f' = 37 мм; 1 : 2,8;  $2w = 60^{\circ}$ ) для точек поля 0; 10 и 20 мм. Представленные кривые являются иллюстрацией лишь одной из возможных форм представления результатов измерений.

Могут применяться и другие формы представления, позволяющие выделить некоторые выбранные свойства объектива при пренебрежении другими, менее интересными. Например, если рассматривать свойства изображения для одной частоты решетки, то можно построить графики, устанавливающие координаты точек в пространстве изображений, в которых величина |T(N')| имеет максимальное значение; по оси абсцисс откладываются расстояния от нулевой плоскости, а по оси ординат — от центра поля; кривые строятся для меридионального M и сагиттального C сечений отдельно. Подобные графики удобны для оценки астигматизма и кривизны поля, но ничего не говорят о величинах контраста и глубине резкости (рис. III, 16).

раста и глубине резкости (рис. III, 16). 5. Качество изображения системы объектив — приемник. Понятие «качество оптического изображения» является весьма широким и емким, в рамках которого не укладывается ни один из предложенных критериев. Более 30 лет назад, когда в оптику были перенесены понятия и методы общей теории связи, казалось, что новый подход к оценке оптического изображения и действия оптических приборов радикально приблизит нас к установлению универсальных и объективных критериев этих качеств. Однако применение общей теории связи в оптике лишь расширило наше понимание проблемы обнаружения и опознавания объектов и деталей в изображении, а в основу оценки последнего была положена функция передачи модуляции оптической системы.



Рис. III, 15. Функции передачи модуляций объектива «Мир-1» для точек поля 0, 10 20 мм (\_\_\_\_\_ меридиональное сечение; ----- сагитальное сечение)



Рис. III, 16. Зависимость положения плоскости максимального контраста  $T_{\rm Makc}$  (N') от расстояния l' от центра поля

Оптическая система стала рассматриваться как фильтр невысоких пространственных частот, так как она дает изображение решеток с частотой, не превышающей частоты, соответствующей разрешающей силе системы.

Свойства фотографического слоя, электронно-оптического преобразователя и других приемников изображений также оказалось возможным (при введении некоторых ограничений) рассматривать при помощи функций передачи модуляции. Зернистая структура фотографического слоя и других приемников изображений рассматривается как оптический шум. В качестве характеристики зернистости может служить ее спектр пространственных частот. Существенно упростилась оценка оптического действия сложной (многозвенной) системы: если известны функции передачи модуляции ее элементов, например системы объектив — приемник, то общая ФПМ всей системы может быть получена простым перемножением ординат элементарных характеристик:

$$T(N')| = |T_1(N')| \cdot |T_2(N')| \dots |T_n(N')|.$$
(III, 104)

В последнем свойстве проявляется основное достоинство этого метода.

В свете новых представлений были даже сделаны попытки «развенчать» классический критерий — разрешающую силу, — игнорируя тот факт, что последняя отнюдь не противоречит этим новым представлениям: разрешающая сила объектива является той предельной пространственной частотой, при которой величина коэффициента передачи модуляции достигает предельно малых значений. Таким образом, классический критерий качества изображения — разрешающая сила по-прежнему оказался пригодным для характеристик различения и распознавания предельно малых деталей объектов. Для оценки возможности распознавания объектов разных размеров необходимо знание оптических свойств объектива в широком спектре пространственных частот — необходимо знание его ФПМ.

Вместе с тем и этот критерий не является однозначным: можно иметь два объектива с близкими и даже одинаковыми кривыми ФПМ, но с существенно различными оптическими качествами. Например, два кинопроекционных объектива с различным качеством хроматической коррекции их аберраций могут обладать одинаковыми ФПМ в белом свете; между тем визуальное рассмотрение проекций изображений миры этими объективами обнаружит различие в хроматической окраске изображаемых деталей.

И все же достаточно глубокие выводы могут быть сделаны непосредственно из анализа функции передачи модуляции. Если, например, характеристика объектива A на низких частотах выше характеристики объектива B, то объектив A будет более резко, чем объектив B, воспроизводить крупные детали.

Иногда оба объектива могут обладать одинаковой разрешающей силой, но иметь существенно различный вид графиков ФПМ, т. е. обладать разными контрастами изображений в диапазоне частот, меньших предельных.

Напрашивается естественное и необходимое условие, которому должен удовлетворять объектив: объектив должен обладать возможно высокими коэффициентами передачи модуляций в пределах того диапазона частот, в котором он работает с данным приемником изображений.

Предложены различные способы количественной оценки качества объектива одним числом. Например, было предложено производить оценку оптической системы с помощью предельной частоты  $N'_1$  (рис. III, 17), определяемой линией  $T_1C$ , ограничивающей такую же площадь  $T_1CN'_1$ , что и действительная кривая A; кривая C имеет постоянный коэффициент передачи модуляции, равный его значению  $T_1$  при нулевой частоте. Однако такой способ оценки в принципе, очевидно, также недостаточен; на том же рисунке проведена кривая ФПМ, относящаяся к некоторому другому объективу B, которая ограничивает такую же площадь, как и кривые A и C, и, следовательно, дает ту же самую величину  $N'_1$ . Вместе с тем, очевидно, кривые A и B характеризуют разные качества объективов: для частот бо́льших  $N'_1$  коэффициенты передачи модуляций, определяемые кривой B, оказываются более высокими.

Было предложено использовать в качестве критерия пространственную частоту  $N'_2$ , при которой коэффициент передачи контраста объектива снижается до предельного значения  $T_2$ , еще обеспечивающего совместно с приемником возможность воспроизведения деталей объекта в рабочем диапазоне частот. Этот критерий несколько лучше соответствует требованиям практики. Не останавливаясь на других предложенных численных критериях, укажем, что до сих пор не удалось удовлетворительно характеризовать кривую ФПМ одним параметром.

По-видимому, удобно для практического пользования характеризовать объектив семейством кривых ФПМ, построенных для разных углов поля зрения, — подобно тому, как это делается при построении кривых разрешающей силы: откладывая по оси абсцисс углы поля зрения wили линейные размеры изображения l', а по оси ординат — простран-



Рис. III, 17. К вопросу оценки ФПМ одним числом



Рис. III, 18. Характеристика объектива по полю семейством кривых ФПМ

ственные частоты N' для данных значений КПМ. Причем целесообразно строить семейство кривых для нескольких значений |T(N')| функций передачи модуляций — 10, 20, 30% и т. д. (рис. III, 18). Подобно тому, как это делается при построении кривой разрешающей силы, следует принимать наименьшее из значений ФПМ для сагиттального и меридионального направлений, определенных как среднее арифметическое из измерений по четырем радиусам поля.

Эта же методика оценки сохраняется и для любой сложной изобразительной системы: если все элементы, составляющие сложную систему, линейны, т. е. если сигнал на выходе каждого элемента пропорционален сигналу на входе, то суммарный КПМ системы определяется перемножением (III, 104) КПМ всех элементов.

#### глава іv

# СВОЙСТВА ОПТИЧЕСКИХ СХЕМ ОБЪЕКТИВОВ РАЗЛИЧНЫХ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК

Каждой оптической схеме объектива присуща определенная область возможных оптических характеристик. Правильный выбор оптической схемы при разработке конкретного объектива имеет решающее значение для успешного решения поставленной задачи.

Логически обоснованный выбор схемы соответственно заданым оптическим характеристикам приобретает особое значение при применении автоматизированных методов коррекции аберраций на ЭВМ: счетная машина выдаст удовлетворительное решение только, если в нее будет введена удачная отправная оптическая схема. Очевидно, роль оптика-разработчика становится при этом особенно ответственной: теоретическая подготовка, интуиция и опыт в области знания оптических свойств различных схем объективов приобретают особое значение.

Вместе с тем разработка конкретного объектива с определенными оптическими характеристиками не является задачей, решающейся однозначно: разработка может выполняться на основе применения различных оптических схем. При этом следует исходить из ряда условий: «патентной чистоты» будущего объектива, конструктивной простоты, технологических особенностей его изготовления, что особенно важно при массовом производстве объектива, когда технико-экономическая эффективность его промышленного изготовления имеет особое значение.

И зарубежная и отечественная литература этой области посвящена лишь вопросам теории и методам расчета оптических систем, понимая под последними методы коррекции аберраций. Разработка удачной оптической схемы по-прежнему остается областью изобретательства, где элементы интуиции и удачи имеют решающее значение.

## § 1. КЛАССИФИКАЦИЯ ОБЪЕКТИВОВ

Классификацию объективов можно проводить по трем основным признакам:

А. По оптическим схемам объективы различаются числом входящих в них линз и компонентов (группсклеенных или близко расположенных линз), разделенных воздушными промежутками, последовательностью расположения положительных и отрицательных линз и компонентов и формой прогиба (конфигураций) тех из линз, которые определяют специфические аберрационные свойства объектива.

Для пояснения сказанного сопоставим оптические схемы простых четырехлинзовых объективов «Орион» и «Ортагоз» (рис. IV, 1). В обоих случаях системы состоят из двух положительных и двух отрицательных линз, в обеих схемах тождественна последовательность расположения положительных и отрицательных линз: снаружи расположены положительные линзы, внутри — отрицательные; в обеих конструкциях апертурная диафрагма расположена внутри системы между ее половинками; обе системы относятся к классу анастиг-



Рис. IV, 1. Оптические схемы объективов «Орион» (а) и «Ортагоз» (б)

матов, близких к симметричным. И тем не менее их оптические схемы принципиально различаются конфигурацией линз, формой их прогиба; в «Орионе» линзы имеют форму менисков, у которых радиусы кривизны преломляющих поверхностей направлены в сторону апертурной диафрагмы; у «Ортагоза» линзы имеют двояковыпуклую и двояковогнутую формы. В первом случае — отчетливо выраженные анастигматические свой-

ства широкоугольной системы, допускающей при сравнительно невысокой светосиле хорошее исправление аберраций по полю; во втором случае — свойства нормального анастигмата, допускающего получение невысокого относительного отверстия при средних величинах углов поля зрения — 50—55°.

Для краткости и удобства шифровки типа объектива (его оптической схемы) последнему обычно присваивается условное наименование. Например, общеизвестны четырехлинзовые трехкомпонентные нормальные анастигматы типа «Индустар»; шестилинзовые четырехкомпонентные светосильные объективы типа «Гелиос»; семилинзовые пятикомпонентные светосильные широкоугольные анастигматы типа «Уран» и т. п.

Б. По оптическим характеристикам — относительному отверстию е, углу поля зрения 2w и фокусному расстоянию f' — различают объективы:

с в е тосильные, у которых относительные отверстия превышают величину 1:2,8 ( $\epsilon > 1:2,8$ );

ши рокоугольные, у которых углы полей Зрения превышают  $60^{\circ}$  ( $2w > 60^{\circ}$ );

длиннофокусные, у которых фокусные расстояния превышают приблизительнот рехкратную величину линейных полей (D' = 2l') изображения (f' > 3D');

нормальные (универсальные), у которых все три характеристики (є; 2*w*; *f*') не достигают указанных значений.

Иногда объективы, сочетающие одну из указанных величин оптических характеристик со сравнительно высокой второй характеристикой, соответственно называют светосильными широкоугольными, светосильными длиннофокусными, широкоугольными светосильными, длиннофокусными светосильными и т. д.

Конечно, предлагаемая классификация условна и ее введение оправдывает себя лишь в том отношении, что упрощает сопоставление характеристик различных объективов.

В. По назначению, т. е. областям применения, различают объективы: фотографические, киносъемочные, аэрофотосъемочные, телевизионные, репродукционные, эпи-, диа- и кинопроекционные, флюорографические, астрофотографические и т. д., а также объективы для невидимых областей спектра — инфракрасной и ультрафиолетовой.

Конечно, этот перечень ни в какой мере не претендует на полноту: здесь упомянуты лишь наиболее распространенные области применения объективов. Подобная классификация, по-видимому, наиболее удобна для их потребителей. Классификация по оптическим схемам предпочтительнее для оптиков-разработчиков.

Объективы различного назначения могут иметь идентичные оптические схемы, но отличаться специфическими оптическими и аберрационными свойствами. Например, ахроматизованными для различных областей спектра применительно к приемникам различной спектральной чувствительности; корригированными для работы в переменных метеорологических условиях и не расстраивающимися при изменении температуры и т.д.

Таким образом, рассмотренные выше признаки классификации оказываются подчас взаимосвязанными.

## § 2. ВОЗМОЖНЫЕ ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОБЪЕКТИВОВ

Даже опытный оптик-разработчик не может с полной достоверностью предвидеть, осуществимы ли оптические характеристики системы, если они близки к предельно возможным, и можно ли при этом достигнуть требуемого качества оптического изображения.

стигнуть требуемого качества оптического изображения. Как у нас, так и за рубежом накоплен в этой области огромный опыт. Созданы разнообразные фотографические системы различной степени сложности, разных оптических схем, обладающие оптическими характеристиками, изменяющимися в широких пределах.

характеристиками, изменяющимися в широких пределах. Уже начинающему оптику-разработчику известно, что основные оптические характеристики объектива находятся в некотором противоречии друг к другу: попытка повышения светосилы системы приводит к необходимости уменьшения ее поля зрения. Увеличение фокусного расстояния вызывает необходимость ограничения двух других оптических характеристик, если при этом соблюдается требование сохранения прочих высоких оптических качеств объектива. С некоторым приближением и условностью можно обобщить наб-

С некоторым приближением и условностью можно обобщить наблюдающуюся взаимозависимость между оптическими характеристиками наилучших фотографических объективов. Эту взаимозависимость, установленную автором еще в 40-х годах [3], назовем с в о й с т в о м и н в а р и а н т н о с т и о п т и ческих характеристик фотографических систем.

Сопоставление оптических характеристик зарекомендовавших себя фотографических систем позволило автору руководствоваться при определении возможных характеристик следующей зависимостью:

$$\varepsilon \cdot \operatorname{tg} w \sqrt{\frac{f'}{100}} = C_m,$$
 (IV, 1)

где  $C_m$  остается постоянной для большой группы объективов. Величина  $C_m$  зависит от фотографической разрешающей способности системы объектив — фотографический слой, от допущенного падения освещенности изображения по полю, от степени сложности (многолинзовости) оптической схемы системы и ряда других условий.

Сопоставление оптических характеристик (f' мм, є и  $2\omega^{\circ}$ ) у современных анастигматов показывает, что величина  $C_m$  колеблется вблизи значений 0,22—0,24, если фокусные расстояния ƒ выражать в миллиметрах. При этом фотографическая разрешающая способность в пределах основной части поля составляет около 25 мм<sup>-1</sup> при применении абсолютно контрастной миры и фотоматериалов с разрешением около 90 мм<sup>-1</sup>; падение освещенности изображения по полю достигает двукратной величины, а у особо широкоугольных объективов — трехчетырехкратного значения; оптические схемы — сложные, состоящие из семи-девяти, а иногда и более линз.

С развитием и совершенствованием объективостроения величина С<sub>т</sub> будет возрастать. Рациональное применение новых оптических стекол и кристаллов, преломляющих поверхностей асферической формы позволит форсировать оптические характеристики объективов без снижения качества изображения, что и приведет к возрастанию численного значения С<sub>m</sub>. В этом смысле величину С<sub>m</sub> можно назвать критерием добротности оптической схемы объектива.

Если оптические характеристики объектива таковы, что ε· tgw<sub>1</sub>/ < 0,24, то его разработка особых трудностей не вызывает, при этом не должны быть предъявлены какие-либо дополнительные конструктивные требования, например, к габаритам или к величинам задних фокальных отрезков объективов.

В табл. IV, 1 приведены характеристики ряда широкоугольных, светосильных и длиннофокусных анастигматов. Они изменяются в широких пределах: фокусные расстояния — от 50 до 750 мм; относи-тельные отверстия — до величин 1:0,6; углы полей зрения — до 120°. Конечно, пределы изменения численных значений в формуле (IV, 1) не следует доводить до абсурда; не задаваться весьма малыми или весьма большими значенияим  $\varepsilon$ ,  $\omega$  и f'.

На рис. IV, 2 приведено семейство кривых, построенных на основании формулы (IV, 1). На кривых нанесены пронумерованные в табл. IV, 1, точки, соответствующие различным оптическим характеристикам реальных объективов.

Мы рассмотрели оптические характеристики объективов, образующих изображение на плоском приемнике, в частности на фотографическом слое.

| Оптические | характеристики | различных | объективов |
|------------|----------------|-----------|------------|
|------------|----------------|-----------|------------|

| № по рис. IV. 2                                                                                                                      | Название объективов                                                                                                                                                                                                                                                                                                                                                                                               | Фирма, страна                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Фокусное рас-<br>стояние f', <i>мм</i>                                                                       | Относительное<br>отверстие в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Угол поля зре-<br>ния 2w <sub>1</sub>                                                                                                                                                        | C <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\-14\\-15\\16\\17\\18\\-19\\20\\21\\22\\23\\24\\25\\26\\27\end{array}$ | «Юпитер-3»<br>«Биотар»<br>«Уран-27»<br>«Эрностар»<br>«Экспресс»<br>«Тахон»<br>F-95<br>PФ-102<br>«Ксенар»<br>«Анастигмат»<br>«Дагор»<br>«Руссар-25»<br>«Спутник-1»<br>«Орион-1»<br>«Топар»<br>«Авиотар»<br>«Авиотар»<br>«Авиотар»<br>«Ангулон»<br>«Монтар»<br>«Ангулон»<br>«Мифрагон»<br>«Инфрагон»<br>«Уран-12»<br>«Уран-16»<br>«Радон-2»<br>«Искра-2»<br>К-178<br>«Аэро-Эктар»<br>«Ксенон»<br>«Сиук-спид-панхро» | ГОИ, СССР<br>«Цейсс», ГДР<br>ГОИ, СССР<br>«Эрнеманн», ФРГ<br>«Росс», Англия<br>«Астро», ГДР<br>Англия<br>ГОИ, СССР<br>«Шрейдер», ФРГ<br>«Кодак», США<br>«Цейсс», ГДР<br>ЦНИИГАИК, СССР<br>ГОИ, СССР<br>«Цейсс—Оберкохен»,<br>ФРГ<br>«Вильд», Швейцария<br>«Вильд», Швейцария<br>«Цейсс—Оберкохен»,<br>ФРГ<br>ГОИ, СССР<br>ГОИ, СССР<br>ГОИ, СССР<br>ГОИ, СССР<br>ГОИ, СССР<br>ГОИ, СССР<br>ГОИ, СССР<br>«Фейрчайльд», США<br>«Кодак», США | $\begin{array}{c} 50\\ 50\\ 100\\ 100\\ 100\\ 100\\ 210\\ 300\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 2$ | 1:1,5<br>1:1,4<br>1:2,5<br>1:1,8<br>1:4,1<br>1:2,5<br>1:2,1<br>1:3,5<br>1:4,5<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:5,6<br>1:5,6<br>1:5,6<br>1:5,6<br>1:2,5<br>1:3,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,6<br>1:2,6<br>1:2,6<br>1:5,6<br>1:2,5<br>1:2,5<br>1:2,6<br>1:2,6<br>1:5,6<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,3<br>1:6,5<br>1:6,6<br>1:5,6<br>1:5,6<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,6<br>1:5,6<br>1:5,6<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,6<br>1:5,6<br>1:2,5<br>1:2,6<br>1:2,6<br>1:2,6<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,6<br>1:5,6<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5 | $\begin{array}{c} 46\\ 46\\ 60\\ 42\\ 80\\ 22\\ 45\\ 102\\ 55\\ 60\\ 78\\ 110\\ 90\\ 62\\ 62\\ 70\\ 92\\ 40\\ 95\\ 95\\ 95\\ 95\\ 30\\ 31\\ 61\\ 13\\ 93\\ 52\\ 48\\ 119\\ 80\\ \end{array}$ | $\begin{array}{c} 0,21\\ 0,22\\ 0,24\\ 0,22\\ 0,21\\ 0,20\\ 0,22\\ 0,21\\ 0,20\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,23\\ 0,22\\ 0,23\\ 0,22\\ 0,23\\ 0,21\\ 0,21\\ 0,21\\ 0,21\\ 0,21\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,24\\ 0,22\\ 0,21\\ 0,21\\ 0,24\\ 0,22\\ 0,21\\ 0,21\\ 0,24\\ 0,22\\ 0,21\\ 0,21\\ 0,21\\ 0,22\\ 0,21\\ 0,21\\ 0,22\\ 0,21\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,21\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\ 0,22\\$ |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   | VIII.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

За последние годы получили развитие объективы систем автоматического слежения, улавливающие излучаемые объектами световые сигналы с помощью приемников радиации, чувствительных в разных областях оптического спектрального диапазона. В подобных оптических системах, как и в светооптических системах иного назначения, обычно не требуется формирования изображений объектов, а необходима лишь передача (канализация) на приемник светового потока, поступающего во входной зрачок объектива. Их возможные оптические характеристики определяются на основе общих свойств световых трубок (глава I).

В середине 50-х годов автором была сформулирована теорема [4] — обобщенный инвариант для световых трубок конечных размеров, явив-

шаяся обобщением инварианта Штраубеля (1902) для трубок бесконечно малого сечения (см. рис. I, 1):

$$n_1^2 \cos i_1 dS_1 d\Omega_1 = n_2^2 \cos i_2 dS_2 d\Omega_2 = \cdots = d^2 I$$
, (IV, 2)



Рис. IV, 2. Диаграмма возможных оптических характеристик объективов

где  $n_1$ ,  $n_2$ , ... — показатели преломления оптических сред; в формуле (I, 1) они отсутствовали, так как формула была написана для одной оптической среды.

Основное свойство световой трубки — сохранять на всем ее протяжении световой поток, если не считать потерь потока вследствие поглощения и рассеяния средой, в которой трубка образована.



Рис. IV, 3 Световая трубка конечных размеров

Эти представления можно распространить на световую трубку конечных размеров; она должна иметь конечные величины сечений  $\Delta S$  и  $\Delta S'$  и конечные телесные углы ΔΩ и  $\Delta \Omega'$  (рис. IV, 3); широкие пучки лучей, проходящие через все точки  $O_1, O_2, O_3 ...$ сечения  $\Delta S$ , нигле не экранироваться должны (виньетироваться) светопроводящей системой. Закон сохранения потока должен выполняться для любого сечения AA' или BB' световой трубки; некоторые рационально раз-мещенные экраны с отверстиями CC', DD', и т. п. должны исключать возможность попадания на поверхность  $\Delta S'$  посторонних лучей, не излучаемых поверхностью ∆S.

Такое определение, очевидно, позволяет рассматривать оптическую гакое определение, очевидно, позволяет рассматривать оптическую систему как разновидность световой трубки конечных размеров, у ко-торой сечения  $\Delta S$  и  $\Delta S'$  — оптически сопряженные. Рассматривая световой луч как ось элементарной световой трубки, можно к каждой из них применить инвариант Штраубеля (IV, 2). Пусть в окрестностях точки A, выбранной на поверхности  $\Delta S$ , расположена элементарная площадка  $dS_A$  (рис. IV, 4), образующая с элементом  $dS'_{A'}$ , расположен-



Рис. IV, 4. К формулировке обобщенного инварианта для световых трубах конечных размеров

ным на поверхности ∆S', элементарную световую трубку. Воспользовавшись (IV, 2), имеем:

$$d^{2}I_{A, A'} = n^{2}dS_{A}d\Omega_{A, A'}\cos i_{A, A'} = n'^{2} dS'_{A'}d\Omega'_{A, A'}\cos i'_{A, A'}.$$

Для совокупности элементарных световых трубок, образующих трубку конечных размеров, необходимо функцию *I* интегрировать по всей поверхности  $\Delta S$  и в пределах конечного телесного угла  $\Delta \Omega$ :

$$I = n^2 \int_{\Delta S} dS \int_{\Delta \Omega} \cos i d\Omega;$$

индексы А и А' при такой записи писать излишне. На основании принципа обратимости хода лучей, рассматривая поверхность ∆S' как излучающую, можно написать аналогичное выражение; в результате получим:

$$I = n^{2} \int_{\Delta S} dS \int_{\Delta \Omega} \cos i d\Omega = n^{\prime^{2}} \int_{\Delta S^{\prime}} dS^{\prime} \int_{\Delta \Omega^{\prime}} \cos i^{\prime} d\Omega^{\prime}. \quad (IV, 3)$$

Не останавливаясь здесь на анализе этого выражения [4], укажем, что для плоских пучков конечной ширины можно написать:

$$n \int_{\Delta l} dl \int_{\Delta u} \cos i du = n' \int_{\Delta l'} dl' \int_{\Delta u'} \cos i du', \qquad (IV, 3')$$

где сечения  $\Delta l$  и  $\Delta l'$  световой трубки могут быть как оптически сопряженными, так и не сопряженными.

Примером такой трубки является светооптическая схема (рис. IV, 5), нашедшая широкое распространение во многих проекционно



FILINUANUK LUCINU

Рис. IV, 5 Светооптическая система — пример световой трубки конечных размеров

осветительных приборах. Источник света  $\Delta l$  изображается во входной зрачок объектива. Сечение  $\Delta l$  не сопряжено с сечением  $\Delta l'$  проекционного окна. Через каждую точку сечения  $\Delta l'$  проходят лучи, вышедшие из всех точек сечения  $\Delta l$ , т. е. здесь соблюдены все условия построения световой трубки.

Можно доказать [4], что для световой трубки аксиально-симметричной структуры,

у которой сечения  $\Delta l$  и  $\Delta l'$  малы по сравнению с длиной трубки и расположены перпендикулярно оси симметрии (оптической оси), из (IV, 3') следует:

$$n \cdot \Delta l \cdot \sin u = n' \cdot \Delta l' \cdot \sin u'. \qquad (IV, 4)$$

Частным следствием нашего инварианта является условие синусов Аббе (см. главу II), в котором элементы  $\Delta l$  и  $\Delta l'$  оптически сопряжены.

Световая трубка, иллюстрирующая инвариант (IV, 4), приведена на рис. IV, 6. Здесь представлена схема следящей системы. Если взять



Рис. IV, 6. Оптическая схема следящей системы

сечение  $\Delta l = a$  в плоскости входного зрачка с проходящим через его центр главным лучом, образующим угол  $\omega$  с оптической осью, и второе сечение  $\Delta l' = l'_{np}$  в плоскости приемника радиации, из (IV, 4) имеем:

$$a \sin \omega = l'_{np} \sin u'_{np} \,. \tag{IV, 4'}$$

Формула устанавливает предельную взаимозависимость между оптическими характеристиками проекционных систем: диаметром (2*a*) входного зрачка, полем зрения (2*w*) объектива и размерами (2*l'*<sub>пр</sub>) приемника (или проецируемого фильма). При этом обычно принимают, что числовая апертура sin  $u'_{\rm np} = 0,7-0,8$ , так как дальнейшее увеличение значения sin  $u'_{\rm np}$  вызывает практически непреодолимые трудности. Например, японский диапроектор «Кабимат» («Cabimat») имеет большой полезный световой поток (500 *лм*) при источнике света — электрической лампе 110 *B* 300 *Bm* с размером светящегося тела 9,5 × 9,5 *мм*; кадровое окно 35 × 23 *мм*. Фокусное расстояние объектива 75 *мм*; относительное отверстие 1 : 2,5. Нетрудно видеть, что все параметры светооптической системы диапроектора весьма рационально согласуются; как следует из (IV, 4):

 $l_{\text{MCT}} \sin u_{\text{MCT}} = l' \sin u'_{\text{OG}},$ 

где  $l_{\text{ист}} = \frac{9,5}{2}$  мм;  $\sin u_{\text{ист}} = 0,7; \ l' = \frac{1}{2} \cdot 35 = 17,5$  мм.

Отсюда находим числовую апертуру проекционного объектива:

sin u'<sub>об</sub> = 0,19, или 1:2,6.

#### § 3. УНИВЕРСАЛЬНЫЕ ОБЪЕКТИВЫ

Это — наиболее обширная группа объективов, оптические характеристики которых имеют средние значения: относительные отверстия не превышают 1 : 2,8 при углах полей зрения около 50—60°.



Рис. IV, 7. Схема анастигмата «Триплет»

Из объективов этой группы наибольшее распространение получили трехлинзовые объективы «Триплет», изобретенные английским оптиком Г. Тейлором в 1894 году, и их модификации — четырехлинзовые объективы «Тессар», изобретенные немецким оптиком П. Рудольфом в 1902 году.

За последние полвека объективы «Триплет» (рис. IV, 7, *a*) под разными названиями и в различных вариантах стали предметом массового производства почти всех оптических фирм мира. При исключительной простоте оптической схемы — шесть преломляющих поверхностей и два воздушных промежутка между линзами — оказывается возможным создание простейшего анастигмата, в котором исправлены все аберрации: как монохроматические, так и хроматические, а при необходимости, как показали исследования автора, могут быть одновременно корригированы и аберрации термооптические. Подбор марок оптических стекол при разработке триплета имеет очень важное значение: выбор стекол в большой степени предопределяет пределы поля зрения и светосилы объектива.

До появления сверхтяжелых кронов (СТК) типа лантановых стекол считалось возможным создание триплетов с отверстиями до 1 : 4— 1 : 3,5 при углах поля зрения соответственно 55—50°. С появлением оптических стекол типа СТК были созданы триплеты с отверстиями до 1 : 3—1 : 2,8 при тех же углах поля зрения. Однако разрешающая сила этих объективов на стандартном фотографическом материале (разрешающем около 90 мм<sup>-1</sup>) обычно невелика: составляет около 30 мм<sup>-1</sup> в центре поля со снижением до 15—10 мм<sup>-1</sup> по полю при фокусных расстояниях объектива около 100 мм.

Сравнительная простота оптической схемы триплета сделала возможной разработку теории этого объектива. Известно несколько теорий расчета триплета, предложенных, в частности, Г. Слюсаревым [16], М. Береком [2], А. Кербером, Д. Волосовым и другими. Теория триплета является тем более общей, чем большее число условий оказывается выполненным при выборе основных конструктивных параметров системы.

Задача расчета триплета сводится нами к решению десяти уравнений, выражающих условия исправления пяти монохроматических аберраций третьего порядка, двух хроматических аберраций, одной термооптической аберрации (положения изображения) и двух условий габаритного характера. Для выполнения этих условий в триплете имеется 17 параметров: пять внешних элементов ( $\varphi_1$ ,  $\varphi_2$ ,  $\varphi_3$ ,  $d_1$ ,  $d_2$ ), три радиуса кривизны преломляющих поверхностей тонких линз, шесть оптических ( $n_1$ ,  $n_2$ ,  $n_3$ ,  $v_1$ ,  $v_2$ ,  $v_3$ ) и три термооптических ( $V_{0,1}$ ,  $V_{0,2}$ ,  $V_{0,3}$ ) постоянных стекол (см. II, 341).

Следует учесть, что параметры стекол n, v и  $V_0$  не полноценны в математическом смысле, так как они не могут иметь любые численные значения. Кроме того, решение задачи на основе теории аберраций третьего порядка является лишь первым приближением, приводящим к вариантам систем, обладающих различными аберрациями высших порядков. Представляется рациональным лишь семь констант стекол принять в качестве независимых параметров системы  $n_1$ ,  $n_2$ ,  $n_3$ ,  $v_1$ ,  $v_3$ ,  $V_{0,1}$  и  $V_{0,3}$ .

Формулируем семь из названных выше десяти условий; остальные три, предусматривающие исправление сферической аберрации, комы и астигматизма третьего порядка, рационально выделить особо, поскольку выполнение их при определенных уже величинах внешних элементов триплета достигается прогибом линз триплета, т. е. нахождением радиусов кривизны преломляющих поверхностей.

Упомянутые выше семь условий, написанные в предположении, что фокусное расстояние триплета равно единице (f' = 1), следующие:

1. Условие масштаба:

$$\varphi_1 + h_2 \varphi_2 + h_3 \varphi_3 = 1,$$
 (IV, 5)

где  $h_2$  и  $h_3$  — высоты пересечения первым параксиальным лучом главных плоскостей второй и третьей линз (см. рис. IV, 7,  $\sigma$ ); при этом положено, что  $h_1 = 1$ .

2. Условие исправления кривизны поверхности изображения (условие Петцваля):

$$\frac{\varphi_1}{n_1} + \frac{\varphi_2}{n_2} + \frac{\varphi_3}{n_3} = S_{\rm IV} \,. \tag{IV, 6}$$

3. Условие, предусматривающее возможность приближенного исправления дисторсии триплета:

$$d_1\varphi_1 - d_2\varphi_3 = \theta, \qquad (IV, 7)$$

где  $\theta$  — параметр, величина которого близка к нулю и вариация которого изменяет величину дисторсии.

4. Условие исправления хроматической аберрации положения:

$$\frac{\varphi_1}{v_1} + \frac{h_2^2 \varphi_2}{v_2} + \frac{h_3^2 \varphi_3}{v_3} = -S_{l, xp}.$$
 (IV, 8)

5. Условие, предусматривающее возможность исправления хроматизма увеличения в предположении, что апертурная диафрагма расположена вблизи второй линзы:

$$\frac{y_{1}\varphi_{1}}{v_{1}} + \frac{h_{3}y_{3}\varphi_{3}}{v_{3}} = -S_{II, xp}.$$
 (IV, 9)

6. Условие (не всегда обязательное) заданного рабочего расстояния объектива, т. е. расстояния от последней линзы до фокальной плоскости:

$$s' = h_{\rm s} \,. \tag{IV, 10}$$

7. Условие исправления термооптической аберрации положения (см. II, 332):

$$\frac{T_1}{\Delta t} = \varphi_1 V_{0,1} + h_2^2 \varphi_2 V_{0,2} + h_3^2 \varphi_3 V_{0,3} + A = 0, \quad (IV, 11)$$

 $A = \left[ \varphi_{1}^{2} d_{1} + (\varphi_{1} + h_{2} \varphi_{2})^{2} d_{2} \right] \gamma^{*}.$ 

Здесь  $\gamma^*$  — термический коэффициент линейного расширения материала корпуса объектива. Если механическое устройство, связывающее объектив с плоскостью приемника изображений, обеспечивает неизменность расстояния объектива от приемника при изменении температуры, то для осуществления эффекта температурной нерасстраиваемости следует положить  $T_1 = 0$ .

Решим систему уравнений (IV, 5)—(IV, 11).

Воспользовавшись формулой параксиальной оптики:

$$\varphi_1 = \frac{1 - h_2}{d_1} \tag{IV, 12}$$

и приняв во внимание, что

$$d_2 = \frac{h_2 - h_3}{\varphi_1 + h_2 \varphi_2}$$
, (IV, 13)

после подстановки в (IV, 7) находим:

$$(1 - h_2 - \theta) \varphi_1 + h_2 (1 - h_2 - \theta) \varphi_2 - (h_2 - h_3) \varphi_3 = 0.$$
 (IV, 14)

Уравнение (IV, 14) удобно решается совместно с (IV,5) и (IV,6) относительно  $\varphi_1$ ,  $\varphi_2$ , и  $\varphi_3$ . Определитель системы этих трех уравнений преобразуется к виду:

$$D = h_2 \left( 1 - h_3 - \theta \, \frac{h_3}{h_2} \right) \left( \frac{h_2}{n_1} - \frac{1}{n_2} \right).$$
 (IV, 14')

Соответственно находим:

$$D_{\varphi_2} = (1 - h_2 - \theta) \left( \frac{h_2}{n_1} - \frac{1}{n_2} \right);$$
 (IV, 14")

отсюда

$$\varphi_{3} = \frac{D_{\varphi_{3}}}{D} = \frac{1 - h_{2} - \theta}{h_{2} \left(1 - h_{3} - \theta \frac{h_{3}}{h_{2}}\right)}.$$
 (IV, 15)

Зная ф<sub>3</sub>, последовательно имеем:

$$\varphi_{2} = \frac{1 - n_{1}S_{IV} - \left(h_{3} - \frac{n_{1}}{n_{3}}\right)\varphi_{3}}{h_{2} - \frac{n_{1}}{n_{2}}}; \qquad (IV, 16)$$

$$\varphi_1 = 1 - h_2 \varphi_2 - h_3 \varphi_3, \qquad (IV, 17)$$

Из (IV, 12) и (IV, 7) определяем:

$$d_1 = \frac{1 - h_2}{\varphi_1};$$
 (IV, 18)

$$d_2 = \frac{1 - h_2 - \theta}{\varphi_3} \,. \tag{IV, 19}$$

Итак, пять внешних элементов триплета:  $\varphi_1$ ,  $\varphi_2$ ,  $\varphi_3$ ,  $d_1$  и  $d_2$  (или  $h_2$  и  $h_3$ ) — удовлетворяют четырем условиям: (IV,5) (IV, 6), (IV, 7) и (IV, 10). Остается удовлетворить условиям (IV, 8), (IV, 9) и (IV, 11). Из элементарных преобразований находим высоты  $y_1$  и  $y_3$  пересече-

Из элементарных преобразований находим высоты y<sub>1</sub> и y<sub>3</sub> пересечения вторым параксиальным лучом главных плоскостей первой и третьей линз (см. рис. IV, 7, 6):

$$y_1 = \frac{d_1}{h_2}; \quad y_3 = -\frac{d_2}{h_2}.$$
 (IV, 20)

После подстановки в (IV, 9) и принятия во внимание (IV, 7) и (IV, 10) находим:

$$\frac{\frac{\nu_3}{\nu_1}}{\nu_1} = \frac{s'\left(1 - \frac{\theta}{d_1\varphi_1}\right)}{1 + \frac{\nu_1h_2}{d_1\varphi_1}S_{\text{II, xp}}}.$$
 (IV, 21)

Формула указывает, что последний отрезок s' триплета определяется главным образом отношением показателей дисперсий стекол  $v_3$  и  $v_4$ , так как величины  $\theta$ и  $S_{11,xp}$ , всегда близки к нулю. Формулу (IV, 21) можно несколько преобразовать, воспользовавшись (IV, 18):

$$\frac{v_3}{v_1} = \frac{s'(1-h_2-\theta)}{1-h_2+v_1h_2S_{II, XP}}.$$
 (IV, 22)

Отсюда видно, что к зависимости  $s' = \frac{\nu_3}{\nu_1}$  приходим как при условим  $\theta = 0$  и  $S_{II,xp} = 0$ , так и если принять, что

$$h_2 = -\frac{\theta}{v_1 S_{\text{II, xp}}}.$$
 (IV, 23)

Таким образом, обычно выполняемое в триплете условие  $h_2 > 0$  может быть соблюдено, если величины  $\theta$  и  $S_{11,xp}$ , входящие в формулу (IV, 23), имеют разные знаки.

Из условия (IV, 8) находим:

$$\frac{v_2}{v_1} = \frac{h_2^2 \varphi_2}{-\varphi_1 - \frac{v_1}{v_3} s'^2 \varphi_3 - v_1 S_{1, xp}}.$$
 (IV, 24)

Положив  $s' = \frac{v_3}{v_2}$ , получим

$$\frac{v_2}{v_1} = \frac{h_2^2 \varphi_2}{h_2 \varphi_2 - 1 - v_1 S_{I, xp}}.$$
 (IV, 24')

Обращаем внимание, что при  $\theta = 0$ ;  $S_{I,xp} = 0$  и  $S_{II,xp} = 0$  выбор величины  $v_1$  оказывается произвольным и, как следует из (IV, 22) и (IV, 24'), важны лишь отношения величин  $\frac{v_q}{v_1}$  и  $\frac{v_2}{v_1}$ ; величина  $h_2$  в этом случае оказывается независимым параметром. В общем случае при  $\theta \neq 0$ ,  $S_{I,xp} \neq 0$  и  $S_{II,xp} \neq 0$  независимой переменной является величина  $v_1$ ; значение параметра  $h_2$  определяется из формулы (IV, 22).

При выполнении расчетов получаемые в первом приближении численные значения v2 из формулы (IV, 24') в большей или меньшей степени отличаются от величин показателей дисперсии оптических стекол, фактически имеющихся в каталоге. Для подгонки полученного численного значения величины v2 до совпадения с показателем дисперсии ближайшего стекла удобно воспользоваться следующей интерполяционной формулой, приводимой здесь без вывода:

$$\Delta \nu_2 \approx \frac{\nu_1}{(1 - h_2 \varphi_2)^2} \left[ \frac{1 - h_2^2 \varphi_2}{h_2 - 1} + h_2 \varphi_2 (h_2 \varphi_2 - 2) \right] \Delta h_2, \quad (IV, 25)$$

где  $\Delta h_2$  и  $\Delta v_2$  — соответственные вариации величин  $h_2$  и  $v_2$ . Для обычно встречающихся на практике вариаций триплета имеем следующие значения величин:  $h_2 \approx 0.7-0.8$ ;  $\varphi_2 = -3.5-4.5$ ;  $v_1 \approx 50-60$ . Интерполяционной формулой может служить простая зависимость, полученная из (IV, 25):

$$\Delta v_2 \approx 80 \Delta h_2. \tag{IV, 25'}$$

Остается выполнить последнее сформулированное выше условие (IV, 11):

$$T_{\rm I} = 0.$$

Удовлетворение этого условия при возможности выбора трех констант стекол ( $V_{0,1}$ ,  $V_{0,2}$  и  $V_{0,3}$ ) особых затруднений не вызывает, тем более, что это условие должно быть выполнено лишь приближенно. Действительно, величина термооптической аберрации положения при бесконечно удаленной плоскости предметов выражается формулой:

$$\frac{\delta s'}{f'} = -T_{\rm I} \, .$$

Для оценки допустимой величины  $\frac{\delta s'}{f'}$  напомним, что, например, вторичный спектр линзовой системы обычно составляет 0,05—0,1% ее фокусного расстояния, а остаточные монохроматические аберрации иногда и того больше.

Рассмотрим произвольно выбранный численный пример, иллюстрирующий ход выполнения расчета триплета.

Потребуем, чтобы триплет являлся ахроматом  $S_{1,xp} = 0$  и  $S_{11,xp} = 0$ , имел исправленную кривизну поверхности изображения ( $S_{1v} = 0,25$ ), исправленную дисторсию ( $\theta = 0$ ) и исправленную термооптическую аберрацию положения ( $T_1 = 0$ ) в пределах температур  $\Delta t \approx 100^{\circ}$ С. Его внешние конструктивные элементы определим при f' = 1.

Независимыми переменными будут:  $n_1$ ,  $n_2$ ,  $n_3$ ,  $v_1$ ,  $v_3$ ,  $V_{0,1}$ ,  $V_{0,3}$ ,  $h_2$ . Пусть  $n_1 = 1,6126$ ,  $v_1 = 58,3$ ,  $V_{0,1} = -2,6 \cdot 10^{-6}$  (т. е. стекло ТК6);  $n_2 = 1,67$  (стекло группы тяжелых флинтов);  $n_3 = 1,6079$ ;  $v_3 = 46,2$ ,  $V_{0,3} = 3,3 \cdot 10^{-6}$  (стекло БФ17).

Из (IV, 22) находим:

$$s' = \frac{v_3}{v_1} = 0,793.$$

Приняв  $h_2 = 0,75$ , из (IV, 15) находим, обратив внимание, что  $h_3 = s' = 0,793$ :

$$\varphi_8 = 1,61;$$

из (IV,16) получим:

$$\varphi_2 = -4,35;$$

из (IV, 24') определяем показатель дисперсии второй линзы:

$$v_2 = 33, 6.$$

Ближайшее стекло, константы которого более или менее согласуются с полученным значением  $v_2$  и выбранным значением  $n_2$ , — это стекло Т $\Phi 2$  (n = 1,6725, v = 32,2,  $V_0 = 3,8 \cdot 10^{-6}$ ). Однако прежде чем внести коррекцию в расчет применительно к точным значениям констант этого стекла, проследим, в какой мере удовлетворяется условие (IV, 11).

Из (IV, 17) имеем:

$$\varphi_1 = 2,98;$$

из (IV, 18) и (IV, 19) находим:

 $d_1 = 0,084;$   $d_2 = 0,155.$ 

Приняв  $\gamma^* = 11,5 \cdot 10^{-6}$  (материал корпуса — сталь), из (IV, 11) находим:

$$A = 8,7 \cdot 10^{-6}; \quad \frac{T_1}{\Delta t} = \varphi_1 V_{0,1} + h_2^2 \ \varphi_2 V_{0,2} + h_3^2 \ \varphi_3 V_{0,3} + A =$$
$$= (-7,7 - 9,5 + 3,4 + 8,7) \ 10^{-6} = -5,1 \cdot 10^{-6},$$

т. е. стекла ТК6, ТФ2 и БФ17 выбраны неудовлетворительно: объектив будет иметь нежелательно большую термооптическую аберрацию положения. Рассматривая каталог стекол, нетрудно заметить, что стекол, константы которых n и  $\nu$  близки к константам ТФ2 и БФ17, в каталоге нет, но можно взять вместо стекла ТК6 стекло ТК9 (n = 1,6171,  $\nu = 54,0$ ,  $V_0 = -1,0\cdot10^{-6}$ ), что, очевидно, приведет к уменьшению термооптической аберрации. Из тех же формул получим:

s' = 0,856; 
$$\varphi_3 = 2,32 \pmod{h_2 = 0,75}$$
;  $\varphi_2 = -4,34; \quad v_2 = 30,9;$   
 $\varphi_1 = 2,28; \quad d_1 = 0,110; \quad d_2 = 0,108; \quad A = 7,7 \cdot 10^{-6};$   
 $\frac{T_1}{\Delta t} = 1,65 \cdot 10^{-6}.$ 

Величина  $\frac{T_1}{\Delta t}$  даже изменила свой знак; на полученной величине  $\frac{T_1}{\Delta t}$  можно остановиться; например, при фокусном расстоянии триплета 500 мм и понижении температуры на  $\Delta t = -100^\circ$  получим термооптическую аберрацию:

$$\delta s' = -f'T_1 = 500 \cdot 1,65 \cdot 10^{-6} \cdot 100 = 0,08$$
 mm.

Остается несколько изменить величину v<sub>2</sub>, чтобы иметь возможность принять для второй линзы стекло ТФ2, у которого v = 32,2. Для

этого необходимо задаться несколько другим значением параметра  $h_2$ . В нашем случае для увеличения  $v_2$  на  $\Delta v_2 = 1,3$  необходимо в соответствии с интерполяционной формулой (IV, 25') увеличить  $h_2$  на  $\Delta h_2 =$ = 0,016. Получив 0,766, находим окончательные величины внешних элементов триплета, имеющего стекла ТК9, ТФ2 и БФ17:

$$s' = 0.856; \quad \varphi_3 = 2.12; \quad \varphi_2 = -4.53; \quad \nu_2 = 32.2; \quad \varphi_1 = 2.65;$$
  
 $d_1 = 0.088; \quad d_2 = 0.110; \quad A = 7.95 \cdot 10^{-6}; \quad \frac{T_1}{\Delta t} = 0.19 \cdot 10^{-6}.$ 

На основе применения новых марок оптических стекол простейший анастигмат «Триплет» продолжает совершенствоваться; его применяют

в дешевых любительских фотографических аппаратах разных форматов, выпускаемых крупными сериями.

р р

Рис. IV, 8. Оптическая схема объектива «Тессар» К универсальным анастигматам относятся различные модификации усложненного триплета, оптические схемы которых содержат четыре-пять линз (например, четырехлинзовые «Тессары», пятилинзовые «Гелиары» и др.). Среди объективов такого усложненного типа самым распространенным является объектив «Тессар», разработанный в 1902 году сотрудником фирмы «К.

Цейсс» д-ром П. Рудольфом (рис. IV, 8). Объективы этой оптической схемы непрерывно совершенствуются и выпускаются в разных странах под разными названиями: «Индустар» (СССР), «Эктар» (США, «Кодак»), «Эльмар» (ФРГ, «Лейтц»), «Ксенар» (ФРГ, «Шнейдер») и др.

По сравнению с триплетом объектив этого типа обладает более совершенной коррекцией всех аберраций, что приводит к повышенному качеству оптического изображения. На основе применения сверхтяжелых лантановых кронов относительное отверстие объективов удалось повысить до 1 : 2,8 при углах поля зрения до 55-58°. Среди отечественных объективов может быть назван «Индустар-61» ( $f' = 52 \, \text{мм}$ , 1: 2,8), разрешающий в центре поля около 50 мм<sup>-1</sup> и на краю фотокадра 24 × 36 мм — около 27 мм<sup>-1</sup>. Развитием оптической схемы триплет являются обобщенные триплеты, каждый из компонентов которых может представлять комбинацию из тонких линз. В изложенной выше теории простого триплета константы стекол (n, v, V) выступают как параметры при расчете объектива. Очевидно, замена простой линзы триплета более сложным компонентом расширяет возможности, до того ограничивавшиеся сравнительно узкими пределами значений констант стекол. Обобщая параметры n, v и V, целесообразно ввести понятие об эквивалентных значениях этих величин.

Понятие об эквивалентном значении показателя преломления установим на основе зависимости петцвалевой кривизны линзы от ее относительной оптической силы и показателя преломления стекла. Обратив внимание, что петцвалев коэффициент *i*-го компонента, состоящего из  $\theta$  линз, выражается суммой  $\frac{1}{\varphi_i} \sum_{j=1}^{\theta_i} \frac{\varphi_j}{n_j}$ , где оптическая сила тонкого компонента равна  $\varphi_i = \Sigma^{\theta}$ ,  $\varphi_j$ , приходим к понятию эквивалентного

 $n_i = \frac{\sum_{j=1}^{j=0} \varphi_j}{\sum_{i=1}^{j=0} \frac{\varphi_j}{n_i}},$ (IV, 26) $n_i = \frac{1}{\sum\limits_{i=0}^{j=\theta} \frac{\overline{\varphi_j}}{n_i}},$ 

(IV, 26')

или

где  $\overline{\phi}_{i}$  — приведенная оптическая сила линзы, равная отношению оптической силы линзы к силе всего *i*-го компонента. Сумму, стоящую в знаменателе выражения (IV, 26'), обозначим через  $\pi_i$ ; получим:

$$n_i=\frac{1}{\pi_i}.$$

Понятие об эквивалентном значении показателя дисперсии уста-навливается из факта пропорциональности коэффициента хроматической аберрации простой линзы величине  $\frac{\varphi}{\sqrt{2}}$ ; отсюда приходим к выражению эквивалентного значения v<sub>i</sub>; для *i*-го компонента:

$$\mathbf{v}_{i} = \frac{\sum_{j=1}^{j=0} \varphi_{j}}{\sum_{j=1}^{j=0} \frac{\varphi_{j}}{\mathbf{v}_{j}}}, \qquad (IV, 27)$$

или

$$\mathbf{v}_i = \frac{1}{\sum_{j=1}^{j=0} \frac{\overline{\varphi}_j}{\mathbf{v}_j}}.$$
 (IV, 27')

Сумму, стоящую в знаменателе выражения (IV, 27'), мы обозначили выше (II, 210') через — C<sub>i</sub>; получим:

$$\mathbf{v}_i = -\frac{1}{C_i}.$$

Понятие об эквивалентном значении термооптической константы стекла V установим из факта пропорциональности коэффициента тер-мооптической аберрации простой линзы произведению  $\varphi_i V_i$ ; отсюда приходим к выражению эквивалентного значения V<sub>i</sub> для *i*-го компонента:

$$V_{i} = \frac{\sum_{j=1}^{j=0} \varphi_{j} V_{j}}{\sum_{j=1}^{j=0} \varphi_{j}}, \qquad (IV, 28)$$

или

$$V_i = \sum_{j=1}^{j=0} \bar{\varphi}_j V_j. \tag{IV, 28'}$$

Введение эквивалентных значений  $n_i$ ,  $v_i$  и  $V_i$ , очевидно, позволяет обобщить теорию простого триплета на возможные случаи его усложнения\*. Конечно, все это остается справедливым в области аберраций третьего порядка и позволяет проектировать лишь исходные варианты систем для последующего их аберрационного исследования с целью «отделения» аберраций высших порядков и установления оптимальных решений.

### § 4. СВЕТОСИЛЬНЫЕ ОБЪЕКТИВЫ

Светосильными условимся называть объективы, относительные отверстия которых превышают величину  $\varepsilon = 1:2,8$ . Кроме того, светосильные объективы условимся классифицировать соответственно их двум другим оптическим характеристикам — величинам фокусных расстояний и углам полей эрения. Такая классификация нам представляется рациональной по крайней мере для правильной оценки возможностей разработки подобных объективов. Повидимому, достаточно введения трех градаций:

1. Короткофокусные светосильные объективы, у которых фокусное расстояние f' меньше линейного поля изображения (D' = 2l'):

f' < D'.

# 2. Объективы средних фокусных расстояний, у которых

$$D' < f' < 3D'$$
.

3. Длиннофокусные светосильные объективы, у которых фокусные расстояния превышают трехкратную величину линейного поля изображения:

f' > 3D'.

Соответственно эти объективы можно классифицировать по величинам углов полей зрения:

1. Широкоугольные светосильные объективы, у которых

$$2\omega > 60^{\circ}$$
.

$$p_i = v_i \sum_{j=1}^{j=\Theta} rac{\varphi_j}{v_j} p_j$$
, fige  $p = rac{n_{\lambda_1} - n_{\lambda_0}}{n_{\lambda_1} - n_{\lambda_2}}$ .

<sup>\*</sup> При проектировании и расчете апохроматов целесообразно также ввести понятие об эквивалентном значении относительной дисперсии  $p_i$  для некогорой спектральной области  $\lambda_1$  и  $\lambda_2$ !

2. Светосильные объективы средних полей зрения, у которых

 $20^{\circ} < 2\omega < 60^{\circ}$ .

# 3. Светосильные объективы малых полей зрения, у которых

 $2\omega < 20^{\circ}$ .

Относительные отверстия светосильных объективов при этом изменяются от 1: 0,6 до 1: 2,8. Объективы с отверстиями, бо́льшими чем 1: 1,5, условимся называть особо светосильными. Оценка повышенной светосилы сравнительно длиннофокусных объективов может быть сохранена и для относительных отверстий, меньших чем 1: 2,8. Например, рассматриваемые ниже анастигматы «Уран-16» ( $f' = 750 \, \text{мм}$ , 1: 3,5,  $30 \times 30 \, \text{см}$ ) можно также считать светосильными.



Рис. IV, 9. Оптическая схема объективов а – Петцваля; б – «Кук-анастигмата»; в – «Планара» – «Гелиоса»

Оптические схемы современных светосильных объективов являются логическим развитием одной из следующих трех схем: двухкомпонентного портретного объектива (1840) д-ра Петцваля, трехлинзового объектива «Триплет» (1894) д-ра Тейлора и шестилинзового анастигмата «Планар» (1896) д-ра Рудольфа.

Разработка оптической схемы Петцваля (рис. IV, 9, *a*) привела к широко распространенным светосильным объективам с малыми полями зрения; эти оптические схемы до сих пор находят применение прежде всего благодаря своей конструктивной простоте.

Развитие триплета Тейлора путем усложнения одного или нескольких его компонентов привело к созданию универсальных объективов повышенного качества изображения и объективов повышенной светосилы малых и средних фокусных расстояний и средних полей зрения.

Системы типа «Планар» Рудольфа и их позднейшие модификации позволили одновременно повысить как светосилу объективов, так и качество образуемого ими изображения.

1. Общие свойства оптических схем светосильных объективов. Разработки светосильных анастигматов начались в СССР в середине 30-х годов. Стимулом для развития этих работ послужила аэрофотосъемка: необходимость ведения съемки не только в дневных условиях, но и при малых освещенностях объектов. Другой областью, стимулировавшей развитие работ этого направления, являлась кинотехника. Развитие кинематографии в СССР потребовало оснащения отечественной кинотехники светосильной оптикой. Рождавшаяся в те годы цветная кинематография выдвигала дополнительные требования к повышению светосилы объективов. Наилучшие светосильные анастигматы тех лет, применявшиеся в фотографии и кинотехнике, имели четырех- и шестилинзовые оптические схемы. Это четырехлинзовые схемы «Кук-анастигматов» английской фирмы «Тейлор — Гобсон» (рис. IV, 9, 6); немецкие объективы «Пан-Тахар» той же оптической схемы; английские шестилинзовые объективы «Кук-спид-панхро», имевшие оптическую схему «Планара» (рис. IV, 9¢).

С систематического изучения оптических и аберрационных свойств и возможностей этих систем начала работу группа светосильной фотооптики под руководством автора. Мы стремились создать длиннофокусные системы с фокусными расстояниями 200—250 мм при отверстиях до 1:2,5 и полями зрения 45—50°. На основе применения



Рис. IV, 10. Оптические схемы объектиков: а — «Калейнар»; б — «Эквитар»

описанных выше схем принципиально возможно разработать анастигматы с указанными оптическими характеристиками. Но при этом системы обладают нежелательно большими аберрациями, катастрофически возрастающими по полю.

Не приводя здесь их подробных аберрационных характеристик, отметим, что разработанные в 1938 году простые четырехлинзовые объ-

ективы «Сатурн-1» (f' = 250 мм,  $1:2,5, 2w = 48^{\circ}$ ) обладали неустранимо большими аберрациями лучей широких меридиональных пучков, величины которых для крайних зон широких наклонных пучков достигали 1 мм. Это приводило к тому, что при низком контрасте оптического изображения фотографическая разрешающая сила объектива снижалась по полю до  $3-4 \text{ мm}^{-1}$ .

Параллельно в те годы во Всесоюзном объединении оптико-механических предприятий (ВООМП) небольшая группа оптиков работала над двумя оптическими схемами: четырехлинзовой схемой «Калейнар» (рис. IV, 10, *a*) и пятилинзовой «Эквитар» (рис. IV, 10, *б*). На основе первой схемы намечалось создание светосильных короткофокусных объективов для киносъемки; вторая схема была принята в основу разработки светосильных аэрофотообъективов. В обеих схемах оказалось невозможным корригировать сагиттальную кривизну поверхности изображения: четвертый коэффициент Зейделя  $S_{1V}$  в этих системах достигает численных значений 0,55—0,6, что делает необходимым для коррекции средней кривизны поля вводить в систему недопустимо большой астигматизм.

Лишь спустя несколько лет после проведения соответствующих исследований стало ясно, что оптическая схема светосильной и достаточно широкоугольной системы должна обладать рядом исходных конструктивных особенностей, выполнение которых необходимо для успешного решения проблемы [3].

Уже в стадии предварительного проектирования при разработке оптической схемы системы полезно руководствоваться следующими положениями, вытекающими из теории и опыта создания анастигматов типа «Уран», «Марс» и др. 1. При существующем многообразии оптических сред (различных марок стекол и кристаллов) исправление хроматических аберраций в многолинзовых системах принципиальных затруднений встретить не может: в предварительной стадии расчета рационально заниматься коррекцией лишь аберраций монохроматических и при необходимости термооптических.

2. Оптические среды, в частности марки оптических стекол, следует выбирать с такими величинами показателей преломления, которым соответствует группа других стекол, имеющих приблизительно такие же величины показателей преломления, но отличные дисперсии.

Возможности выполнения этого условия тем более расширились после появления группы сверхтяжелых кронов типа лантановых стекол.

3. Приведенные величины оптических сил компонентов  $\overline{\phi_i}$ , т. е. вычисленных при фокусном расстоянии всей системы, равном единице  $(\Sigma h_i \phi_i = 1)$ , у светосильных систем не должны превышать численных значений порядка единицы. Невыполнение этого условия обычно приводит к нежелательно большим кривизнам преломляющих поверхностей, что является причиной возрастания аберраций высших порядков. Это требование наряду с одновременным выполнением условия Петцваля (величина  $S_{IV}$  у светосильных и достаточно широкоугольных анастигматов должна оставаться в пределах значений 0,2-0,25, а при применении сверхтяжелых кронов — 0,15-0,20) могут удовлетворять лишь системы многолинзовые, в частности содержащие не менее двух отрицательных линз или компонентов.

С этой точки зрения, недоумение на первый взгляд могут вызвать системы типа «Зоннар» д-ра Л. Бертелле, у которых лишь один компонент отрицательный. Однако более подробный их анализ показывает, что большие толщины компонентов здесь использованы, как параметры, позволившие уменьшить величину четвертого коэффициента Зейделя  $S_{\rm IV}$ . Аналогичное свойство имеет место и в других системах этого же автора — «Биогонах»; у этих систем толщины отдельных компонентов достигают 30—40% от величины фокусного расстояния объектива. При надлежащем выборе толщин даже положительная линза может иметь отрицательную составляющую коэффициента  $S_{\rm IV}$ .

Например, пусть радиусы  $r_1$  и  $r_2$  линзы конечной толщины d взаимосвязаны зависимостью:

$$r_1 - r_2 = m\left(\frac{n-1}{n}\right)d, \qquad (IV, 29)$$

где *т* — некоторый множитель, величина которого может изменяться в широких пределах. Воспользовавшись выражением оптической силы линзы конечной толщины, получим:

$$\varphi = (1 - m) \varphi_0; \quad S_{1V} = -\frac{m}{n} \varphi_0,$$
 (IV, 30)  
 $\varphi_0 = \frac{(n - 1)^2 d}{n r_1 r_2}.$ 

где

Если  $\phi_0 > 0$  и если параметр *m* изменяется в пределах

0 < m < 1,

из (IV, 30) следует, что

$$\varphi > 0$$
 при  $S_{IV} < 0.$  (IV, 31)

Таким образом, при надлежащем выборе толщины положительного компонента последний способен наряду с отрицательным компонентом участвовать в коррекции коэффициента Петцваля, что способствует уменьшению кривизны преломляющих поверхностей системы и оказывается особенно полезным в короткофокусных светосильных системах.

4. Общая длина анастигмата  $\Sigma d$  также является существенным параметром, правильный выбор которого необходим уже в стадии предварительного проектирования оптической схемы системы. Одновременное выполнение условия масштаба, Петцваля и выбор возможно малых оптических сил линз и компонентов требуют перехода к большим суммарным толщинам ( $\Sigma d$ ) систем. Чем выше относительное отверстие системы, тем большей должна быть ее длина. Как показывает опыт, системы с относительными отверстиями 1 : 2—1 : 2,5 имеют собственную длину, не меньшую 0,6—0,5 от величины фокусного расстояния; эта величина возрастает приблизительно до 0,8—0,7 в системах с относительным отверстием 1 : 1,5. Конечно, мы имеем здесь в виду лишь системы с достаточно хорошей коррекцией аберраций.

5. Разработка светосильных широкоугольных анастигматов с большим фокусным расстоянием требует применения по крайней мере четырех-пятикомпонентных оптических схем. Попытка сокращения числа компонентов приводит к необходимости увеличения их толщин, что делает практически невозможным реализацию системы для больших фокусных расстояний.

6. Условия исправления кривизны поверхности изображения при одновременном требовании уменьшения оптических сил линз с целью уменьшения кривизны преломляющих поверхностей в светосильных системах часто делают рациональным применение аномальной комбинации стекол: тяжелых и сверхтяжелых кронов — в положительных линзах и легких флинтов — в отрицательных линзах [3].

7. Рационален выбор конструктивной схемы оптической системы, в которой центры кривизны преломляющих поверхностей и центр апертурной диафрагмы оказываются расположенными по одну сторону от вершин соответствующих преломляющих поверхностей. Такая конфигурация системы обеспечивает в светосильных широкоугольных схемах сравнительно малые углы падения и преломления лучей широких наклонных пучков на поверхностях системы, что является благоприятным условием хорошей коррекции полевых аберраций.

2. Светосильные объективы малых полей зрения. К этой группе мы относим системы, поля зрения которых не превышают 20°.

Теория, метод расчета и оптические свойства этой группы систем элементарны и давно изучены.

Простейшая оптическая схема объективов этой группы — система, состоящая из двух положительных компонентов, расположенных на

большом расстоянии друг от друга (см. рис. IV, 9, *a*). Каждый из компонентов в свою очередь представляет двухлинзовую комбинацию из положительной (кроновой) и отрицательной (флинтовой) линз. Для повышения относительного отверстия оптические силы компонентов  $\varphi_1$  и  $\varphi_2$  обычно невелики, вследствие чего общая длина всего объектива, т. е. расстояние от первой поверхности до задней фокальной плоскости, приблизительно на 30—50% превышает величину фокусного расстояния объектива.

Системы представляют собой типичные апланаты, у которых вплоть до высоких относительных отверстий 1 : 2—1 : 1,5 выполнена коррекция сферической и хроматической аберраций и удовлетворено условие изоплантизма. Одновременно выполнена коррекция астигматизма, что достигается соответствующим выбором расстояния между компонентами. Совершенно не корригированной оказывается кривизна поверхности изображения: величина коэффициента Петцваля достигает значений  $S_{1V} \approx 0,9$ —1,1 и более.

Ход основных лучей близок к телецентрическому в пространстве изображений: плоскость входного зрачка расположена вблизи первого компонента, расстояние его от второго компонента приблизительно равно фокусному расстоянию последнего, вследствие чего главные лучи в пространстве изображений образуют малые углы с оптической осью Схема объективов определяется из элементарных соотношений.

Из условия масштаба:

$$\varphi = \varphi_1 + \varphi_2 - d\varphi_1 \varphi_2 = 1 \qquad (IV, 32)$$

и условия Петцваля:

$$S_{IV} = \pi \varphi_1 + \pi_2 \varphi_2 \approx \pi \left( \varphi_1 + \varphi_2 \right) \tag{IV,33}$$

находим:

$$S_{\rm IV} = (1 + d\varphi_1 \varphi_2) \,\pi,$$

где  $\varphi_1$  и  $\varphi_2$  — оптические силы компонентов, а d — расстояние между ними. Приближенно приняв, что  $d = f'_2 = \frac{1}{\varphi_2}$ , из условий (IV, 32) и (IV, 33) имеем:

$$\varphi_2 = 1; \quad S_{IV} = (1 + \varphi_1) \pi; \quad d = 1.$$

Величина заднего фокального отрезка выразится из соотношения:

$$s'=1-d\varphi_1=1-\varphi_1;$$

отсюда очевидно, что численные значения  $\phi_1$  могут изменяться лишь в пределах

 $0 < \varphi_1 < 1$ ,

Общая длина объектива  $\Sigma d = d + s'$  выразится формулой:

$$\sum d = 1 + (1 - \varphi_1) d, \qquad (IV, 34)$$

315

Так как d = 1 и положив  $\varphi_i \approx \frac{1}{2}$ , приходим к высказанным выше утверждениям:

$$\sum d = 1,5; \quad S_{1V} \approx 1,5 \pi \approx 1. \tag{IV, 35}$$

В объективах двухлинзовые компоненты бывают склеенными и несклеенными; это зависит от оптических постоянных примененных комбинаций стекол.

Конструктивная простота апланатов обеспечила им широкое распространение прежде всего в качестве портретных фотографических объ-



Рис. IV, 11. Оптические схемы объективов: *а* — «Гектор»; *б* — «Эрностар»; *в* — «Зонар-Юпитер»; *г* — «Эра»

ективов — как и было задумано Петцвалем. Действительно, для портретной фотографии важно получение резкого изображения лишь в центре поля и абсолютно не важен (и даже приятен) размытый по полю фон, вызванный неисправленной аберрацией кривизны поверхности изображения.

Эти дешевые апланаты находят применение и во многих других случаях, когда необходимы светосильные системы с небольшим полем зрения: в качестве кинопроекционных объективов для проекции обычных 35- и 16-мм фильмов, простейших объективов светосильных наблюдательных приборов, например приборов ночного ви́де-

ния с применением электронно-оптических преобразователей (ЭОПов).

Встречаются различные модификации систем: с трехлинзовыми компонентами, позволяющими повысить относительные отверстия до 1:1,4—1:1,3 с применением особо тяжелых оптических стекол с целью улучшения коррекции кривизны поверхности изображения. Соответственно имеют место вариации их схем в нешироких пределах по габаритным размерам и внешним гауссовым элементам.

3. Светосильные объективы средних величин полей зрения. Как было указано выше, это объективы, у которых углы поля зрения больше 20°, но не превышают 60°. Среди простейших оптических схем назовем четырехлинзовые системы «Сириус», «Сатурн» (см. рис. IV, 9, б) и «Калейнар» (см. рис. IV, 10, *a*), а также пятилинзовые системы «Эквитар» (см. рис. IV, 10, б). К более сложным системам относятся шестилинзовые системы «Гелиос» (см. рис. IV, 19, *в*), «Гектор» (рис. IV, 11, *a*), «Эрностар» (рис. IV, 11, *б*), «Юпитер» (рис. IV, 11, *в*), «Эра» (рис. IV, 11, *г*).

Системы «Сириус», «Сатурн» и «Калейнар», являющиеся развитием оптической схемы триплета, имеют лишь одну отрицательную линзу, вследствие чего даже при применении тяжелых и сверхтяжелых кронов они обладают остаточной кривизной поверхности изображения, в частности неисправимой сагиттальной кривизной, приводящей к резкому падению разрешающей силы по полю. Это является следствием того, что у них величина четвертого коэффициента Зейделя  $S_{IV}$  остается нежелательно большой и достигает значений 0,4, а иногда даже 0,5, что делает нерациональным применение этих схем при проектировании длиннофокусных систем; лишь при разработке простых и дешевых короткофокусных объективов для любительских 8-мм кинокамер они иногда могут найти применение.

Эти простейшие варианты усложненного «Триплета» оказались наиболее удачными для получения больших относительных отверстий: у короткофокусных объективов «Сириус» — до отверстий 1 : 1,8, а у «Калейнаров» — до 1 : 1,5. Первыми из них в начале 20-х годов весьма успешно занимался Г. Слюсарев, показавший возможность повышения отверстий систем этого типа до 1 : 2 при полях зрения 40—45°. Лишь значительно позднее немецкой фирме «Астро» удалось повысить отверстие объективов того же типа «Тахар», «ПанТахар» до значений 1 : 1,8.

Непосредственным развитием схемы усложненного триплета является анастигмат «Гектор» М. Берека (см. рис. IV, 11, a), состоящий из трех двухлинзовых ахроматических компонентов. Стекла подобраны так, что второй и третий компоненты составляют «аномальные» комбинации: в положительных линзах компонентов применены стекла, показатели преломления которых превышают таковые стекол отрицательных линз, что облегчает выполнение условий Петцваля. В объективах относительное отверстие не превышает 1 : 2,5 при полях зрения 25— $30^\circ$ ; величины последних ограничивались плохо корригированной кривизной поля: четвертый коэффициент Зейделя  $S_{1v}$  достигает значений 0,4.

Широкого распространения объективы не получили, так как по своим оптическим свойствам они уступают шестилинзовым системам «Юпитер» (см. рис. IV. 11, в) и «Планар» (см. рис. IV, 9, в). Прежде чем перейти к описанию последних, остановимся также на шестилинзовой схеме, теперь уже ставшей «историей», — на объективе «Эрностар», рассчитанном Бертеле и выпущенном фирмой «Эрнеманн» в 1924 году (см. рис. IV, 11, б). Объектив имел отверстие 1 : 1,8 и угол поля зрения до 35—40°; он успешно применялся для спортивных съемок и для съемок в пониженных условиях освещения. Второй компонент «Эрностара» склеен из трех линз с применением во внутренней положительной линзе трехлинзового компонента тяжелого флинта.

Это позволило хорошо корригировать все элементарные аберрации, но наклонные пучки широкой апертуры обладают большими аберрациями высших порядков, чрезвычайно быстро возрастающими уже для углов полей зрения 30—35°.

Большая журнальная и патентная литература за последние 30—40 лет посвящена результатам исследований и совершенствованию светосильных шестилинзовых анастигматов, оптические схемы которых являются прототипами объективов «Планар» и «Зоннар» (в СССР они носят маркировки «Гелиос» и «Юпитер»). Оптические свойства и потенциальные возможности были в полной мере раскрыты не самим автором «Планара» д-ром Рудольфом, а английским оптиком Г. Ли, получившим в 1920 году объектив «Опик» (фирмы «Тейлор — Гобсон»), обладавший повышенным отверстием (1:2,5 вместо 1:3,3 у «Планара»). Угол поля зрения объектива достигал 50°. Позднейшее совершенствование оптической схемы, в частности применение в положительных линзах сверхтяжелых кронов и аномальных комбинаций стекол в склеенных компонентах, позволили повысить отверстия объективов до 1:2 и даже до 1:1,8. Увеличение толщин линз и воздушных промежутков, а следовательно, и общей длины объектива позволило в дальнейшем повысить его относительное отверстие до 1:1, 5. Эти конструктивные особенности были нами реализованы в 1950 году при разработке объектива «Гелиос-40» для любительских фотоаппаратов 24 × 36 мм.

Другим вариантом развития этой схемы явился объектив «Эра» (см. рис. IV, 11, г), в котором Д. Волосову и Р. Фахретдиновой удалось сохранить не только большое относительное отверстие, но и достигнуть большого заднего фокального отрезка, составляющего 75% от величины фокусного расстояния, что обеспечивает возможность его применения в зеркальных фотоаппаратах, в киносъемочных камерах с зеркальным обтюратором и т. п. Объективы «Эра» позволяют достигнуть отверстий 1: 1,8—1:1,6 при полях зрения до 45—46°.

Много вариаций было зафиксировано в патентной литературе, относящихся к модификациям оптической схемы «Зоннар» д-ра Л. Бертелле (см. рис. IV. 11, в). Эта схема — типичный представитель «обобщенного триплета» и причем наиболее удачное решение задачи этого направления. Анастигмат имеет лишь шесть преломляющих поверхностей, граничащих с воздухом. Объективы этого типа, известные в СССР под маркой «Юпитер», обладают хорошей коррекцией аберраций широких наклонных пучков, в частности хорошо исправленной полевой сферической аберрацией, что обеспечивает сравнительно высокий контраст оптического изображения. Представителем этой группы анастигматов является «Юпитер-8», выпускающийся крупносерийно в качестве штатного объектива ряда любительских фотоаппаратов 24 × 36 мм.

Работа над совершенствованием оптических качеств шестилинзовых схем объективов и поиски рациональных конструкций более сложных (в частности, семилинзовых) схем светосильных систем с отверстиями 1:2-1:1,8 и полями зрения около  $45^{\circ}$  ведется как у нас, так и многими фирмами в различных странах. Эти разработки имеют целью дальнейшее повышение не столько разрешающей силы, сколько контраста оптического изображения. Из зарубежных разработок особый интерес представляет семилинзовый анастигмат «Суммикрон» (f' = 50, 1:2) фирмы «Лейтц» и шестилинзовый «Планар» (f' = 50, 1:2) фирмы «Шнейдер» ( $\Phi P \Gamma$ ), разработанные на основе применения сверхтяжелых лантановых кронов (см. главу V). В частности, в последнем объективе удалось повысить фотографическую разрешающую силу на 5—10 мм<sup>-1</sup> по полю, доведя ее до  $40-30 \text{ мm}^{-1}$  при пользовании фотографическими материалами, разрешающими  $120-130 \text{ мm}^{-1}$ . Эти данные характеризуют трудности совершенствования оптических качеств обектива даже на 15-20% и сохранения их в серийном производстве.

4. Светосильные широкоугольные объективы. Это объективы, у которых углы полей зрения превышают 50—60° при относительных отверстиях не ниже 1 : 2,8.

До сих пор задачи этого направления решались на основе применения преломляющих поверхностей сферической формы. Мы пока опустим рассмотрение возможных оптических схем светосильных широкоугольных объективов исключительно больших габаритов, при которых длина объектива в пять-десять и более раз превышает величину его фокусного расстояния. Очевидно, такие решения представляют ограниченный интерес, так как могут найти применение лишь в малоформатной фотографии (например, в 8-мм кинематографии). Эти вопросы будут освещены в главе V. Здесь мы рассмотрим возможные решения на основе применения оптических схем нормальных габаритов. т.е. сравнимых с величинами фокусных расстояний объективов.

Выше были перечислены некоторые общие положения, которыми полезно руководствоваться при проектировании светосильных анастигматов. Задача тем более усложняется при разработке светосильных систем с повышенными полями зрения. Теория аберраций дает лишь общие указания, которых следует придерживаться на втором этапе проектирования оптических схем [3], а именно на этапе сравнительного изучения различных возможных вариантов данной оптической схемы с целью отбора оптимального решения в данной локальной области.

1. Углы *i* и *i* на преломляющих поверхностях как для лучей осевого пучка, так для лучей широких наклонных пучков должны оставаться по возможности минимальными. Опыт расчета показывает, что ваться по возможности минимальными. Опыт расчета показывает, что они не должны превышать ~50—55°. Отступление от этого условия может привести к возрастанию аберраций высших порядков. 2. Величины отношений  $\frac{\Delta \alpha}{\Delta \frac{1}{n}}$  и  $\frac{\Delta \beta}{\Delta \frac{1}{n}}$ , получаемые в результате

расчета вспомогательных параксиальных лучей, должны оставаться по возможности малыми. Это утверждение следует из формулы про-порциональности этих отношений величинам параксиальных углов  $i_0$  и  $i'_0$ . Для светосильных систем величины отношений  $\frac{\Delta \alpha}{\Delta \frac{1}{n}}$  и  $\frac{\Delta \beta}{\Delta \frac{1}{n}}$ 

не должны превышать нескольких единиц.

3. Величины составляющих сумм Зейделя на преломляющих поверхностях системы должны оставаться возможно малыми. Опыт показывает, что эти составляющие у светосильных систем не должны превышать нескольких единиц.

После первой стадии предварительного проектирования сложной оптической системы, состоящей из двух этапов: выбора оптической схемы и сравнительного изучения вариантов намеченной схемы, разработка переходит во вторую стадию, содержащую три этапа:

а) коррекцию различных вариантов системы выбранного типа в области аберраций третьего порядка;

б) вычисление точных значений аберраций и выбор оптимального варианта;

в) окончательную коррекцию (доводку) основного варианта.

Изложенная в общей форме последовательность разработки фотографического объектива являлась классической (домашинной) последовательностью проектирования и расчета, которая конкретизируется уже применительно к отдельным группам фотографических систем (светосильные системы, широкоугольные объективы, телеобъективы и т. п.). Появление автоматизированных методов коррекции аберраций на основе применения ЭВМ (см. главу IX) изменило характер второй стадии разработки. Тем не менее, при определении отправных вариантов систем полезен предварительный просмотр нескольких вариантов решений (с помощью тех же ЭВМ) в области аберраций третьего порядка с фиксированными численными значениями коэффициентов аберраций. Например, для светосильных широкоугольных систем обычно задаются следующими значениями коэффициентов Зейделя:

$$S_{I \infty} \approx 0, 2 - 0, 3; \quad S_{II \infty} \approx \pm 0, 05; \quad S_{III \infty} \approx -0, 05;$$
  
 $S_{IV} \approx 0, 15 - 0, 20; \quad S_{V \infty} \approx \pm 0, 1 - 0, 2.$  (IV, 36)

В процессе последующих аберрационных расчетов численные значения коэффициентов Зейделя локализуются с учетом величин аберраций высших порядков; уточнение и доводка производятся оптиком-разработчиком или автоматически ЭВМ.

Заметим, что уже в этой стадии расчета своевременно определение сферохроматической аберрации и вторичного спектра в целях уточнения хроматической коррекции системы.

Тип ахроматизации устанавливается в результате оценки спектрального распределения энергии в источнике освещения, отражательной способности фотографируемого объекта (спектральных свойств объекта), спектральной чувствительности приемника изображения, пропускаемости светофильтра, применяемого в данных условиях съемки, и спектрального пропускания объектива.

Строгое решение этой задачи — процесс довольно трудоемкий; приближенное же решение, вполне достаточное для предварительной коррекции, проще всего выполняется графическим методом — на основе анализа спектрального распределения актиничного потока.

В последней стадии расчета из аберрационных фигур рассеяния (см. главу II), построенных для нескольких длин волн в заданном спектральном интервале, определяются кривые освещенности в фигуре рассеяния с учетом относительных величин ординат для каждой из кривых соответственно актиничным потокам. Интегральная кривая распределения освещенности в фигуре рассеяния определяется путем перемножения ординат приведенных кривых, построенных для соответствующих длин волн.

В результате изучения вариаций формы интегральной кривой распределения при изменении области ахроматизации объектива производится уточнение и окончательный выбор типа ахроматизации.

Проектирование оптической схемы сложного анастигмата, обычно состоящего из двух половинок, разделенных апертурной диафрагмой, можно проводить методом разделения коэффициентов аберраций третьего порядка по половинкам сложной системы. Воспользовавшись изложенной в главе II (§ 5, пункт 8) методикой выражения коэффициентов аберраций сложного двухкомпонентного объектива через коэффициенты аберраций его половинок конечной толщины, можно написать (см. II, 242):

$$S_{V\infty}^{(x_1)} - S_{V\infty}^{(x_2)} \approx 0; \qquad (a)$$

$$S_{III\,\infty}^{(x_1)} + eS_{III\,\infty}^{(x_2)} \approx 0;$$
 (6)

$$S_{11\,\infty}^{(x_1)} - e^2 S_{11\,\infty}^{(x_2)} \approx -e - 1;$$
 (B) (1V, 37)

$$S_{1\infty}^{(x_1)} + e^3 S_{1\infty}^{(x_2)} \approx \frac{1}{\gamma_{x_2}} (e^2 - e - 2),$$
 (r)

где для упрощения расчетов в первом приближении пренебрегаем величинами *z*. Четвертый коэффициент Зейделя сложной системы определится из выражения:

$$S_{\rm IV} = \frac{S_{\rm IV}^{(x_1)} + eS_{\rm IV}^{(x_2)}}{(1+e)\gamma_{x_2}} \,. \tag{IV, 37'}$$

Остальные условия установлены в предположении, что величины коэффициентов Зейделя сложной системы имеют значения, близкие к нулю. Последующие аберрационные расчеты уточнят пределы возможных вариаций величин  $S_{1\infty}$ ,  $S_{11\infty}$ ,  $S_{111\infty}$ ,... в системе данной оптической схемы.

Наиболее устойчивым является четвертый коэффициент Зейделя  $S_{\rm IV}$ , существенно влияющий на кривизну поверхности изображения. Учитывая опыт расчета широкоугольных светосильных систем, величина  $S_{\rm IV}$  должна фиксироваться в довольно узких пределах: если пользоваться обычными тяжелыми кронами, то  $S_{\rm IV} \approx 0,20-0,25$ ; если применять сверхтяжелые кроны, то величину  $S_{\rm IV}$  следует уменьшить приблизительно на 20%, приняв  $S_{\rm IV} \approx 0,15-0$  20.

Угловое увеличение в зрачках половинок  $\gamma_x$ , симметричных или близких к симметричным светосильных анастигматов, изменяется также в сравнительно нешироких пределах:

$$\overleftarrow{\gamma}_{x_1} \approx \gamma_{x_2} \approx 0.6 - 0.8.$$
 (IV, 38)

Несколько более широкие возможности предоставляются при выборе отношения фокусных расстояний *е* половинок системы. Чем больше относительное отверстие и угол поля зрения системы, тем обычно более выгоден выбор большей величины коэффициента  $e = \overline{f_1'}$ ; например, в системах с относительным отверстием порядка 1 : 2 величина  $e \approx 2$ ; в системах с несколько меньшим отверстием (1 : 2,5—1 : 3) величина  $e \approx 1,5$ . В последнем случае из (IV, 37) получим:

$$S_{V_{\infty}}^{(x_{1})} - S_{V_{\infty}}^{(x_{2})} \approx 0; \qquad (a)$$

$$S_{III_{\infty}}^{(x_{1})} + 1,5S_{III_{\infty}}^{(x_{2})} \approx 0; \qquad (b)$$

$$S_{II_{\infty}}^{(x_{1})} - 2,25S_{II_{\infty}}^{(x_{2})} \approx 0; \qquad (b)$$

$$S_{V_{\infty}}^{(x_{1})} + 3,4S_{V_{\infty}}^{(x_{2})} \approx -2; \qquad (r)$$

$$S_{V_{\infty}}^{(x_{1})} + 1,5S_{V_{\infty}}^{(x_{2})} \approx 0,4; \qquad (J)$$

при этом принято, что  $\gamma_{x_2} = 0,65$  и  $S_{\rm IV} = 0,25$ . Формулы (IV, 39) установлены в предположении, что коэффициенты аберраций сложной системы имеют численные значения, близкие к нулю, что в результате и получается у хорошо корригированной системы с малыми аберрациями высших порядков.

Для расчета варианта системы во втором приближении обычно оказывается необходимым после определения величин аберраций высших порядков задавать названным коэффициентам аберраций сложной системы численные значения, несколько отличные от нуля. Для выражения вариаций коэффициентов аберраций сложной системы через вариации коэффициентов аберраций ее половинок воспользуемся формулами (II, 235) главы II. Определив частные производные от величин S<sub>100</sub>,  $S_{11\infty}$  и т. д. по аргументам  $S_{1\infty}^{(x_1)}$ ,  $S_{1\infty}^{(x_2)}$ ,  $S_{11\infty}^{(x_1)}$ ,  $S_{11\infty}^{(x_2)}$  и т.д., приходим к интерполяционным формулам:

$$\Delta S_{1 \infty} = \frac{\overleftarrow{\gamma_{x_1}^4}}{e^3 k^3} \Delta S_{1 \infty}^{(x_1)} = \frac{\overleftarrow{\gamma_{x_1}^4}}{k^3} \Delta S_{1 \infty}^{(x_2)}; \qquad (a)$$

$$\Delta S_{11 \infty} = -\left(\frac{\overleftarrow{\gamma_{x_1}}}{ek}\right)^2 \Delta S_{11 \infty}^{(x_1)} = \left(\frac{\overleftarrow{\gamma_{x_1}}}{k}\right)^2 \Delta S_{11 \infty}^{(x_2)}; \qquad (b)$$

$$\Delta S_{111 \infty} = \frac{1}{ek} \Delta S_{111 \infty}^{(x_1)} = \frac{1}{k} \Delta S_{111 \infty}^{(x_2)}; \qquad (b)$$

$$\Delta S_{1V} = \frac{1}{ek} \Delta S_{1}^{(x_1)} = \frac{1}{k} \Delta S_{1V}^{(x_2)}; \qquad (c)$$

$$\Delta S_{V \infty} = -\frac{1}{\overleftarrow{\gamma_{x_1}^2}} \Delta S_{V \infty}^{(x_1)} = \frac{1}{\overleftarrow{\gamma_{x_1}^2}} \Delta S_{V \infty}^{(x_2)}. \qquad (d)$$

Эти простые зависимости позволяют предвычислить необходимые изменения величин коэффициентов аберраций половинок системы для уточнения требуемых изменений коэффициентов Зейделя сложной системы.

Применительно к рассматриваемому численному примеру расчета анастигматов типа «Уран» из (IV, 40) находим:

$$\Delta S_{I \ \infty} = 0,0256 \Delta S_{I \ \infty}^{(x_1)} = 0,129 \ \Delta S_{I \ \infty}^{(x_2)}; \qquad (a) \\ \Delta S_{II \ \infty} = -0,16 \Delta S_{II \ \infty}^{(x_1)} = 0,36 \Delta S_{II \ \infty}^{(x_2)}; \qquad (b) \\ \Delta S_{III \ \infty} = 0,615 \Delta S_{III \ \infty}^{(x_1)} = 0,923 \ \Delta S_{III \ \infty}^{(x_2)}; \qquad (b) \\ \Delta S_{IV} = 0,615 \ \Delta S_{IV}^{(x_1)} = 0,923 \ \Delta S_{IV}^{(x_2)}; \qquad (c) \\ \Delta S_{V \ \infty} = -2,37 \ \Delta S_{V \ \infty}^{(x_1)} = 2,37 \ \Delta S_{V \ \infty}^{(x_2)}. \qquad (c)$$

Множитель k, входящий в формулы (IV, 40), вычисляется из выражения (II, 232) главы II.

Пусть в варианте системы вторая ее половинка имеет следующие величины коэффициентов аберраций:

$$S_{I \infty}^{(x_2)} = -1; \quad S_{II \infty}^{(x_2)} = -0,2; \quad S_{III \infty}^{(x_2)} = 0,1; \quad S_{IV}^{(x_2)} = 0,2;$$
$$S_{V \infty}^{(x_2)} = -0,7. \qquad (IV, 41')$$

Для удовлетворения условиям (IV, 39) первая половинка системы должна иметь приблизительно следующие величины коэффициентов аберраций:

$$S_{V_{\infty}}^{(x_{1})} \approx -0.7; \quad (a)$$

$$S_{III_{\infty}}^{(x_{1})} \approx -0.15; \quad (b)$$

$$S_{II_{\infty}}^{(x_{1})} \approx -2.9; \quad (B)$$

$$S_{I_{\infty}}^{(x_{1})} \approx +1.4; \quad (r)$$

$$S_{IV}^{(x_{1})} \approx +0.1. \quad (d)$$
(IV, 42)

При этом величины коэффициентов аберраций всей системы будут близки к нулю, а величина  $S_{\rm IV}=0,25.$  Пусть в результате анализа аберраций лучей выяснилась необхо-

Пусть в результате анализа аберраций лучей выяснилась необходимость получения следующих величин коэффициентов аберраций сложной системы «Уран»:

$$\begin{split} S_{\rm I\,\infty} &\approx 0,25 \,; \quad S_{\rm II\,\infty} \approx -0,03 \,; \quad S_{\rm III\,\infty} \approx -0,04 \,; \\ S_{\rm IV} &\approx 0,26 \,. \end{split} \tag{IV, 43}$$

Строгое выполнение условия ортоскопии в данном варианте расчета «Урана» будем считать не обязательным. Из интерполяционных формул (IV, 41) находим:
$$\Delta S_{1\infty}^{(x_1)} = \frac{\Delta S_{1\infty}}{0,0256} = 9,7; \quad (a)$$

$$\Delta S_{11\infty}^{(x_1)} = \frac{\Delta S_{11\infty}}{-0,16} = -0,18; \quad (b)$$

$$\Delta S_{111\infty}^{(x_1)} = \frac{\Delta S_{111\infty}}{0,615} = -0,06; \quad (B)$$

$$\Delta S_{1V}^{(x_1)} = \frac{\Delta S_{1V}}{0,615} = 0,02, \quad (c)$$

т. е. вместо численных значений коэффициентов аберраций (IV, 42) первая половинка системы должна теперь иметь следующие значения

$$S_{1\infty}^{(x_1)} \approx 11,1; \quad (a) \\S_{11\infty}^{(x_1)} \approx -3,1; \quad (b) \\S_{111\infty}^{(x_1)} \approx -0,21; \quad (b) \\S_{1V}^{(x_1)} \approx 0,12; \quad (c) \\S_{V\infty}^{(x_1)} \approx -0,7. \quad (d) \end{cases}$$
(IV, 45)

Для заданных значений коэффициентов Зейделя выполняется расчет нескольких вариантов систем, которые подвергаются сравнительному анализу для выбора оптимального решения с точки зрения аберраций высших порядков. Выбранный вариант системы является исходным для последующей окончательной доводки аберраций обычным способом или автоматизированным способом коррекции с помощью ЭВМ.

Вычислительная практика при оценке различных вариантов решений в стадии коррекции ограничивается оценкой размеров как всей фигуры рассеяния, так и главным образом той ее части, где освещенность достаточно велика. Последнюю назовем эффективными размерами фигуры рассеяния лучей.

В пространстве изображений определяется вероятное положение плоскости, относительно которой имеет место наиболее благоприятное распределение лучей в фигурах рассеяния, образованных широкими пучками, исходящими из различных точек плоскости предметов. Эту плоскость условимся называть плоскостью наилучшего изображения.

Плоскость наилучшего изображения вследствие наличия аберраций смещена относительно плоскости параксиального изображения (плоскости Гаусса). Из-за этого необходимо корригировать систему для всех углов поля зрения не относительно плоскости Гаусса, а относительно упомянутой плоскости наилучшего изображения, уточняя в процессе расчета наиболее вероятное ее положение с учетом аберраций не только меридиональных, но и «косых» пучков.

Уже в начале 40-х годов при разработке светосильных анастигматов «Уран» выяснилось, что для более полного и уверенного суждения о

структуре пучков лучей, образующих изображение, недостаточно ограничиться выполнением расчетов и оценкой аберраций системы лишь в в меридиональном сечении. Как в стадии коррекции системы, так и при сопоставлении полученных вариантов расчета необходима оценка аберраций внемеридиональных лучей.

Если же свойства рассчитываемого типа анастигмата уже известны, то, как показывает наш опыт сопоставления материалов расчета и данных лабораторных испытаний, во многих случаях достаточно ограничиваться расчетами лучей широких внемеридиональных пучков лишь в главном сагиттальном сечении для различных углов поля зрения Этих же данных обычно достаточно для сравнения аберраций рассчитанного варианта объектива с аберрациями уже существующих образцов. Конечно, по мере повышения требований к оптическим качествам создаваемых объективов указанный объем сведений подчас оказывается недостаточным.

В частности, создание современных высокоортоскопических топографических широкоугольных объективов «Ортогон» (см. главу VI), дисторсия которых не превышает нескольких микрометров, потребовало тщательной коррекции аберраций широких наклонных пучков для лучей нескольких длин волн — в пределах области спектральной чувствительности приемника изображений.

Наконец, появление ЭВМ сделало возможным не только выполнение аберрационных расчетов, но и вычисление коэффициентов передачи модуляций для того диапазона частот, в пределах которых предназначена работать оптическая система.

Результаты расчета аберраций обычно даются в виде таблиц и графиков, для представления которых немаловажное значение имеет соответствующий выбор масштаба. Неудачный выбор масштаба может иногда оказаться причиной неточных выводов о состоянии коррекции системы.

Как показывает опыт, в зависимости от величины остаточных поперечных аберраций объектива, рекомендуется масштаб 100:1, т. е. 1 см соответствует поперечной аберрации 0,1 мм в объективах со сравнительно невысокой коррекцией аберраций; масштаб 200:1, т. е. 1 см соответствует поперечной аберрации 0,05 мм в объективах с обычной (нормальной) коррекцией и, наконец, масштаб 500:1 (а иногда и 1000:1) в высококорригированных системах, в которых 1 см соответстьует поперечной аберрации 0,02 мм (а иногда и 0,01 мм).

В области аберраций третьего порядка коррекция объектива характеризуется приводимыми в таблицах величинами коэффициентов аберраций. Чем лучше корригирована система, тем меньше численные значения этих коэффициентов.

Состояние коррекции осевого пучка характеризуется численными значениями и графиками продольной и поперечной сферической аберрации, продольной хроматической аберрации, величинами отступления от обобщенного условия синусов, величинами хроматических разностей сферических аберраций и данными о вторичном спектре.

Сферическая аберрация и отступление от обобщенного условия синусов (Штебле—Лигоцкого) в объективах достаточно большого относи-

тельного отверстия обычно вычисляются для четырех лучей пучка с координатами:

$$h_{\mathrm{kp}}, \sqrt{\frac{3}{4}} h_{\mathrm{kp}}, \sqrt{\frac{1}{2}} h_{\mathrm{kp}}, \sqrt{\frac{1}{4}} h_{\mathrm{kp}}.$$

Хроматические разности сферических аберраций обычно вычисляются для трех лучей с координатами  $h_{\kappa p}$ ,  $\sqrt{\frac{1}{2}}h_{\kappa p}$  и 0 для тех длин волн, для которых производится ахроматизация объектива.



Рис. IV, 12. Графики аберраций широких пучков лучей

характеристики кор-Для рекции внеосевых пучков приводятся таблицы и графики пофокусов бесконечно ложений тонких астигматических пучков для различных углов поля зрения, данные о дисторсии объекаберрации широких тива, наклонных пучков в меридиональном и сагиттальном сечениях, хроматические разности величин изображений и хроматические аберрации лучей широких напучков нескольких клонных

наклонов (в зависимости от Величины поля зрения объектива): для пучков двух наклонов — у объективов с малым полем зрения; двух-трех наклонов — у объективов, поле зрения которых 60—70°, и четырех-пяти наклонов — у широкоугольных систем.

Аберрации широкого наклонного пучка определяются на основании расчета пяти-семи лучей для меридионального сечения и двух (иногда трех) лучей — сагиттального сечения.

Для удобства оценки аберраций широких наклонных пучков в некоторой предполагаемой плоскости наилучшей установки рекомендуется на графиках поперечных аберраций наклонных пучков (определенных относительно плоскости Гаусса) проводить вспомогательные наклонные прямые aa' (рис. IV, 12), параллельные прямой aa', нанесенной на графике поперечной сферической аберрации осевого пучка ( $\omega_1 = 0^\circ$ ), определяющей вероятное положение плоскости наилучшей установки для точки на оси. Если сферическая аберрация для края зрачка корригирована, как показывает опыт, величина смещения этой плоскости  $\Delta$  достаточно точно может быть определена из формулы:

$$\Delta \approx 0.8 \Delta s'_{30Hbl}, \qquad (IV, 46)$$

где  $\Delta s'_{30Hb}$  — продольная сферическая аберрация для зоны зрачка  $\sqrt{\frac{1}{2}} h_{\rm g.p.}$ .

Для удобства отсчета аберраций в смещенной плоскости проводимая прямая *аа*' должна пересекать кривую аберраций наклонного пучка. Откладывая по оси абсцисс значения  $\delta g'$  (или  $\delta G'$  для сагиттального сечения), определенные в плоскости Гаусса, а по оси ординат — углы u' (или, еще лучше, tg u') лучей с оптической осью, легко видеть, что в такой системе координат наклон прямой aa' относительно оси ординат связан с величиной смещения плоскости установки $\Delta$  относительно плоскости Гаусса следующей зависимостью:

$$\Delta = \frac{\delta g'_1 - \delta g'_2}{\operatorname{tg} u'_1 - \operatorname{tg} u'_2}, \qquad (IV, 47)$$

где  $\delta g'_1$ ;  $tgu'_2$ ;  $\delta g_2'$ ;  $tgu'_2$  — координаты любой пары точек, взятых на прямой aa'. Аберрации  $\delta \overline{g}'$ , отнесенные к некоторой смещенной плоскости, могут быть получены, если отсчитывать величины абсцисс  $\delta \overline{g}'$  не от вертикальной оси, а от прямой aa'.

Таким приемом исключается необходимость специальных построений графиков аберраций для нескольких плоскостей установки для суждения о распределении аберрационных фигур рассеяния в этих плоскостях. Ориентировочная же оценка влияния смещения плоскости установки оказывается, вместе с тем, необходимой, поскольку вероятное положение плоскости наилучшего изображения возможно указанным способом определить лишь приближенно.

Метод расчета и способы оценки аберраций различных вариантов рассчитываемых объективов были впервые применены автором в начале 40-х годов при разработке светосильных широкоугольных анастигматов «Уран». Большая помощь автору при развитии методики и анализе результатов лабораторных испытаний иностранных и создаваемых отечественных объективов была оказана в те годы Е. Яхонтовым.

До сих пор анастигматы «Уран», имея весьма гибкую и универсальную оптическую схему, применяются во многих областях. Они были разработаны за истекшие годы в различных вариантах — соответственно различным оптическим характеристикам: от «Урана» с фокусным расстоянием 13 *мм*, отверстием 1 : 2,5 и полем зрения 56°, масса которого около 20 г, до анастигмата той же схемы «Уран» с фокусным расстоянием 750 *мм*, отверстием 1 : 3,5 и полем зрения 30°, что соответствует формату снимка 30 × 30 см; масса объектива превышает 30 кг.

Разнообразное применение на протяжении 30 лет находит вариант светосильного широкоугольного «Урана» с фокусным расстоянием 100 мм, отверстием 1 : 2,5 и полем зрения около 62°, что соответствует формату снимка 8 × 8 см. Этот объектив был разработан в двух разновидностях: «Уран-10», корригированный для оранжево-красной области, имея в виду его применение со светофильтрами ЖФ-18, ОС-12 и КС-14, и «Уран-27», корригированный для широкой сине-красной области спектра и могущий применяться без светофильтра.

В те годы, когда велись разработки этих объективов, отечественный каталог оптических стекол еще не содержал промышленно освоенных сверхтяжелых кронов типа лантановых. Это обстоятельство делало необходимым при разработке оптических схем «Уранов» применять в них обычные тяжелые кроны.

Необходимость создания светосильных высокоортоскопических топографических анастигматов побудила нас в 1965—1966 годах разработать «Ураны» с высокоортоскопическими свойствами — «Орто-Ураны», у которых удалось сохранить ту же семилинзовую оптическую схему и при высоких отверстиях (1 : 2,5—1 : 3) устранить асимметричные погрешности широких наклонных пучков, что позволило корригировать дисторсию с точностью до нескольких микрометров для полей зрения 30—40°. Фокусные расстояния объективов при этом достигают 300—400 *мм*. В положительных линзах объективов были применены сверхтяжелые кроны (СТК).

В Германии в конце 30-х годов д-ром Л. Бертелле были созданы весьма интересные светосильные широкоугольные анастигматы «Биогон»



Рис. IV, 13. Оптические схемы анастигматов: a -«Биогон»;  $\delta -$ «Аэро-Эктар»;  $\theta -$ «Геогон»

позволившие при отверстиях 1 : 2,8 достигнуть полей зрения 62—63°. Это — шестилинзовые системы (рис. IV, 13, *a*), у которых толщины третьего и особенно последнего компонентов достигают больших величин — соизмеримых с величиной фокусного расстояния объектива. Такое свойство оптической схемы сразу же ограничивает области возможного применения «Биогонов»; на их основе могут быть созданы лишь короткофокусные объективы. Объектив «Биогон» при фокусном расстоянии 35 *мм* выпускался в комплекте сменных объективов для фотоаппаратов 24 × 36 *мм*, в частности для фотоаппарата «Контакс».

Широкую известность получили светосильные анастигматы фирмы «Истмен—Кодак» (США), выпускавшиеся для разных целей под марками «Эктар» и «Аэро-Эктар» (рис. IV, 13, б). В положительных линзах второй «половинки» объективов применены сверхтяжелые кроны. Объективы применяются во многих фотографических установках. В частности, в аэрофотоаппаратах американских тяжелых самолетов («летающих крепостях») были установлены объективы с фокусным расстоянием 7'' (около 178 мм) при относительном отверстии 1 : 2,5 и поле зрения около 50°. Объектив «Аэро-Эктар» разрешает с оранжевым светофильтром несколько более 30 мм<sup>-1</sup> в центре поля и около 11—12 мм<sup>-1</sup> по полю.

Как показали исследования [3], выполненные во второй половине 40-х годов, в объективе «Аэро-Эктар» не удалось преодолеть основного недостатка, присущего анастигматам типа «Планар», развитием кото-

рого рассматриваемый объектив является: «Аэро-Эктар» имеет большую сферическую аберрацию в широких наклонных пучках. Эта аберрация сохраняется для всех наклонов — как для средних углов поля зрения, так и на краю, поля, что снижает контраст оптического изображения.

Можно утверждать, что основная трудность задачи разработки светосильного широкоугольного анастигмата именно и заключается в хорошем исправлении аберраций широких наклонных пучков. Последнее в этом объективе не было достигнуто, несмотря на применение в нем особых стекол EK32 ( $n_D = 1,7445$ , v = 45,8) и EK33 ( $n_D =$ = 1,7551, v=47,2). Специальные исследования автора [3], доведенные до экспериментальной проверки на опытных образцах изготовленных объективов ОФ233, показали, что в системах «Аэро-Эктар», не оправдано применение лантановых стекол и что можно получить те же результаты, применяя обычные тяжелые кроны ТК11 ( $n_D = 1,6577, v = 51,2$ ). При этом как по всем аберрационным характеристикам, так и по разрешающей силе и контрасту оптического изображения объектив ОФ233 не уступает объективу «Аэро-Эктар». На рис. IV, 13, б внизу приведены отечественные стекла объектива ОФ233. Заметим также, что объектив «Аэро-Эктар» ни в каком отношении не превосходит отечественного анастигмата «Уран-11» ( $f' = 250; 1: 2,5; 2w = 54^\circ$ ), в котором применены обычные тяжелые кроны.

Наиболее интересными работами этого направления являются анастигматы «Геогон» американского оптика Джеймса Бейкера (Ам. патент № 3039361 1962 г.), обладающие углом поля зрения около 94° при отверстии 1 : 2,5. Оптическая схема объектива — сложная двенадцатилинзовая (рис. IV, 13, *e*), в которой два внутренних компонента четырехлинзовые склеенные; две преломляющие поверхности, расположенные по обе стороны от апертурной диафрагмы, имеют сложную асферическую форму. Кроме того, в четырех положительных линзах системы (1, 6, 7 и 12) применен особо тяжелый крон типа 788505 ( $n_D =$ = 1,78832;  $\nu = 50,45$ ), а в четырех линзах (3, 5, 8 и 10) — особый флинт типа 880411 ( $n_D = 1,8804$ ;  $\nu = 41,1$ ). К этому весьма интересному объективу мы еще вернемся в главах VI и IX.

# § 5. ШИРОКОУГОЛЬНЫЕ ДИСТОРЗИРУЮЩИЕ ОБЪЕКТИВЫ

Широкоугольные объективы подразделяют на две группы: дисторзирующие и ортоскопические. Объективы первой группы обладают неисправленной дисторсией, величина которой достигает нескольких, а иногда десятков процентов. Это обстоятельство ограничивает области возможных применений подобных широкоугольных систем: их использование возможно лишь в тех случаях наблюдения или фотографирования, когда допустимы масштабные искажения изображений. Например, особо широкоугольные дисторзирующие объективы с полями зрения, достигающими (а иногда и превышающими) 180°, применяются для метеорологических наблюдений, для фотографирования состояния облачности неба и т. п. Задача разработки дисторзирующих объективов значительно более простая по сравнению с проблемой создания объективов строго ортоскопических, чем можно объяснить появление нескольких сравнительно простых оптических схем подобных объективов. Напомним объектив Гилля, имеющий поле зрения около 180° при относительном отверстии 1 : 22. В этом простейшем трехлинзовом объективе (рис. IV, 14, *a*) отчетливо реализована основная идея конструкции подобных систем, заключающаяся в том, что впереди положительного компонен-



Рис. IV, 14. Схема дисторзирующих объективов: а — Гилля; б — Шульца; в — «Плеон» (фирма «Цейсс»); г — «Сферогон» (ГОИ)

та устанавливается на достаточно большом расстоянии отрицательная линза. Соотношение между оптической силой  $\varphi_1$  отрицательной линзы, ее расстоянием d от второго компонента объектива и оптической силой  $\varphi_2$  последнего обычно выбирают таким образом, чтобы оптическая сила  $\varphi$  всего объектива была положительной и меньшей оптической силы второго компонента. Это автоматически приводит к выполнению условия Петцваля. Действительно:

$$\varphi = \varphi_1 + \varphi_2 - d\varphi_1 \varphi_2; \qquad (IV,48)$$

если  $\varphi > 0$  и  $\varphi_2 > \varphi$ , а  $d < \frac{1}{\varphi_2}$ , то сумма оптических сил компонентов  $\varphi_1 + \varphi_2$  всегда будет малой величиной, что обеспечит выполнение условия Петцваля. Пусть, например,  $\varphi_2 = 2\varphi$ , а  $d = \frac{1}{2\varphi_2}$ ; из (IV, 48) находим:

$$\varphi_1 = -2\varphi$$
,

а следовательно,  $\varphi_1 + \varphi_2 = 0$ , т. е. оптические силы обоих компонентов равны по абсолютной величине ( $\varphi_1 = -\varphi_2$ ), расстояние *d* между их главными плоскостями равно половине фокусного расстояния второго компонента. Придавая отрицательной линзе менискообразную форму с вогнутостью, обращенной к объективу, можно получить поле до 180°. Однако дисторсия этого объектива не может быть характеризована обычным образом: она становится бесконечно большой у краев поля.

Развивая идею Гилля и усложняя второй компонент системы, в 1932 году Шульц описал оптическую схему пятилинзового объектива (рис. IV, 14, б), имевшего угол поля зрения 135° при относительном отверстии 1 : 5,6. Объектив Шульца был изготовлен при фокусном расстоянии 35 мм и нашел применение в метеорологии для фотографирования небесного свода с целью регистрации и измерения облачности. Заметим, что искажение контуров изображений, даваемых такими объективами, настолько велико, что распознавание предметов на таком снимке затруднительно. Несколько дисторзирующих объективов с меньшим углом поля, но с лучшим исправлением аберраций в 30-х годах были успешно рассчитаны В. Чуриловским. По этим расчетам были изготовлены образцы.

Дисторзирующие объективы обладают огромной отрицательной дисторсией, вследствие чего величины углов  $\omega'$  главных лучей с оптической осью в пространстве изображений значительно меньше углов  $\omega$ , образованных этими же лучами в пространстве предметов. Это свойство приводит к более равномерному распределению освещенности изображений по полю, что непосредственно следует из формулы (I, 124):

$$\frac{E'_{\omega'}}{E'_0} = \frac{S'_{3p}}{S'_{3p}} \cos^4 \omega', \qquad (IV, 49)$$

где  $E'_0$  и  $E'_{w'}$  — освещенности элементов изображений соответственно в центре поля и в точке вне оси, определяемой углом w';  $S'_{3p}^{w'}$  и  $S_{3p}^{'0}$  площади сечений плоскостью выходного зрачка лучей осевого и наклонных пучков, сходящихся соответственно в точке на оси и вне оптической оси.

В начале 40-х годов вновь пробудился интерес к особо широкоугольным дисторзирующим объективам в связи с выяснившейся возможностью повышения их оптических качеств, в частности разрешающей способности. Однако одновременно и параллельно с разработкой самого объектива производилась разработка оптической репродукционной системы для камеральной обработки негатива, обладающей в свою очередь соответствующей дисторсией, восстанавливающей при репродуцировании масштабные искажения негатива.

В частности, известны работы в этом направлении немецких оптиков фирмы «Цейсс», приведшие к созданию широкоугольного аэрофотообъектива «Плеон» с фокусным расстоянием 72,5 мм, относительным отверстием 1 : 8 и углом поля зрения более 130°. Объектив имеет сравнительно простую оптическую схему (рис. IV, 14, в), состоящую из четырехлинзового компонента типа «Топогон» и расположенного далеко впереди отрицательного двухлинзового компонента; позади объектива помещена плоскопараллельная пластинка, являющаяся светофильтром. В пространстве изображений угол поля зрения «Плеона» не превышает  $84^{\circ}$ ; соответственно этому достигается повышенная равномерность распределения освещенности изображения по полю. Фотографическая разрешающая сила в центре поля составляет несколько более  $80 \ mm^{-1}$  с плавным снижением до  $18 \ mm^{-1}$  на краю поля. Однако при последующем трансформировании аэроснимка репродукционной камерой удовлетворительных результатов получить не удалось; работы этого направления дальнейшего развития не получили.

Неожиданный интерес появился к широкоугольным дисторзирующим объективам высокой светосилы в связи с возникшими задачами киносъемки широкоформатных 70-*мм* фильмов (см. главу V).

Съемка широкоформатных кинофильмов ортоскопическими объективами с полями зрения 90—100° и более приводит к неприятно воспринимаемым наблюдателями искажениям естественной перспективы. Наиболее простым решением, но лишь частично исправляющим этот дефект, является введение отрицательной дисторсии в разрабатываемые съемочные объективы: приблизительно 5% в системы с полем зрения до 90° и около 8—10% в системы с полем зрения 100°. Введение большей дисторсии приводит к недопустимому искривлению линий контуров наблюдаемых изображений в целом.

В заключение упомянем группу широкоугольных светосильных концентрических объективов, обладающих сферической поверхностью изображения. Эти объективы имеют единую точку на оптической оси, в которой расположены центры кривизны всех преломляющих (а также отражающих, если таковые имеются) поверхностей объектива и через которую проходят главные лучи наклонных пучков различных наклонов. Это свойство делает возможным и достаточным коррекцию в системе лишь аберраций осевого пучка: сферической аберрации и хроматизма положения. При этом полевые аберрации вследствие симметрии системы оказываются корригированными автоматически для сферической поверхности изображений, радиус которой равен фокусному расстоянию объектива. Эти системы позволяют достигнуть весьма хорошей коррекции аберраций для следующих оптических характеристик: до отверстий 1 : 2,5 при поле зрения 120° — у линзовых объективов и до 1 : 0,7—1 : 0,8 при поле зрения 25—30° — у зеркально линзовых систем.

В частности, нами разработаны объективы «Сферогон» (рис. IV, 14, *г*), имеющие простую шестилинзовую оптическую схему. Фокусное расстояние образцов объектива 100 *мм*, относительное отверстие 1 : 3 и угол поля зрения 120°. Концентрические свойства объектива были частично нарушены введением внутрь системы центрального затвора, расположенного в иммерсии, заполняющей пространство между внутренними линзами. В этой же иммерсии находится ирисовая диафрагма. Однако концентричность системы была этим незначительно нарушена, что обеспечило малое снижение разрешающей силы объектива от центра к краям поля зрения.

Как показали фотографические испытания объектива на фотомате-

риале типа 17 ( $N = 120 \text{ мм}^{-1}$ ), объектив разрешает в центре поля 65 мм $^{-1}$ с постепенным и плавным снижением разрешающей силы до 50 мм<sup>-1</sup> на краю поля зрения 120°. Освещенность изображений снижается от центра к краю поля пропорционально лишь первой степени косинуса угла поля зрения и, следовательно, достигает на краю поля 50% от величины освещенности в центре поля. Особенностью этих объективов, ограничивающей области их возможного применения, являются масштабные искажения изображений, возникающие вследствие отображения плоскости объектов на сферическую поверхность изображений. Однако возможно сочетать подобные объективы с плоско-вогнутыми линзами, состоящими из конических волоконных элементов. Такие волоконные линзы (фоконы) исправляют не только кривизну поверхности изображения, но, в зависимости от заданного относительного расположения волоконных элементов, образующих линзу, позволяют достигнуть любого исправления дисторсии, а следовательно, и масштаба изображения по полю. В частности, возможна полная коррекция масштабных искажений, но падение освещенности изображений станет пропорциональным третьей степени косинуса угла поля зрения.

Мы пока оставили в стороне вторую и притом практически наиболее интересную группу широкоугольных систем—ортоскопических объективов, отведя им место в главе VI, поскольку эти объективы в настоящее время являются единственными, применяющимися в аэрофотосъемке для проведения топографических работ.

#### § 6. НОРМАЛЬНЫЕ И СВЕТОСИЛЬНЫЕ ТЕЛЕОБЪЕКТИВЫ

Телеобъективом назовем оптическую систему, у которой расстояние L от первой преломляющей поверхности до задней фокальной плоскости меньше фокусного расстояния f' объектива. Величина L слагается из суммарной толщины  $\Sigma d$  собственно объек-

Величина L слагается из суммарной толщины  $\Sigma d$  собственно объектива и расстояния s' от последней поверхности до фокальной плоскости:

$$L = \sum d + s'. \tag{IV,50}$$

Рационально ввести величину T — коэффициент телеукорочения, понимая под последним отношение:

$$T = \frac{f'}{L} = \frac{f'}{\sum d + s'} .$$
 (IV,51)

Вводимое некоторыми авторами понятие телефотоувеличения  $\Gamma$  как отношения фокусного расстояния f' системы к ее заднему фокальному отрезку s', следует считать неудачным, так как при этом не учитывается собственная длина  $\Sigma d$  объектива.

Для наиболее часто применяющихся на практике двухкомпонентных телесистем, обозначив через *d* расстояние между главными плоскостями компонентов, получим:

$$\varphi = \varphi_1 + \varphi_2 - d\varphi_1 \varphi_2 = 1, \qquad (IV, 52)$$

где  $\varphi_1$  и  $\varphi_2$  — приведенные оптические силы компонентов, т. е. определенные при  $\varphi = 1$ .

В предварительных исследованиях оптических свойств телеобъективов положим, что компоненты тонкие; в этом случае  $\Sigma d = d$  и выражение (IV, 51) примет вид:

$$T = \frac{f'}{d+s'} = \frac{f'}{L} . \tag{IV,53}$$

Величина укорочения *Т* телеобъектива зависит от коэффициента Петцваля S<sub>IV</sub>. Установим эту зависимость.

Теория дает (см. главу II) следующее выражение для коэффициента S<sub>IV</sub> системы, состоящей из *i* тонких компонентов:

$$S_{\rm IV} = \Sigma \,\pi_i \,\varphi_i \,, \qquad ({\rm IV}, 54)$$

где множитель  $\pi_i$  *i*-го компонента в свою очередь зависит от оптических сил  $\varphi_j$  линз и показателей преломления  $n_j$  стекол линз, входящих в *i*-й компонент:

$$\pi_i = \sum_{j=1}^{j=0} \frac{\varphi_j}{n_j}; \qquad (IV,55)$$

суммирование производится для всех  $\theta$  линз *l*-го компонента.

Для двухкомпонентной телесистемы из (IV, 54) получаем следующее соотношение между оптическими силами компонентов:

$$\varphi_2 = \frac{S_{\rm IV} - \pi_1 \varphi_1}{\pi_2} \,. \tag{IV,56}$$

Из равенства (IV, 52) имеем:

$$d = \frac{(\pi_2 - \pi_1) \varphi_1 + S_{\rm IV} - \pi_2}{\varphi_1(S_{\rm IV} - \pi_1 \varphi_1)} \,. \tag{IV,57}$$

Расстояние s' выражается следующей формулой:

$$s' = \frac{\pi_2 (1 - \varphi_1)}{S_{1V} - \pi_1 \varphi_1} . \tag{IV,58}$$

Из (IV, 53), (IV, 57) и (IV, 58) находим искомое:

$$T = \frac{\varphi_1 \left( S_{IV} - \pi_1 \varphi_1 \right)}{\left( S_{IV} - \pi_1 \varphi_1 \right) - \left( 1 - \varphi_1 \right)^2 \pi_2} \,. \tag{IV,59}$$

Таким образом, коэффициент укорочения телеобъектива T является функцией S<sub>IV</sub> и оптической силы  $\varphi_1$  первого компонента.

Определим минимально возможные габариты телеобъектива. Рассматривая величину T как функцию  $\varphi_1$  при заданной четвертой сумме Зейделя  $S_{IV}$ , из (IV, 59) найдем производную  $\frac{\partial T}{\partial \varphi_1}$  и, положив ее равной нулю, находим экстремальное значение  $\varphi_1$ :

$$\varphi_{1 \text{ skcrp}} = \frac{\left(1 - \frac{S_{1V}}{\pi_2}\right) + \left(1 - \frac{S_{1V}}{\pi_1}\right) \sqrt{1 - \frac{S_{1V}}{\pi_2}}}{\left(1 - \frac{\pi_1}{\pi_2}\right) + \left(1 - \frac{S_{1V}}{\pi_1}\right)} . \quad (IV, 60)$$

Это значение  $\varphi_1$  определяет минимальные габариты телесистемы:

$$d_{\mathfrak{s}\mathfrak{g}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} = \frac{(\pi_2 - \pi_1) \,\varphi_{1\,\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} + S_{1V} - \pi_2}{\varphi_{1\,\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} \,(S_{1V} - \pi_1 \,\varphi_{1\,\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}})};$$

$$s'_{\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} = 1 - d_{\mathfrak{s}\mathfrak{g}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} \,\varphi_{1\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}};$$

$$T_{\mathfrak{s}\mathfrak{g}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} = \frac{1}{d_{\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}} + s'_{\mathfrak{s}\mathfrak{k}\mathfrak{c}\mathfrak{T}\mathfrak{p}}}.$$
(IV,61)

Как следует из (IV, 60), величина  $\varphi_{1_{3 \text{кстр}}}$  является вещественной, если  $S_{1V} < \pi_2$ . Как известно, при существующих константах оптических стекол параметр  $\pi$  может принимать лишь положительные значения.

Если положить  $\pi_1 = \pi_2 = \pi$ , выражения (IV, 60) и (IV, 61) принимают простой вид:

$$\varphi_{1 \ni K CTP} = 1 + m;$$

$$d_{\Im K CTP} = \frac{m}{(1 + m)^2};$$

$$s'_{\Im K CTP} = \frac{1}{1 + m};$$

$$T_{\Im K CTP} = \frac{(1 + m)^2}{1 + 2m};$$
(IV,62)

где  $m = \sqrt{1 - \frac{S_{IV}}{\pi}}$ .

Если  $S_{1V} = \pi$ , из (IV, 62) имеем: m = 0;  $\varphi_{1 \ экстр} = 1$ ;  $d_{3кстр} = 0$ ;  $s'_{3кстр} = 1$ ;  $T_{3кстр} = 1$ , т. е. телесистема вырождается в обычный тонкий однокомпонентный объектив.

У современных оптически наиболее совершенных телеобъективов с большим углом поля зрения (около 30°) величина  $S_{IV}$  имеет значение около нуля, что обеспечивает возможность исправления кривизны поверхности изображения. Для подобных телеобъективов из (IV, 62) находим:

$$m = 1; \quad \varphi_{1 \ni \mathbf{x}_{CTP}} = 2; \quad d_{\Im \mathbf{x}_{CTP}} = \frac{1}{4}; \quad s'_{\Im \mathbf{x}_{CTP}} = \frac{1}{2};$$
  
 $T_{\Im \mathbf{x}_{CTP}} = \frac{4}{3}.$  (IV,63)

т. е. длина линзовой телесистемы L = d + s' в экстремальном случае составляет 75% от величины фокусного расстояния при длине са-

мого телеобъектива около 25% от величины его фокусного расстояния Заметим, что применение схем зеркально-линзовых телеобъективов (см. § 7 этой главы) позволяет приблизительно в два раза сократить общую длину системы, но при этом в три-четыре раза уменьшается угол поля зрения: вместо 25—30° у линзовых телеобъективов получаем не более 6—7° у телеобъективов зеркально-линзовых.

При очень малых углах поля зрения нет необходимости строго корригировать петцвалеву кривизну поверхности изображения и, следовательно, оказывается возможным допустить существенное отклонение коэффициента S<sub>IV</sub> от нулевых значений; при этом габариты телеобъектива претерпевают дальнейшее сокращение.

В табл. IV, 2 приведены оптимальные значения гауссовых элементов линзового телеобъектива, соответствующие различным величинам  $S_{1V}$ , вычисленные из (IV, 62).

Таблица IV,2

| s <sub>IV</sub> | π     | 0     | —π    | —2π   | —3π   | 4π   | 5π   | 6π   |
|-----------------|-------|-------|-------|-------|-------|------|------|------|
| φı              | 1,000 | 2,000 | 2,414 | 2,730 | 3,000 | 3,24 | 3,45 | 3,64 |
| d               | 0,000 | 0,250 | 0,243 | 0,232 | 0,222 | 0,21 | 0,21 | 0,20 |
| s'              | 1,000 | 0,500 | 0,414 | 0,366 | 0,333 | 0,31 | 0,29 | 0,28 |
| T               | 1,000 | 1,333 | 1,520 | 1,672 | 1,802 | 1,92 | 2,02 | 2,11 |
| L               | 1,000 | 0,75  | 0,657 | 0,598 | 0,555 | 0,52 | 0,50 | 0,47 |

Экстремальные значения гауссовых элементов как функции s<sub>IV</sub>

Обращаем внимание, что даже полный отказ от коррекции кривизны поля (что допустимо у телеобъективов лишь при полях зрения  $1-2^{\circ}$  и при относительных отверстиях около 1:15-1:20) позволяет построить телеобъектив, у которого общая длина L = d + s' составляет лишь около 50% от величины фокусного расстояния. Из таблицы также следует, что переход к телеобъективам с исправленной кривизной поля ( $S_{1v} = 0$ ) приводит к возрастанию их габаритов до 75% от величины фокусного расстояния.

Действительно, многолетние разработки и исследования телеобъективов, выполненные у нас и за рубежом, подтвердили этот факт. Однако эти же исследования показали, что у подобных телеобъективов не может быть исправлена аберрация дисторсии. В наилучших известных старых телеанастигматах дисторсия достигала 5—7% при углах поля зрения 25—30°. Одно время даже казалось, что принципиально невозможно в простейших двухкомпонентных телеобъективах корригировать кривизну поля и дисторсию одновременно.

Рациональные пути создания ортоскопических и анастигматических телесистем с исправленной кривизной поверхности изображения были в начале 40-х годов намечены немецким оптиком д-ром Рихтером, разработавшим ортоскопические телеобъективы «Теликон» (фирма «Цейсс») и автором, разработавшим теорию и метод расчета ортоскопических и плананастигматических телеобъективов [3] и выполнившим в 1940—1943 годах совместно с Ш. Печатниковой и М. Персиной разработку группы телеобъективов «Телемар», а в дальнейшем (1954—1956) группы еще более совершенных «нерасстраивающихся» телеобъективов «Ленинград» для аэросъемки.

Действенность этой теории и методики расчета была подтверждена нами при разработке более совершенных двухкомпонентных шестилинзовых телеобъективов «Телегоир». Некоторые результаты этих разработок изложены в главе VI. Здесь же кратко остановимся на резюмирующих результатах исследований [3]. Было показано, что выбор при проектировании телеобъективов отправных экстремальных значений гауссовых элементов (IV, 63) является ошибочным, так как приводит к оптической схеме телеобъектива, в котором, в частности, невозможно корригировать аберрацию дисторсию.

Для достижения высокой коррекции всех аберраций, включая дисторсию, необходим прежде всего рациональный выбор отправных гауссовых элементов телесистемы с отступлением от их экстремальных значений (IV, 63); существенным параметром при решении этой задачи является правильный выбор оптической силы  $\varphi_1$  первого компонента.

Теория аберраций показывает, что при условии коррекции всех монохроматических аберраций третьего порядка ( $S_1 = S_{11} = S_{111} = S_{112} = S_{122} = S_$ 

$$P_{1} = 2 (3 + \pi) (\varphi_{1} - 1)^{2};$$

$$W_{1} = -(3 + \pi) (\varphi_{1} - 1);$$

$$P_{2} = \frac{2 (3 + \pi) (\varphi_{1} - 2) \varphi_{1}^{3} + [2 (2 + \pi) \varphi_{1} + 1] \varphi_{1}}{(\varphi_{1} - 1)^{3}};$$
(IV,64)

$$W_2 = \frac{\varphi_1}{\varphi_1 - 1} [2 + \pi - (3 + \pi) \varphi_1].$$

Для экстремального решения (IV, 63), т. е. при ф іэкстр = 2, имеем:

$$P_{1} = 2 (\pi + 3); \quad W_{1} = -(\pi + 3); \quad P_{2} = 2 (4\pi + 9);$$
$$W_{2} = -2 (\pi + 4). \tag{IV,65}$$

Требования к основному параметру второго компонента  $P_2$  при простой его оптической схеме практически нереализуемы; однако достаточно несколько уменьшить численное значение  $\varphi_1$ , и величина  $P_2$  быстро уменьшится. При этом несколько возрастет длина телесистемы. Остановимся подробнее на рациональной области решений — оптимальной не только с точки зрения параксиальной оптики, но и теории аберраций третьего порядка.

Из формул (IV 57) и (IV, 58) находим выражение L длины телесистемы при условии  $S_{IV} = 0$ :

$$L = \frac{(\varphi_1^2 - 1)^2 + \rho \varphi_1}{\rho \varphi_1^2}, \qquad (IV,66)$$

где  $p = \frac{\pi_1}{\pi_2}$ . Минимальная длина телеобъектива  $L_{3\kappa_{cT}p}$  определится из (IV, 61):

$$L_{_{\mathfrak{skcrp}}} = 1 - \frac{1}{4} p.$$
 (IV.67)

Определим удлинение телесистемы при отказе от выбора экстремального значения для величины ф<sub>1экстр</sub>. Из (IV, 66) и (IV, 67) находим:

$$\delta = \frac{L - L_{\mathfrak{s}\mathfrak{K}\mathfrak{C}\mathfrak{T}\mathfrak{p}}}{L_{\mathfrak{s}\mathfrak{K}\mathfrak{C}\mathfrak{T}\mathfrak{p}}} = \frac{\left[(p-2) + \frac{2}{\varphi_1}\right]^2}{4p\left[1 - \frac{1}{4}p\right]}.$$
 (IV,68)

При  $\pi_1 = \pi_2 = \pi$  величина p = 1 и относительное удлинение  $\delta$  определится из формулы:

$$\delta = \frac{1}{3} \left( 1 - \frac{2}{\varphi_1} \right)^2 100 \% .$$
 (IV,69)

В табл. IV, 3 приведены значения  $\delta$ , определенные для ряда значений  $\varphi_1$  (вблизи экстремального значения  $\varphi_1 = 2$ ).

Таблица IV,3

Значения параметра δ как функции φ1

| φ1  | 1,50  | 1,60  | 1,75  | 2,00  | 2,50  | 3.00  |
|-----|-------|-------|-------|-------|-------|-------|
| δ % | 3,70  | 2,08  | 0,67  | 0     | 1,33  | 3,70  |
| d   | 0,444 | 0,391 | 0,327 | 0,250 | 0,160 | 0,111 |
| s'  | 0,333 | 0,375 | 0,428 | 0,500 | 0,600 | 0,667 |
| L   | 0,777 | 0,766 | 0,755 | 0,750 | 0,760 | 0,778 |

Рассмотрение таблицы показывает, что при изменении оптической силы первого компонента  $\varphi_1$  в довольно широких пределах общая длина системы L = d + s' возрастает не более чем на 3—4%. Между тем в системе существенно изменяется расположение компонентов относительно фокальной плоскости и друг друга.

тельно фокальной плоскости и друг друга. Как следует из формулы (IV, 64), если принять численные значения φ<sub>1</sub> (вместо экстремальной величины φ<sub>1экстр</sub> = 2) в пределах

$$1,5 < \varphi_1 < 1,7,$$
 (IV,69')

то все величины P и W основных параметров компонентов телеобъектива оказываются в пределах практически реализуемых значений, что и обеспечивает возможность создания не только апланатических и анастигматических, но и ортоскопических телеобъективов; при этом возрастание длины телесистемы не превышает 2% от экстремального значения  $L_{\text{экстр}}$ .

Эта область решений, как показали наши исследования при разработке телеобъективов «Телемар», а позднее нерасстраивающихся телеобъективов «Ленинград» и «Телегоир», является областью оптимальной не только с точки зрения параксиальной оптики, но и теории аберраций. Там же [3] приводится анализ хроматических свойств телеобъективов, а также малогабаритных телесистем с неисправленной кривизной поля и астигматизмом.

Не меньшее значение и весьма широкое распространение получили телеобъективы малого телеукорочения *T*, но повышенной светосилы. Типичным представителем этих систем является группа телеобъективов «Таир», нашедших применение в любительской и профессиональной фотографии, кинематографии, телевидении и других областях.

Нормальные линзовые телеобъективы — анастигматы имеют общую длину, не превышающую 80—86% от величины их фокусного рас-



Рис. IV, 15. К расчету телеобъективов типа «Таир»

стояния; длина светосильных телеобъективов достигает 90—95% от величины их фокусного расстояния. При этом величины относительных отверстий 1 : 4—1 : 3, а в некоторых случаях 1 : 2,8—1 : 2,5, в то время как отверстия нормальных телеобъективов остаются в пределах 1 : 7—1 : 5 и лишь иногда достигают значений 1 : 4,5.

Исследование и разработка телеобъективов повышенной светосилы были начаты в 1941—1942 годах, когда

решались задачи создания наземной фотоаппаратуры для фоторегистрации весьма удаленных объектов в условиях пониженных освещенности и сумерках. Осенью 1943 года автором была разработана оптическая схема светосильной телесистемы «Таир».

Большая группа современных анастигматов по своим оптическим схемам может быть рассматриваема как сложные комбинации из двух половинок, каждая из которых чаще всего представляет в свою очередь двухкомпонентную систему, один из компонентов которой является тонким, а другой — компонентом большой толщины; компонент большой толщины, часто имеющий форму простого или сложного мениска, служит в системе плананастигматическим компенсатором кривизны поля и астигматизма. Как тонкий компонент такого дуплета, так и плананастигматический компенсатор могут быть сложными комбинациями из нескольких склеенных или несклеенных линз.

Такой обобщенный дуплет, как показали исследования [3], может быть корригирован в отношении всех монохроматических аберраций (исключая дисторсию). Приходим к оптической схеме системы «Таир» (рис. IV. 15).

Система типа «Таир» определяется десятью параметрами: тремя внешними элементами (оптическими силами тонкого компонента  $\varphi_1$ , мениска  $\varphi_M$  и расстоянием d между их главными плоскостями); тремя оптическими конструктивными элементами мениска (его толщиной  $d_M$ , показателем преломления материала n, радиусом преломляющей поверхности  $r_1$ , так как второй радиус  $r_2$  следует из значения  $\varphi_M$ ) и

аберрационными параметрами четырьмя тонкого компонента телеобъектива.

Эти параметры взаимосвязаны восемью условиями: 1. Условие масштаба:

$$\varphi_1 + \varphi_M - d\varphi_1 \varphi_M = 1. \qquad (IV,70)$$

2. Условие Петцваля:

$$S_{IV} = \pi_1 \varphi_1 + \frac{n+1}{n} \varphi_M. \qquad (IV,71)$$

3. Условие выбора оптических констант стекол тонкого компонента и их связи с параметрами π<sub>1</sub> и C<sub>1</sub>:

$$\pi_{1} = \frac{\left(\frac{\nu_{4}}{n_{4}} - \frac{\nu_{2}}{n_{2}}\right) - \nu_{2}\nu_{4}\left(\frac{1}{n_{2}} - \frac{1}{n_{4}}\right)C_{1}}{\nu_{4} - \nu_{2}}, \qquad (IV, 72)$$

где  $n_2$ ;  $v_2$  и n;  $v_4$  — показатели преломления и дисперсии соответственно первой и второй линз тонкого компонента. 4. Условие ахроматизации мениска [3]:

$$r_1 - r_2 \approx \frac{n^2 - 1}{n^2} d_{\rm M},$$
 (IV,73)

при выполнении которого, а также при ахроматизации тонкого компонента (C<sub>1</sub> = 0) система в целом стабильно ахроматизуется. 5. Выражение оптической силы φ<sub>M</sub> ахроматического мениска:

$$\varphi_{\rm M} \approx -\left(\frac{n-1}{n}\right)^2 \frac{d_{\rm M}}{r_1 r_2} \,. \tag{IV,74}$$

6. Условие исправления сферической аберрации системы для бесконечно удаленной плоскости предметов:

$$S_{\mathfrak{l}\infty} = \overline{S}_{\mathfrak{l}}^{(1)} + \overline{S}_{\mathfrak{l}}^{(2)} = \varphi_{\mathfrak{l}}^{\mathfrak{g}} P_{\mathfrak{l}} + \overline{S}_{\mathfrak{l}}^{(2)} = \overline{A}.$$
(IV,75)

7. Условие исправления комы:

$$S_{II \infty} = \overline{S}_{II}^{(1)} + \overline{S}_{II}^{(2)} = \varphi_1^2 W_1 + \overline{S}_{II}^{(2)} = \overline{B}.$$
 (IV,76)

8. Условие исправления астигматизма:

$$S_{III \ \infty} = \overline{S}_{III}^{(1)} + \overline{S}_{III}^{(2)} = \varphi + \overline{S}_{III}^{(2)} + \overline{C}. \qquad (IV,77)$$

В число этих условий мы не включили коррекцию дисторсии ( $S_{V\infty} = 0$ ), так как в системе «Таир» отсутствуют параметры, могущие ее полностью корригировать, и эта аберрация, положительная по знаку, неизбежно присутствует.

Два оставшихся свободными параметра можно использовать в ка-

честве независимых переменных; таковыми приняты переменные n и d. Предположив, что плоскость предметов бесконечно удалена ( $s_1 = -\infty$ ), а плоскость входного зрачка совмещена с тонким компонен-

том ( $x_1 = 0$ ), приходим к следующим выражениям для коэффициентов аберраций (см. главу II) всей системы:

$$S_{1\infty} = \varphi_1^3 P_1 + em^2 f'_{M} [m^2 S_{1\infty}^{(t_M)} - 4m S_{11\infty}^{(t_M)} + 2 (3S_{111\infty}^{(t_M)} + S_{11}^{(t_M)}) + m - 3] = A; \qquad (a)$$

$$S_{II\,\infty} = \varphi_1^2 W_1 + em \left[ m^2 dS_{I\,\infty}^{(t_M)} - m \left( 4d - f_I \right) S_{II\,\infty}^{(t_M)} + \left( 2d - f_I^{'} \right) \left( 3S_{III\,\infty}^{(t_M)} + S_{IV}^{(t_M)} \right) - \left( 2d - f_I^{'} \right) = \overline{B}; \quad (6)$$

$$S_{111\ \infty} \approx \varphi_{1} \left\{ 1 + d^{2} m^{2} \varphi_{M} \frac{n (n+1)}{(n-1)^{2}} K^{2} + 2dm (2d - f_{1}') \varphi_{1} \frac{n}{(n-1)^{2}} K + \left[ (6d - f_{1}') m + d\varphi_{M} f_{1}' \right] \frac{1}{n (n-1)} + 2dm \frac{(n+1)}{n} - d^{2} (1-m) \overline{\varphi}_{M} - 2md \right\} = \overline{C} , \qquad (B)$$

где  $f'_1 = \frac{1}{\varphi_1}$ ;  $f'_M \frac{1}{\varphi_M}$ ;  $S^{(t_M)}_{I \infty}$ ;  $S^{(t_M)}_{II \infty}$ ;  $S^{(t_M)}_{II 1 \infty}$  — коэффициенты аберраций мениска при бесконечно удаленной плоскости предметов и при входном зрачке, совмещенном с передней главной плоскостью мениска ( $x_1 = t_M$ ):

$$t_{M} = \frac{nr_{1}}{n-1}; \quad m = \frac{d-f_{1}'}{f_{M}'}; \quad e = \frac{1}{f_{1}'-(d-t_{M})};$$
$$K = \sqrt{\frac{-f_{M}'}{d_{M}}}.$$

Можно показать [3] существование приближенных зависимостей:

$$S_{1\infty}^{(t_{M})} \approx \frac{n(n+1)}{(n-1)^{2}} K^{2}; \quad S_{11\infty}^{(t_{M})} \approx -\frac{n}{(n-1)^{2}} K$$
$$S_{111}^{(t_{M})} \approx \frac{1}{n(n-1)}; \quad S_{1V}^{(t_{M})} = \frac{n+1}{n}.$$

При выводе формул (IV, 77') коэффициент сферической аберрации в выходном зрачке  $S_{1x}^{(t_M)}$  был принят равным нулю, в допустимости чего можно убедиться из анализа выражения:

$$S_{ix}^{(t_M)} = \frac{(n+1)(1+n-n^2)}{n^3(n-1)^2} d_M.$$

Кроме того, выражение для  $S_{III\infty}$  (IV, 77', в) — приближенное; оно квадратично относительно параметра K и, таким образом, расчет системы «Таир» выполняется в следующей простой последовательности:

1. При выбранных стеклах тонкого компонента, задавшись независимыми параметрами n и d, находим  $\pi$  (IV, 72) при заданных  $C_1$  (обычно  $C_1 \approx 0$ ) и  $S_{IV}$ .

3. Задаваясь  $S_{III\infty} = \overline{C}$ , из квадратного уравнения (IV, 77', в) определяется K, а затем толщина мениска  $d_M$ .

4. Из совместного решения уравнений (IV, 73) и (IV, 74) определяются радиусы поверхностей мениска  $r_1$  и  $r_2$ , а из (IV, 77' *a*) и (IV, 77',  $\delta$ ) — основные параметры  $\tilde{P}_1$  и  $W_1$  тонкого компонента, соответственно задаваемым в первом приближении величинам  $\overline{A}$  и  $\overline{B}$  с учетом оптических характеристик системы; эти величины уточняются во второй стадии расчета — после определения аберраций высших порядков на основании расчета хода лучей:

 $S_{1 \infty} \approx 0.2; \quad S_{11 \infty} \approx -0.05; \quad S_{111 \infty} \approx 0.03; \quad S_{1V} \approx 0.1.$ 

Для уменьшения аберраций высших порядков рационально в тонком компоненте применять тяжелые кроны в сочетании с тяжелыми флинтами или, наоборот, легкие кроны в комбинации с легкими флинтами. Марки стекол, применяемые в мениске, должны иметь возможно малый показатель преломления *n*. Увеличение расстояния *d* между главными плоскостями компонентов приводит к лучшей коррекции осевых пучков, но при этом возрастают аберрации комы и астигматизма.

Оптическая схема «Таира», обладая исключительной простотой, обеспечивает следующие области возможных оптических характеристик: у длиннофокусных систем с фокусным расстоянием до 1000 *мм* относительные отверстия не превышают 1:5—1:4 при полях зрения около 10°; у объективов средних фокусных расстояний (200—300 *мм*) отверстия могут достигать значений 1:3,5—1:3 при полях зрения до 15° и у короткофокусных систем (50 — 150 *м*) — значений 1:2,5 при полях зрений до 20°.

При усложнении фронтального компонента — применении трехи четырехлинзовой комбинации, а также при переходе от простого отрицательного мениска к более сложному компоненту относительное отверстие системы может быть повышено от 1 : 1,5 и более.

За последние годы на основе этой оптической схемы было создано много вариантов объективов различных характеристик для фотографии, кинематографии и телевидения (см. главы V и VIII), а развитие конструктивной идеи этой схемы привело к высококачественным апохроматам «Апо-Таир» (см. главу IX).

### § 7. ЗЕРКАЛЬНО-ЛИНЗОВЫЕ ОБЪЕКТИВЫ — СВЕТОСИЛЬНЫЕ И ДЛИННОФОКУСНЫЕ

Уместно применение зеркальных или зеркально-линзовых систем в двух случаях:

1) для создания особо светосильных зеркальных объективов с малыми полями зрения (1—2°) и зеркально-линзовых систем со средними (5—6°) и большими (25—30°) полями зрения; 2) для создания особо длиннофокусных зеркальных телеобъективов с малыми полями зрения (0,5—1°) и зеркально-линзовых систем с полями зрения до 4—5°.

Мы оставляем в стороне рассмотрение чисто зеркальных схем объективов, так как практически не реализованы возможности создания на их основе объективов-анастигматов с достаточно большим полем; даже на основе применения схемы двухзеркальной системы, состоящей из вогнутых асферических зеркал (система типа Грегори), в 1905 году Шварцшильдом был рассчитан апланатический объектив с относительным отверстием 1 : 3 и с малым полем зрения (лишь около 2°), с изображением, расположенным внутри системы, т. е. между зеркалами.



Рис. IV, 16. Оптические схемы особосветосильных зеркально-линзовых систем: а — Шмидта; б — Бауэрса; в — Волосова — Бабинцева

В несколько лучшем решении также двухзеркальной системы, состоящей из двух асферических зеркал — малого выпуклого и большого вогнутого (система типа Кассегрена), — удалось А. Кретьену (Париж) в 1922 году добиться поля зрения около 4° при относительном отверстии около 1 : 7.

Создание анастигматических систем требует введения линзовых компенсаторов, назначение которых — компенсировать остаточные аберрации зеркальной части системы.

С некоторой условностью можно указать три основные группы зер-кально-линзовых систем:

1. Системы, имеющие расположенную в центре сферического зеркала, коррекционную асферическую пластинку (системы Б. Шмидта, рис. IV, 16, *a*), или коническую линзу, расположенную позади концентрического выпуклого мениска (системы А. Бауэрса, рис. IV, 16, *б*), или коническую линзу впереди вогнутого концентрического мениска (системы Д. Волосова — В. Бабинцева, рис. IV, 16, *в*).

Все эти системы позволяют достигнуть особо больших относительных отверстий — до 1:0,7, при полях зрения 25—30°; во всех системах поверхность изображения — выпуклая сферическая с радиусом кривизны, равным фокусному расстоянию объектива. Система Б. Шмидта обладает хорошей коррекцией в центре поля и значительными аберрациями лучей широких наклонных пучков, быстро возрастающими по полю. Остальные две системы сохраняют высокое качество изображения по полю и по оптическим свойствам почти эквивалентны. Существенно меньших габаритов система Д. Волосова — В. Бабинцева, длина которой приблизительно на 1/3 меньше системы А. Бауэрса. 2. Системы, у которых в параллельном пучке лучей впереди сферического зеркала расположены линзовые афокальные компенсаторы сферической формы. Двухлинзовый афокальный компенсатор, примененный в системах различных вариантов в 1942—1943 годах Д. Волосовым, Д. Гальперном и Ш. Печатниковой [3].

Афокальный компенсатор, в линзах которого применены одинаковые марки оптических стекол, сохраняет апохроматические свойства и хорошо корригирует сферическую аберрацию и кому сферического зеркала до относительных отверстий 1 : 1—1: 1,4; размещение вблизи плоскости изображения положительной линзы позволяет при соответст-



Рис. IV, 17. Зеркально-линзовые системы со сферическими поверхностями; *а* — Волосова — Гальперна — Печатниковой; *б* — Максутова; *в* — Вина

вующем расстоянии афокального компенсатора от зеркала корригировать астигматизм при плоской поверхности изображения до углов поля 13—14°; при этом общая длина системы несколько превышает ее фокусное расстояние.

Системы с ахроматическим менисковым компенсатором, расположенным впереди сферического зеркала и корригирующим сферическую аберрацию и кому последнего (рис. IV, 17,  $\delta$ ). Система была предложена Д. Максутовым в 1941 году. Применение менискового компенсатора следует считать рациональным в системах с фокусными расстояниями до 1—2 *м* при относительных отверстиях до 1:2—1:3 и более длиннофокусных — при соответствующих меньших относительных отверстиях.

Фотографические объективы типа МТО и ЗМ (см. главу V) являются разновидностью менисковых систем.

К схемам этой же группы может быть отнесена катадиоптрическая система Вина (рис. IV, 17, в), все поверхности которой имеют также сферическую форму.

3. Системы, в которых линзовые компенсаторы расположены в сходящихся пучках лучей после зеркальной части. В 1933 году Росс установил афокальный двухлинзовый ахроматический компенсатор в сходящемся пучке лучей, отраженных от параболического зеркала для исправления комы последнего; в 1934 году В. Чуриловский поместил двухлинзовый афокальный компенсатор в пучке лучей, отраженных от сферического зеркала или двух сферических зеркал (в схеме Кассегрена), для исправления всех аберраций системы (рис. IV, 18, *a*). Применение этой схемы рационально в длиннофокусных системах с фокусными расстояниями в несколько метров и относительными отвер-

стиями 1:7—1:5, но при сравнительно невысоких требованиях к качеству оптического изображения.

Системы, в которых линзовый не афокальный компенсатор расположен в сходящемся пучке лучей после двух асферических зеркал типа Кассегрена (рис. IV, 18, б), могут быть применены для весьма совершенного исправления сферической аберрации, комы, астигматизма и кривизны поверхности изображения. Эта оптическая схема рациональна в длиннофокусных системах с повышенными относительными отверстиями (до 1:6—1:5) при высоких требованиях к качеству оптического изображения.

К схемам этой группы в какой-то мере может быть отнесена также зеркально-линзовая система Вина (рис. IV, 18, в), в которой применено



Рис. IV, 18. Схемы зеркально-линзовых систем: а — Чуриловского-Росса; 6 — Кассегрена с асферическими зёркалами; в — Вина

параболическое зеркало, асферическая коррекционная пластина и линзовый компенсатор в сходящемся пучке. В системе Вина также достигается удовлетворительная коррекция всех аберраций.

Особое место занимает специфическая группа дисторзирующих зеркально-линзовых широкоугольных систем, у которых углы поля зрения достигают 240° и более. Оптические схемы подобных систем возможны в различных вариантах (рис. IV, 19), но во всех случаях габа-



Рис. IV, 19. Оптические схемы широкоугольных дисторанрующих зеркально-линзовых объективов: a - c малым сферическим зеркалом; 6 - c малым плоским веркалом

риты таких объективов исключительно велики: как поперечные, так и продольные их размеры во много раз (иногда в десятки раз) превышают величину фокусного расстояния, а дисторсия достигает нескольких десятков процентов, что ограничивает возможные области их практического применения. Оптические свойства и специфические особенности наиболее распространенных перечисленных выше систем будут подробнее рассмотрены в соответствующих главах V, VI и VIII при описании объективов для фотографии, флюорографии и телевидения.

Остановимся лишь на сопоставлении их возможных оптических характеристик.

В зеркально-линзовых объективах углы поля зрения 2w ограничиваются не столько коррекционными возможностями, сколько быстро нарастающим виньетированием наклонных пучков. Для уменьшения виньетирования необходимо увеличивать относительное отверстие є системы. Следовательно, в зеркально-линзовых системах необходимо одновременно с расширением угла поля зрения 2w повышать и относительное отверстие є.

Во всех случаях, когда необходимо вторую фокальную плоскость вывести за пределы объектива, должна быть применена двухзеркальная схема, что неизбежно требует установки специальных цилиндрических или конических диафрагм, препятствующих появлению прямой засветки изображения.

Эти дополнительные диафрагмы наряду с центральным экранированием входного зрачка малым зеркалом вызывают большое виньетирование наклонных пучков и ограничивают поле зрения системы [3]. Даже при допущении 50% виньетирования на краю поля линейные размеры изображения не могут быть получены большими 0,5—0,6 диаметра входного зрачка объектива.

Это ограничение имеет довольно общий характер и распространяется почти на все группы зеркально-линзовых систем (за исключением систем особо дисторзирующих); оно может быть представлено неравенством:

tg 
$$w < \frac{1}{3} \epsilon$$
. (IV,78)

Таким образом, при разработке зеркально-линзовых систем уже в первой стадии определения их габаритов должны быть получены все гауссовы параметры системы, связанные с ее полем зрения относительным отверстием, допустимым экранированием входного зрачка и виньетированием наклонных пучков. Должен быть корригирован четвертый коэффициент аберраций S<sub>IV</sub>, зависящий лишь от гауссовых элементов системы:

$$S_{1V} = -\phi_1 + \phi_2 + \pi_3 \phi_3$$
, (IV,79)

где  $\varphi_1$ ,  $\varphi_2$  и  $\varphi_3$  — приведенные оптические силы соответственно зеркал и линзового компенсатора, т. е. при фокусном расстоянии системы, равном единице:

$$\varphi_1 = -\frac{1}{f_1'} = -\frac{2}{r_{6.3}}; \quad \varphi_2 = \frac{2}{r_{M.3}}; \quad \pi_3 = \sum_{j=1}^{j=0} \frac{\overline{\varphi}_j}{n_j},$$

где  $r_{6.3}$  и  $r_{M.3}$  — вершинные радиусы большого и малого зеркал;  $\varphi_j$  — приведенные оптические силы  $\theta$  линз третьего компонента (компенсатора) зеркально-линзовой системы фокусного расстояния F' = 1, для которой выполнена нормировка

$$\sum_{i=1}^{l=3} h_i \varphi_i = 1.$$

Для простой двухзеркальной системы, а также при афокальности линзового компенсатора, положив  $\varphi_3 = 0$ , находим:

$$S_{IV} = -\varphi_1 + \varphi_2. \qquad (IV,80)$$

Обозначив через  $\delta$  отношение высот пересечения крайним лучом осевого пучка (см. рис. IV, 18, *a*) поверхностей малого и большого зеркал:

$$\delta = \frac{h_2}{h_1}, \qquad (IV, 81)$$

для рассматриваемого решения получим:

$$\varphi_{i} = \frac{1 + \delta S_{IV}}{1 - \delta} . \qquad (IV, 82)$$

При  $S_{IV} = 0$  имеем:

$$\varphi_1 = \frac{1}{1-\delta} \, .$$

Габариты зеркально-линзовых систем также существенно зависят от допустимого экранирования входного зрачка; в рассматриваемом примере

$$d = -\frac{(1-\delta)^2}{1+\delta \cdot S_{1V}}, \qquad (IV,83)$$

где d — приведенное расстояние между зеркалами. В двухзеркальных системах это экранирование иногда определяется не только величиной  $\delta$ , но ичастично возрастает в результате введения дополнительных диафрагм, устраняющих паразитную засветку изображения.

В однозеркальных системах экранирование вызывается самим приемником изображений, который располагается внутри объектива. Величина допустимого экранирования зрачка выбирается в зависимости от относительного отверстия системы: в светосильных системах (1 : 1 — 1 : 1,5), в которых величина дифракционной разрешающей силы существенно превосходит таковую приемника, можно допустить экранирование до 0,7 диаметра входного зрачка; в системах средней светосилы (1 : 3—1 : 4) — до 0,5—0,6 диаметра зрачка; в системах невысокой светосилы (1 : 6—1 : 8) экранирование обычно допускается 0,3—0,5 диаметра входного зрачка. Указанное экранирование вызывает усиление яркости первого, второго и т. д. дифракционных колец и соответственно возрастают эффективные диаметры дифракционных пятен, которые должны оставаться меньшими линейного предела разрешения используемого приемника изображений.

Остановимся на габаритах основных типов рассмотренных систем — весьма важной их эксплуатационной характеристике.

Особо светосильные системы типа Б. Шмидта, А. Бауэрса и наших разработок (см. рис. IV, 16) с относительными отверстиями 1:0,7— 1:1 и полями 25—30° имеют большие длины, — в два, а иногда и в три раза (в системах А. Бауэрса) превосходящие величины фокусных расстояний объективов. Светосильные системы с расположенными впереди афокальными компенсаторами (см. рис. IV, 17, *a*) при относительных отверстиях 1:1—1:1,4 и полями зрения 10—15° имеют длины, несколько большие (на 20—30%) величин фокусных расстояний объективов.

Зеркально-менисковые системы Максутова (см. рис. IV, 17, б) при максимально возможных для них относительных отверстиях 1 : 1,2— 1 : 1,4 и полях зрения 8—10° имеют длины, в 1,5—2 раза превосходящие их фокусные расстояния. Эти габариты уменьшаются при разработке систем с уменьшенным относительным отверстием: например, зеркально-менисковая система с относительным отверстием 1 : 3 будет иметь длину лишь на 20—30% бо́льшую, чем ее фокусное расстояние.

Существенно меньшие габариты имеют двухзеркальные системы типа Кассегрена, которые поэтому могут быть названы зеркальными телеобъективами. Их длины в 1,5—2 раза меньше длин линзовых телеобъективов-анастигматов (см. § 6 этой главы). В сочетании с двухзеркальной системой могут успешно применяться линзовые компенсаторы аберраций различного типа; в частности, хорошее решение дает менисковый компенсатор Д. Максутова в сочетании с двухзеркальной системой Кассегрена и линзовым компонентом, расположенным в сходящемся пучке лучей, отраженных от малого зеркала, и корригирующим кривизну поля и астигматизм. Схема такого зеркально-линзового менискового телеобъектива (МТО) будет рассмотрена в главе V.

Задача создания длиннофокусных зеркально-линзовых телеобъективов-анастигматов с высоким качеством оптического изображения решается двухзеркальной схемой с асферическими зеркалами, позади которых расположен линзовый неафокальный компенсатор (см. рис. IV, 18, б). Общая длина этих систем, т. е. расстояние от малого зеркала до плоскости изображения, составляет около 45—50% от величины фокусного расстояния у объективов с относительными отверстиями 1 : 7— 1 : 8 и полями зрения 5—6° и несколько возрастает (до 50—55%) у объективов с относительными 0тверстиями 1 : 6—1 : 5.

# § 8. ОБЪЕКТИВЫ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ

Около 35 лет назад нами впервые были разработаны теория и метод расчета оптических анастигматических систем с переменными оптическими характеристиками, в частности объективов с переменным фокусным расстоянием [3]. В те годы подобные системы лишь начали появляться. В отличие от ранее существовавших апланатических панкратических систем зрительных труб, у которых относительные отверстия и поля зрения были малыми, новые системы должны были применяться в качестве фотографических, в частности киносъемочных объективов, а следовательно, должны были быть анастигматическими с достаточно большими полями зрения и высокой светосилой.

Конечно, первые варианты рассчитанных объективов были несовершенны как по своим оптическим качествам, так и по эксплуатационным параметрам. Ограниченная область их возможного применения (киносъемка), в которой к тому же существовал вполне конкурентноспособный способ съемки «наездом», ставила под сомнение целесообразность концентрации больших усилий для решения этой сложной оптической задачи. Начавшаяся война отодвинула эти работы на второй план.

Бурное развитие телевидения и телевещания в послевоенные годы стимулировало возрождение интереса к объективам с переменным фокусным расстоянием. В этой области, где способ «наездов» практически неприменим, создание эффекта непрерывного изменения масштаба изображения с помощью панкратической оптики особенно уместно как в условиях студийных, так тем более внестудийных телевизионных передач. Появившийся вскоре за рубежом массовый интерес к узкопленочной 8-*мм* любительской кинематографии еще в большей мере стимулировал развитие объективов с переменным фокусным расстоянием, так как для малоформатной киносъемки, когда необходима короткофокусная оптика, подобные объективы имеют сравнительно малые габариты и массы, а следовательно, не вызывают затруднений при их повседневной эксплуатации.

Развитие этих областей техники в послевоенные годы у нас несколько задержалось; создалась досадная ситуация: там, где впервые начались теоретические и методические работы в этой области, не имелось соответствующих возможностей для их практической реализации.

В настоящее время объективы с переменным фокусным расстоянием прочно вошли в оптическую технику и находят все большее применение в профессиональной и любительской кинематографии, фототехнике, телевидении и в ряде отраслей специальной техники. Почти во всех зарубежных странах с развитой оптико-механической промышленностью ведутся разработки объективов этого типа.

Оригинальные оптические схемы и разработки объективов переменных фокусных расстояний различных оптических характеристик и разного назначения начали особенно часто появляться начиная со второй половины 50-х годов, когда внедрение ЭВМ позволило выполнять все трудоемкие численные исследования и расчеты.

По своим оптико-коррекционным свойствам объективы с переменным фокусным расстоянием, которые для краткости назовем панкратическими объективами-анастигматами, можно условно подразделить на две группы:

1) вариообъективы, оптическая система которых корригирована в отношении всех аберраций как единое целое;

2) системы насадка — объектив, или трансфокаторы, в которых собственно объектив и расположенная впереди него афокальная на-

садка переменного увеличения корригируются независимо и самостоятельно в отношении почти всех аберраций, за исключением остаточной положительной кривизны поля собственно объектива, которая компенсируется отрицательной кривизной поля, вносимой афокальной насадкой.

С точки зрения эксплуатационной, обе группы объективов тождественны, точнее, почти тождественны: лишь в отдельных случаях, как увидим ниже, афокальная насадка может применяться со сменным объективом, расположенным позади нее. Для этого необходимо совмещение выходного зрачка насадки со входным зрачком объектива.

По оптико-кинематической схеме перемещения компонентов системы панкратические объективы-анастигматы подразделяются также на две группы:

1) объективы с оптической компенсацией сдвига плоскости изображения, в которых компоненты оптической системы перемещаются по простым (линейным) законам; положение плоскости изображения при этом остается с должной точностью фиксированным;

2) объективы с механической компенсацией сдвига плоскости изображения, в которых хотя бы один, а иногда и более из компонентов оптической системы перемещаются по сложному (нелинейному) закону, необходимому для сохранения положения плоскости изображения. Сложная кинематика перемещения компонента обычно осуществляется кулачковым механизмом.

В афокальных насадках переменного увеличения, построенных на принципе оптической компенсации, лишь для некоторых определенных значений телескопических увеличений  $\Gamma$  насадка является строго афокальной; это число значений, при которых  $\Gamma = 0$ , на единицу меньше числа оптических компонентов, входящих в схему насадки. Для всех промежуточных значений  $\Gamma$  отступления от афокальности не должны превышать допустимых величин.

Группировка панкратических объективов на вариообъективы и трансфокаторы весьма условна и, как указывалось выше, она проведена исходя лишь из принципа оптической коррекции; в параксиальной области схему трансфокатора можно всегда преобразовать в вариообъектив и обратно. Действительно, представим себе вариообъектив, состоящий из *i* компонентов. Пусть первый компонент, фокусное расстояние которого  $f'_1$ , остается неподвижным и служит для дистанционной фокусировки на конечные расстояния; второй, третий и все остальные компоненты, вплоть до *i*—1-го, перемещаются относительно друг друга таким образом, что плоскость изображения за *i*—1-м компонентом остается неподвижный компонент является корректором остаточных аберраций всей предыдущей части системы. Фокусное расстояние такой *i*-компонентной системы выразится формулой:

$$f' = f'_{1} \overline{\beta}_{2} \overline{\beta}_{3} ..., \overline{\beta}_{i-1} \overline{\beta}_{\kappa op}, \qquad (IV, 84)$$

где линейные увеличения  $\overline{\beta}_2$ ,  $\overline{\beta}_3$ , ...,  $\overline{\beta}_{i-1}$  — переменные, а  $\overline{\beta}_{kop}$  — увеличение, с которым работает *i*-й компонент (корректор), остающееся неизменным.

Для системы типа насадка — объектив (трансфокатор) имеем:

$$f' = \Gamma f'_{oo}, \qquad (IV,85)$$

где Г — переменное телескопическое увеличение афокальной насадки: f' ₀₀ — фокусное расстояние сзади расположенного объектива. Если насадка состоит из i—1 компонентов, то:

$$\Gamma = -\frac{f'_1 \overline{\beta_2} \ \overline{\beta_3} \dots \overline{\beta_{i-2}}}{f'_{i-1}}; \qquad (IV,86)$$

отсюда находим:

$$f' = -f'_{1} \overline{\beta}_{2} \overline{\beta}_{3} \dots \overline{\beta}_{i-2} \frac{f'_{o6}}{f'_{i-1}}. \qquad (IV,87)$$

Из (IV, 84) и (IV, 87) следует, что в параксиальной области обе группы систем становятся эквивалентными, если положить, что линейное увеличение корректора  $\overline{\beta}_{\text{кор}}$  вариообъектива следующим образом связано с величиной  $f'_{ob}$  фокусного расстояния объектива трансфокатора и фокусным расстоянием  $f'_{i-1}$  последнего компонента насадки:

$$\overline{\beta}_{Kop} = -\frac{f'_{o6}}{f'_{i-1}}.$$
(IV,88)

Как увидим ниже (глава VIII), иногда в целях универсализации возможности применения объектива, позади афокальной насадки пере-менного увеличения устанавливают систему из двух переключающихся сменных объективов различных фокусных расстояний — короткофо-кусного и длиннофокусного. Тем самым получают возможность проводить съемки с плавно изменяющимся масштабом изображения как близких, так и удаленных объектов (например, телевизионная съемка студийная и внестудийная), как это осуществлено в нашем объективе «Алькор-6».

Часто за объективом переменного фокусного расстояния устанавливают сменные дополнительные компоненты — удлинители, работаю-щие с линейными полутора-трехкратными увеличениями, что также расширяет оптические характеристики набора объективов (см. главу VIII).

За последние годы впереди малогабаритных объективов (например, 8-мм киносъемочных камер) иногда начали устанавливать афокальные насадки переменного увеличения, плавно изменяющегося в 2,5—3 раза, а также афокальные насадки постоянного увеличения, устанавли-ваемые впереди малогабаритных объективов переменного фокусного расстояния (например, в тех же 8-*мм* кинокамерах) и соответственно сдвигающие — укорачивающие или удлиняющие — абсолютные значения изменяющихся фокусных расстояний, сохраняя при этом кратность этих изменений (см. главу V).

В заключение укажем, что оптические характеристики панкратических объектов — кратность и пределы абсолютных значений изменения фокусных расстояний, относительные отверстия и углы поля зрения — целиком зависят от числа компонентов, входящих в систему, и ее габаритов. Например, если светосильные малогабаритные системы с двух-трехкратным изменением фокусных расстояний содержат 10— 13 линз, то объективы с широким интервалом изменения фокусных расстояний (восьми-десятикратным) содержат 16—18 и более линз, в зависимости от требований к качеству коррекции аберраций.

Анализ лучших современных панкратических объективов, выполненный М. Шпякиным, показал, что между их оптическими характеристиками и габаритами существует приближенная зависимость:

$$\frac{f'_{\text{макс}} \epsilon}{L_{\text{c}} - \frac{1, 2 f'_{\text{макс}}}{\sqrt{m}}} = C, \qquad (IV, 89)$$

где  $f'_{\rm макс}$  — максимальное фокусное расстояние системы; є — относительное отверстие; m — кратность изменения фокусных расстояний;  $L_{\rm e}$  — общая длина системы. Константа C в известной мере характеризует добротность системы и у наилучших современных объективов имеет значение около 0,4. Выражение (VI, 89) позволяет в первом приближении руководствоваться выбором оптических характеристик и габаритов панкратических объективов с форсированными параметрами.

Мы опускаем здесь более подробный анализ и описание оптических и кинематических схем современных панкратических объективов и приводим их в соответствующих главах второй части книги в связи с более подробной характеристикой наилучших известных образцов объективов этого типа. часть вторая Объективы различного назначения

#### ГЛАВА V

# ФОТОГРАФИЧЕСКАЯ И КИНОСЪЕМОЧНАЯ ОПТИКА

Рассмотрим оптические характеристики и свойства объективов различного назначения. Из всего многообразия объективов ограничимся наиболее интересными отечественными и зарубежными образцами.

Так как разные объективы исследовались в различные годы (на протяжении последних двух десятилетий), то и применявшиеся при испытаниях фотографические материалы были разных свойств, в частности разной разрешающей силы.

В табл. V, 1 приведены основные характеристики некоторых типов отечественных кино- и фотопленок, а также аэрофотографических материалов: их разрешающая сила  $N^{(c)}$ , светочувствительность S по двум критериям:  $D = D_0 + 0.2$  — при коэффициенте пропорциональности K = 1 и  $D = D_0 + 0.85$  — при коэффициенте пропорциональности K = 10; рекомендованные коэффициенты контрастности  $\gamma_{\rm pek}$  и время проявления в минутах  $t_{\rm np}$ .

проявления в минутах  $t_{\rm пp}$ . Экспонирование всех материалов (за исключением фототехнических пленок) производилось за светофильтром искусственного солнечного света; фототехнические материалы экспонировались при цветовой температуре  $T_{\rm ub} = 2850$  K.

В таблице указано время проявления  $t_{\rm np}$ , необходимое для достижения: а) для кинопленок — рекомендованные ГОСТом 5554—63 значения коэффициента контрастности  $\gamma_{\rm pek} = 0,65$ ; б) для аэрофотопленок — максимальной светочувствительности по ГОСТу 2817—50; в) для фотопленок — при времени проявления, отвечающем  $\gamma_{\rm pek} = 0,8$ . В таблице приведены результаты исследований образцов фотоматериалов, проведенных Ю. Гороховским и его сотрудниками; заметим, что некоторые данные таблицы отличаются от ГОСТа 5554—63 (см. табл. I, 5).

Экспонирование осуществлялось на резольвометре с апертурой объектива 0,2.

Максимальная величина разрешающей силы данного фотографического материала  $N^{(c)}_{0}$  определяется контрастом тестобъекта  $K_t$  и условиями экспонирования и проявления. Для данных условий экспонирования и проявления между разрешающей силой фотоматериала  $N_0^{(c)}$ , полученной для тестобъекта с максимальным контрастом  $K_t = 1$ , и раз-

| Фотоматериалы                                                                                                                                                             | Гип                                                                                                | Проявитель                                                                           | t <sub>пр</sub> , мин                                            | Yрек                                                                       | \$0,2                                                        | S <sub>0,85</sub>                              | N <sup>(c)</sup> , мм <sup>-1</sup>                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--|
| Ногативная киноплен-<br>ка                                                                                                                                                | ҚН-1                                                                                               | № 2<br>HM (№ 3<br>ГОСТ                                                               | 6,0<br>5,0                                                       | 0,65<br>0,65                                                               | 16<br>11                                                     | 16<br>11                                       | 130<br>140                                                        |  |
| Негативная киноплен-<br>ка<br>Негативная киноплен-<br>ка<br>Фотопленка<br>Фотопленка<br>Фотопленка<br>Фотопленка<br>Фотопленка<br>Фотопленка<br>Фотопсхническая<br>пленка | КН-2<br>КН-3<br>«Фото-32»<br>«Фото-65»<br>«Фото-130»<br>«Фото-250»<br>«Микрат-200»<br>«Микрат-300» | 10691—63)<br>№ 2<br>HM<br>№ 2<br>HM<br>№ 2<br>№ 2<br>№ 2<br>№ 2<br>№ 2<br>№ 2<br>№ 1 | 5,0<br>8,0<br>5,0<br>7,5<br>7,0<br>6,0<br>11<br>11<br>1,5<br>2,5 | 0,65<br>0,65<br>0,65<br>0,65<br>0,80<br>0,80<br>0,80<br>0,80<br>2,0<br>3,0 | 32<br>32<br>90<br>90<br>22<br>65<br>180<br>350<br>2,0<br>2,0 | 32<br>90<br>90<br>32<br>65<br>250<br>5,5<br>11 | 130<br>125<br>105<br>105<br>150<br>110<br>105<br>70<br>170<br>290 |  |
| пленка<br>Аэрофото пленка<br>Аэрофото пленка                                                                                                                              | «Панхром<br>10 Н-1000»<br>«Изопанхром                                                              | № 1<br>УП-2<br>УП-2                                                                  | 8<br>8<br>12                                                     | 1,7<br>2,0<br>1,9                                                          | 350<br>350<br>250                                            | 1000<br>1400<br>700                            | 60<br>65<br>85                                                    |  |
| Аэрофотопленка                                                                                                                                                            | 15 ТТ-800»<br>«Изопанхром<br>т. 17»                                                                | № 1<br>VII-2                                                                         | 16                                                               | 1,9                                                                        | 130                                                          | 350<br>500                                     | 120                                                               |  |
| Аэрофотопленка                                                                                                                                                            | «Изопанхром<br>т 20»                                                                               | № 1<br>VП-2                                                                          | 8                                                                | 1,0                                                                        | 90<br>130                                                    | 350<br>500                                     | 140                                                               |  |
| Аэрофотопленка                                                                                                                                                            | «Изопанхром<br>т. 13»                                                                              | № 1<br>VII-2                                                                         | 6                                                                | 1,3                                                                        | 500<br>700                                                   | 1400                                           | 64<br>70                                                          |  |
| Аэрофотопленка                                                                                                                                                            | «Изопанхром<br>т. 18-100»                                                                          | № 1<br>УП-2                                                                          | 13<br>14                                                         | 2,3<br>2,3                                                                 | 22<br>22<br>22                                               | 90<br>90<br>90                                 | 250<br>260                                                        |  |

#### Некоторые характеристики фотоматериалов

решающей силой N<sup>(c)</sup> для тестобъекта с некоторым другим контрастом существует следующая приближенная зависимость:

$$N^{(\mathbf{c})} = N_0^{(\mathbf{c})} \sqrt{K_t}, \qquad (V,1)$$

где K<sub>t</sub> — контраст тестобъекта:

$$K_t = \frac{B_{\text{Marc}} - B_{\text{MMH}}}{B_{\text{Marc}} + B_{\text{MMH}}} . \tag{V,2}$$

Если принять разрешающую силу фотографического слоя при  $K_t = 1$  за единицу, то изменение разрешающей силы по формуле (V, 1) при других значениях контрастности тестобъекта будет характеризоваться следующими данными:

| K <sub>t</sub>          | 1 | 0,9  | 0,8  | 0,7  | 0,6  | 0,5  | 0,4  | 0,3  | 0,2  | 0,1  |
|-------------------------|---|------|------|------|------|------|------|------|------|------|
| $\frac{N_c}{N_0^{(c)}}$ | 1 | 0,95 | 0,90 | 0,84 | 0,77 | 0,71 | 0,63 | 0,55 | 0,45 | 0,32 |

Особый практический интерес представляет определение разрешающей силы системы объектив — фотослой. Было предпринято много попыток получить формулы, выражающие разрешающую силу всей системы  $N^{(oc)}$  через разрешающие силы объектива  $N^{(o)}$  и фотослоя  $N^{(c)}$ . Для простейшего случая безаберрационного (идеального) объектива Л. Морозом была рекомендована следующая формула:

$$N^{(\text{oc)}} = N^{(\text{c})} K_{\text{t}} \left[ 1 - exp\left( - \frac{N_0^{(^{\circ})}}{K_{\text{t}} N^{(\text{c})}} \right) \right].$$
(V,3)

где  $N_0^{(o)} = 1500 \varepsilon$  — разрешающая сила идеального объектива при  $K_t = \frac{E'_{\text{макс}} - E'_{\text{мнн}}}{E'_{\text{макс}}}$  (см. главу III). Эта формула приближенная и лишь качественно характеризует ход зависимости разрешающей силы системы:  $N^{(oc)}$  растет с увеличением  $K_t$ ,  $N^{(o)}$  и  $N^{(c)}$ . Если  $exp\left(-\frac{N_0^{(c)}}{K_t N^{(c)}}\right)$  разложить в ряд и ограничиться первыми двумя членами разложения, то при  $K_t = 1$  получим известную формулу Катца, рекомендованную им и для реальных объективов:

$$\frac{1}{N^{(oc)}} = \frac{1}{N^{(o)}} + \frac{1}{N^{(c)}}, \qquad (V,4)$$

т. е. линейный предел разрешения на приемнике (в частности, на фотослое) равен сумме линейных пределов разрешения, даваемых в отдельности объективом и приемником. Поэтому целесообразно применять объективы и приемники, величины разрешающих сил которых одного порядка.

Разрешающая сила системы с реальными объективами отличается (иногда существенно) от значения, определяемого из формулы (V, 4), во-первых, вследствие того, что величина  $N^{(c)}$  зависит от способа ее определения, в частности от апертуры объектива резольвометра, от условий освещения слоя (спектрального состава излучения, экспозиции); во-вторых, величина  $N^{(o)}$  реального объектива также зависит от ряда факторов: от характера коррекции аберраций объектива, от ориентации штрихов миры в данной точке поля и т. п.

За последние годы, как и при оценке качества оптического изображения (см. главу III), методом Фурье-анализа начали исследовать свойства фотографического изображения.

Метод Фурье-анализа применим к линейным физическим системам, т. е. когда сигнал на выходе пропорционален сигналу на входе. Фото-

графический же слой, строго говоря, не является системой линейной, однако он также может быть приближенно принят за линейную систему, если вычислять не распределение плотности почернения, а действующее распределение освещенности внутри слоя при экспозиции.

Последующий переход от распределения освещенности к распределению плотности осуществляется, как известно, с помощью характеристической кривой. Применив в качестве входного сигнала объект с синусоидальным распределением яркости, можно показать, что и в



Рис. V, 1. Частотно-контрастные характеристики широкоформатных и любительских фотопленок: I - «панхром 10» 2 - «изопанхром 13»; 3 - «изопанхром 18»; 4 - «изопанхром 20»; 5 - «фото-32»; 6 - «фото-250»;7 - KH-3

фотографическом слое изображение осталось синусоидальным, но стало менее контрастным. Отношение контраста фотографического изображения решетки к контрасту оптического изображения назовем коэффициентом передачи контраста фотографического слоя  $T_c(N')$ , а его зависимость от частоты штрихов N' изображения решетки — частотно-контрастной характеристикой (ЧҚХ) слоя.

Не останавливаясь на возможных способах определения ЧКХ, приведем результаты исследований ЧКХ некоторых широкоформатных и любительских фотопленок (рис. V, 1). Кривые значений  $T_c(N')$  приведены для пленок, экспонированных в синем и красном свете.

Среди попыток различных авторов установить аналитическое выражение функции  $T_{\rm c}(N')$  наибольший интерес представляет формула Фризера\*:

$$T_{c}(N') = \frac{\rho}{1 + \left(\frac{\pi N' K_{1}}{\ln 10}\right)^{2}} + \frac{1 - \rho}{1 + \left(\frac{\pi N' K_{2}}{\ln 10}\right)^{2}}, \quad (V,5)$$

Как показали исследования, при анализе многозвенной системы в интервале пространственных частот N', не превышающих значений 0,4—0,5 от п р едельных (N'<sub>пред</sub>) частот системы, можно пользоваться одночленной формулой:

$$T_c(N') = \frac{1}{1 + a{N'}^2}$$
,

где коэффициент a может быть вычислен, если известен коэффициент  $T(N'_1)$  для частоты  $N'_1$  вблизи высоких частот рабочего диапазона.

содержащая три параметра: коэффициент отражения фотослоя  $\rho$  и константы  $K_1$  и  $K_2$ , характеризующие слой и имеющие размерности длины (выраженные Фризером в *мкм*); величины этих констант определяют рассеяние и поглощение света в эмульсионном слое и для различных эмульсий колеблятся от сравнительно малых значений у малочувствительных слоев до значений, в несколько раз бо́льших у эмульсий высокочувствительных. На величины этих коэффициентов можно существенно влиять введением в слой веществ, рассеивающих или поглощающих свет, что подобно эффекту, описываемому классическим законом Бугера.

При оценке оптико-фотографической системы объектив — слой методом ЧКХ результирующие коэффициенты  $T_{oc}(N')$  всей системы равны произведению коэффициентов  $T_0(N')$  объектива и фотослоя  $T_c(N')$ :

$$T_{\rm oc}(N') = T_0(N') T_c(N').$$
 (V,6)

Применением метода ЧКХ (ФПМ) можно синтезировать многозвенную систему определения рабочего интервала частот  $\overline{N}'$  системы.

Например, представив функцию  $T_0(N')$  объектива полиномом (см. примечание к III, 100)

$$T_{0}(N') = 1 - AN' + BN'^{2}$$
 (V,7)

и функцию  $T_{\rm c}(N')$  фотослоя одночленной формулой (см. примечание к V, 5)

$$T_{\rm c}(N') = \frac{1}{1 + a N'^2},$$
 (V,8)

приходим к квадратному уравнению:

$$\left(a - \frac{k_{\text{nop}}}{K_t} - B\right) N'^* - AN' - 1 + \frac{k_{\text{nop}}}{K_t} = 0,$$
 (V,9)

где  $k_{nop}$  — пороговый контраст изображения синусоидального теста на пространственной частоте разрешаемого визуального поля фотографического (проявленного) изображения;  $K_t$  — результирующий контраст объекта, отображаемого оптико-фотографической системой:

$$K_t = K_{ob} T_{at} (N') T_{obecn} (N'),$$
 (V,10)

где  $K_{\rm of}$  — собственный контраст объекта;  $T_{\rm ar}(N')$  — коэффициент передачи контраста атмосферой;  $T_{\rm ofecn}$  (N') — коэффициент передачи контраста обеспечивающими системами: фотоаппаратом (механизмом компенсации сдвига изображения, затвора и др.) и системами стабилизации и ориентации движущейся, в частности летательной, фотоаппаратуры.

Из (V, 9) определяется пространственная частота  $\overline{N'}$  рабочего диапазона, пропускаемая многозвенной системой:

$$\overline{N}' = -D + \sqrt{D^2 + \frac{K_t - k_{\text{пор}}}{ak_{\text{пор}} - BK_t}}, \qquad (V,11)$$
где  $D = \frac{AK_t}{2(ak_{\text{пор}} - BK_t)}.$ 

359
Функцию  $T_{\rm ar}(N')$ , по-видимому, рационально представить в виде:

$$T_{at}(N') = K_{a} T_{typ6}(N'),$$
 (V,12)

где  $T_{\text{турб}}(N')$  — характеризует турбуленцию атмосферы, т. е. флуктуацию показателя преломления; при коротких выдержках и относительно малых зрачках объективов функция  $T_{\text{турб}}(N')$  не изменяется при изменении N'; коэффициент  $K_{\mu}$  определяет снижение контраста объектов воздушной дымкой:

$$K_{\pi} = \frac{1}{1 + \frac{\rho_{\pi}}{\rho_{1}} (1 + K_{06})}, \qquad (V, 13)$$

где  $\rho_{\pi}$  — коэффициент яркости дымки;  $\rho_1$  — коэффициент яркости объекта, обладающего контрастом  $K_{o6} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$ ;  $\rho_2$  — коэффициент яркости фона. Как известно, коэффициент яркости дымки  $\rho_{\pi}$  существенно зависит от высоты солнца.

Таким образом, задача определения предельно пропускаемой частоты  $\overline{N}'$  решается уравнением (V, 11), в котором в первом приближении при заданной пороговой величине  $K_{\text{пор}}$  фотоматериала, заданном контрасте объекта  $K_{o6}$  и для минимальных высот солнца оцениваются величины  $\rho_{\pi}$ ,  $K_{\pi}$ , и  $T_{a\tau}$  (N'). Затем величина  $\overline{N}'$  уточняется вторичным применением (V, 11) при уточненном значении  $k_{\text{пор}}$  (N'). При этом детализируются необходимые параметры фотоматериала, в частности коэффициент a в (V, 8) и функция  $T_0(N')$ , описывающая качество объектива.

Например, для хорошо корригированного объектива можно принять B = 0. Для объектива, близкого к идеальному в дифракционном смысле, B = 0, а величина А равна:

$$A = \overline{c} \frac{2\lambda}{\sqrt{\pi}\varepsilon} , \qquad (V,14)$$

где  $\overline{c} = 1,06$  (см. примечание к III, 100);  $\varepsilon$  — относительное отверстие объектива.

Рассмотрим характеристики объективов фотоаппаратов широкого применения, киносъемочных объективов для любительской кинематографии и для всех видов профессионального кинематографа.

# § 1. ОБЪЕКТИВЫ ФОТОАППАРАТОВ ШИРОКОГО ПРИМЕНЕНИЯ

Разнообразны оптические характеристики и схемы объективов для разных форматов снимков и типов фотоаппаратов — зеркальных и дальномерных с частичной и полной автоматизацией съемочного процесса, с постоянно вмонтированной и сменной оптикой. Более сорока фотоаппаратов снабжены объективами с переменным фокусным расстоянием различных оптических характеристик. Их разработкой занимаются во многих странах — в Японии (фирмы «Канон», «Ниппон», «Минольта»), в ФРГ — («Лейтц», «Фойхтлендер», «Шнейдер», «Цейсс — Оберкохен», «Роденшток»), в США («Кодак», «Воллензак», «Бауш и Ломб»), в ГДР («Цейсс—Иена»), в Чехословакии («Меопта») и др. Рассмотрим оптику трех групп фотоаппаратов, различающихся форматами:

1) объективы малоформатных и миниатюрных фотоаппаратов с размерами кадров 24 × 36, 28 × 28 и 18 × 24 мм;

2) объективы среднеформатных камер с размерами снимков 6  $\times$  6, 6  $\times$  9 и 9  $\times$  12 *см*;

3) объективы крупноформатных камер с размерами снимков 13  $\times$   $\times$  18 и 18  $\times$  24 см.

1. Объективы малоформатных и миниатюрных фотоаппаратов. Статистика, проведенная И. Черным на основании информации ведущих журналов США, ФРГ и Японии в области фототехники, показывает, что лишь для зеркальных фотокамер 24 × 36 мм в конце 1966 года выпускалось около пятисот различных сменных объективов разных фокусных расстояний от 18 до 2000 мм и относительных отверстий — от 1:1,2 до 1:15. Именно формат 24 × 36 мм — самый распространенный и именно зеркальные фотокамеры наиболее перспективны.

Та же статистика показывает, что все штатные объективы зеркальных фотоаппаратов имеют величины фокусных расстояний от 45 до 58 мм.

На группу сменных широкоугольных объективов с фокусными расстояниями 28 и 35 мм приходится по той же статистике 93 разных типа, т. е. около 20% всех выпускаемых для зеркальных аппаратов 24  $\times$  $\times$  36 мм. Длиннофокусные объективы в основной своей массе имеют фокусные расстояния 85—90; 100—105; 135; 200; 300; 400 и 600 мм; на эту группу приходится 288 разных типов объективов, т. е. более 60% всех выпускаемых для указанных фотокамер.

По величинам относительных отверстий штатные объективы в основной своей массе имеют отверстия 1 : 1,8—1,9 и 1 : 2; некоторая группа (с фокусными расстояниями 52—58 мм) имеет повышенную светосилу — до 1 : 1,4. Широкоугольники с фокусными расстояниями 28 и 35 мм имеют преимущественно отверстия 1 : 2,8—1 : 3,5; такие же отверстия у объективов с фокусными расстояниями 100 и 135 мм. Длиннофокусные с фокусными расстояниями 200 и 300 мм имеют относительные отверстия от 1 : 1 : 3,5 до 1 : 4,5, а телеобъективы с f' = 400, 500 и 600 мм — отверстия соответственно от 1 : 4,5 до 1 : 6,3. Конечно, по каждой группе объективов имеются «рекордсмены» с повышенными оптическими характеристиками.

Указанные оптические характеристики зарубежных объективов дают представление о достигнутом техническом уровне лишь по внешним параметрам. Остановимся на качестве оптического изображения лучших современных образцов, в частности отечественных объективов.

Опыт отечественного и зарубежного объективостроения показал, что в пределах оптических схем определенной сложности и при достаточно близких друг другу оптических характеристиках объективы сравнительно мало различаются по своей разрешающей силе, но это, казалось бы, «малое» различие все же дает основание довольно однозначно их дифференцировать.

Таблица V.2

|                                                                                                                                         | and the                          | UO DER I                                       | прог да                          | <b>1 A Q 0 1 0</b>                           | annapt                             |                               |                                                          |                              |                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|----------------------------------------------|------------------------------------|-------------------------------|----------------------------------------------------------|------------------------------|----------------------------------|--|
| -                                                                                                                                       | ×                                | Оптиче<br>арактер                              | ские<br>истики                   |                                              | eckoe<br>Ba-                       | понен-                        | Фотографическая<br>разрешающая<br>сила, мм <sup>-1</sup> |                              |                                  |  |
| Марка <sub>О</sub> бъектива                                                                                                             | f', мм                           | E                                              | 2 <b>w°</b> ,                    | s', мм                                       | Геометриче<br>виньетирон<br>ние, % | Число ком<br>гов и линз       | l' = 0                                                   | им 01 <b>—</b> 1             | <i>l'</i> =20 MM                 |  |
| 1. Светосильные объективы для зеркальных камер                                                                                          |                                  |                                                |                                  |                                              |                                    |                               |                                                          |                              |                                  |  |
| «Планар» (ФРГ)<br>«Суммикрон» (ФРГ)<br>«Ауто-Топкар» (Япо-<br>ния)<br>«Волна-1» («Зенитар»)                                             | 52<br>52<br>58<br>52             | 1:2<br>1:2<br>1:1,8                            | 45<br>45<br>40<br>45             | 37,2<br>37,6<br>38,2<br>38,0                 | 53<br>68<br>61                     | 5/6<br>5/6<br>5/6             | 52<br>50<br>52<br>52                                     | 42<br>45<br>38<br>38         | 32<br>39<br>27<br>28             |  |
| (СССР)<br>«Гелиос-81» (СССР)<br>«Гелиос-97» (СССР)<br>«Супер-Каноматик»                                                                 | 52<br>52<br>52<br>50             | 1:2<br>1:2<br>1:1,8                            | 45<br>45<br>46                   | 39,0<br>39,0<br>39,0<br>35,4                 | 52<br>50<br>68                     | 4/6<br>5/6<br>4/6             | 52<br>50<br>46                                           | 37<br>43<br>33               | 27<br>33<br>28                   |  |
| (Япония)<br>«Гелиос-44» (СССР)<br>«Браун-Рефлекс Кви-<br>нон» (ФРГ)                                                                     | 58<br>50                         | 1:2<br>1:1,9                                   | 40<br>46                         | 39,0<br>37,8                                 | 58<br>62                           | 4/6<br>4/6                    | 46<br>52                                                 | 33<br>35                     | 26<br>22                         |  |
| «Ауто-Такумар» (Япо-<br>ния)<br>«Ауто-Яшинон» (Япо-                                                                                     | 55<br>50                         | 1:1,8<br>1:2                                   | 43<br>46                         | 39,2<br>37,1                                 | 52<br>48                           | 5/6<br>4/6                    | 42<br>47                                                 | 29<br>34                     | 26<br>24                         |  |
| ния)<br>«Гексанон» (Япония)<br>«UV-Топкар» (Япо-<br>ния)                                                                                | 52<br>53                         | 1:1,8<br>1:2                                   | 45<br>44                         | 33,8<br>38,0                                 | 55<br>52                           | 5/6<br>6/6                    | 43<br>49                                                 | 33<br>25                     | 24<br>28                         |  |
| 2. Светосиля                                                                                                                            | I<br>Бные об                     | I<br>ъективі                                   | ыдля                             | I<br>визирно                                 | I<br>0-дальн                       | I<br>омерны                   | <br>іх кам                                               | l<br>ep                      | I                                |  |
| «Суммикрон» (ФРГ)<br>«Роккор РF» (Япония)<br>«Яшинон» (Япония)<br>«Гелиос-94» (СССР)<br>«Юпитер-8» (СССР)<br>«Роденшток-Илока»<br>(ФРГ) | 50<br>45<br>45<br>50<br>52<br>50 | 1:2<br>1:1,8<br>1:1,8<br>1:1,8<br>1:2<br>1:1,8 | 46<br>51<br>51<br>46<br>45<br>45 | 32,4<br>30,1<br>28,2<br>32,7<br>28,0<br>38,4 | 70<br>                             | 5/6<br>—<br>4/6<br>3/6<br>4/6 | 50<br>50<br>57<br>46<br>39<br>43                         | 40<br>35<br><br>33<br>29<br> | 27<br>29<br>26<br>25<br>24<br>29 |  |
| (ФГ1)<br>«G-Зуйко» (Япония)<br>«Гексанон» (Япония)                                                                                      | 42<br>47                         | 1:1,8                                          | 54<br>49                         | 25,3<br>27,0                                 | 75<br>50                           | 4/7<br>5/5                    | 50<br>41                                                 | 39<br>29                     | 20<br>23                         |  |

Штатине светосильные объективы лля фотоапларатов 24×36 MM

В табл. V, 2 приведены данные о некоторых светосильных объективах, используемых в качестве штатных в зеркальных и визирнодальномерных фотоаппаратах 24 × 36 мм, они же пригодны для форматов 28×28 мм. Рассмотрение таблицы показывает, что объективы хо-

51

51

51

33,6

23,0

21,0

64

36

55

4/6

5/6

44

43

43

27

28

34

35

15

18

45

45

45

1:2

1:1,9

1:2

«Гелиос-79» (СССР) «Канон SE» (Япония)

«Роккор РF» (Япония)

рошего качества разрешают около 50  $mm^{-1}$  в центре поля, больше  $35 mm^{-1}$  по полю и  $30-35 mm^{-1}$  на краю поля; встречаются среди них и разрешающие по полю около  $40 mm^{-1}$  и более  $35 mm^{-1}$  на краю поля, т. е. имеющие равномерное распределение разрешения; назовем их объективами отличного качества.

У некоторой группы, назовем их условно объективами среднего качества, указанные величины разрешающей силы приблизительно на 5 мм<sup>-1</sup> меньше при средних углах поля зрения и на краю поля. Дальнейшее снижение разрешающей силы приблизительно на 5 мм<sup>-1</sup> в центре поля или по полю дает основание отнести их к группе удовлетворительного (посредственного) качества.

Наконец, встречаются объективы, имеющие дальнейшее снижение (на 3—5 мм<sup>-1</sup>) разрешения по полю и большой спад разрешения на краю поля (до 15—18 мм<sup>-1</sup>); в последнем случае причислим их к группе пониженного качества. Эта условная оценка качества может быть проведена при следующей градации:

|                    | Фотографическая разрешающая сила, мм <sup>-1</sup> |         |              |  |  |  |  |  |  |
|--------------------|----------------------------------------------------|---------|--------------|--|--|--|--|--|--|
| Качество объектива | в центре поля                                      | по полю | на краю поля |  |  |  |  |  |  |
| Отличное           | ≥50                                                | >35     | >35          |  |  |  |  |  |  |
| Хорошее            | ≥50                                                | >35     | 30-25        |  |  |  |  |  |  |
| Среднее            | 50-45                                              | 35—30   | 25-22        |  |  |  |  |  |  |
| Удовлетворительное | 45-40                                              | 30-25   | $\sim 20$    |  |  |  |  |  |  |
| Пониженное         | -                                                  | 25-20   | < 20         |  |  |  |  |  |  |

При этом предполагается, что сравнительные испытания проведены одгозременно на одинаковом фотоматериале, разрешающем около  $120 \ \text{мm}^{-1}$  и в одинаковых условиях его обработки. Повторные испытания, проведенные на другой лабораторной установке, другим испытателем и т. п., конечно, могут дать несколько иные результаты, но относительное распределение величин разрешающей силы и, следовательно, оценка качества данного объектива вряд ли изменятся. Эту градацию по качеству мы приводим главным образом с целью подчеркнуть, насколько мал разброс по величинам разрешающей силы. Конечно, при окончательной оценке качества объектива недостаточно учитывать только его разрешающую силу; в настоящее время мы, как правило, исследуем и частотно-контрастную характеристику.

Лишь в исключительно редких случаях, когда в погоне за получением неоправданно завышенных внешних оптических характеристик в объективе допущены большие аберрации, его разрешающая сила может оказаться сравнительно невысокой при низком контрасте изображения. Исследования показали, что хорошие объективы имеют величины коэффициентов передачи контраста T(N') в центре поля около 45—50 % при частотах  $N' = 50 \text{ мm}^{-1}$  и около 65—70% при частотах  $N' = 25 \text{ мm}^{-1}$ , а на краю поля соответственно около 20 и 40—45%. У объективов удовлетворительного качества величины коэффициентов T(N') снижаются в центре поля до 30% при частотах  $N' = 50 \text{ мm}^{-1}$  до

50% при  $N' = 25 \text{ мм}^{-1}$ , а на краю поля соответственно до 25% при  $N' = 20 \text{ мм}^{-1}$ . Конечно, эти величины также являются ориентировочными.

Из табл. V, 2 следует, что одними из лучших известных нам зарубежных объективов являются «Суммикрон» (f' = 50 мм; 1:2) фирмы «Лейтц» (ФРГ) и «Планар» (f' = 50 мм; 1:2) фирмы «Шнейдер» (ФРГ). Того же качества отечественный анастигмат «Гелиос-97». На рис. V, 2 приведены их оптические схемы. Как видим, схема нового «Планара» несколько отличается от классической схемы П. Рудольфа: в новой схеме «Планара» третий компонент несклеенный; кроме того, в этой системе применены сверхтяжелые лантановые кроны. Семилин-



Рис. V, 2. Оптические схемы объективов: а -- «Планар»; б -- «Суммикрон»

зовая оптическая схема «Суммикрона» была тщательно исследована автором. Этот объектив обладает весьма хорошим исправлением астигматизма и кривизны поверхности изображения, образуемого широкими наклонными пучками лучей как в меридиональном, так и в сагиттальном сечениях; при этом особенно хорошо исправлены аберра-

ции лучей, заполняющих центральную часть зрачка, что привело к уменьшению эффективных размеров аберрационных фигур рассеяния лучей. Такое исправление аберраций обеспечивает повышенную разрешающую способность фотографической системы объектив — фотослой при применении высокоразрешающих фотоматериалов.



Рис. V, 3. Фотографическая разрешающая сила объектива «Суммикрон»

На рис. V, 3 приведена разрешающая сила объектива «Суммикрон» для дальномерных фотоаппаратов 24 × 36 мм. определенная на «панхроме» тип 10, имеющем собственное разрешение около 70 мм<sup>-1</sup>, и на фотоматериале микрокопи (300 мм<sup>-1</sup>). Как видим, разрешающая сила оптико-фотографической системы и в центре поля и по полю повысилась почти в два раза. Однако на низкоразрешающем «панхроме» тип 10 разрешающая сила объектива осталась невысокой; т. е. объектив «Суммикрон» особенно заметный эффект дает лишь при использовании высокоразрешающих фотоматериалов.

На рис. V, 4 приведены частотно-контрастные характеристики этого объектива для центра (*a*) поля (l' = 0) и для края (б) поля зрения (l' = 20 мм).

Величины коэффициентов передачи контраста определены для  $l' = 20 \,$  мм для различно ориентированных штрихов синусоидальной миры: сплошной линией — для меридионального сечения, пунктирной линией — для сагиттального сечения.

Заметим, что величины коэффициентов передачи контраста составляют в центре поля около 45% при частотах  $N' = 50 \ \text{мm}^{-1}$  и около 67% — при частотах 25  $\text{мm}^{-1}$ , на краю поля соответственно около 20 и 35%.

Около 20 лет назад нами был разработан объектив «Орхидея-1» (f' = 50 мм; 1:2; 2 $\omega = 46^{\circ}$ ) (рис. V, 5) для дальномерных камер, имеющий оптическую схему, аналогичную рассматриваемой (см. рис. V, 2, 6). Оптические качества этого объектива близки к свойствам



Рис. V, 4. Частотно-контрастные характеристики объектива «Суммикрон»

«Суммикрона». На рис. V, 4, а представлена пунктиром кривая ЧКХ объектива «Орхидея-1». Промышленного производства объектив не получил. Фирма «Лейтц» усиленно рекламирует объектив «Суммикрон»

для цветной фотографии, однако по распределению освещенности изображения по полю (вследствие виньетирования) он даже несколько хуже других объективов (см. табл. V, 2).

Отсюда следует, что объектив, повидимому, обладает достаточно равномерным спектральным пропусканием  $\tau_{\lambda}$  в видимой части спектра, достигаемым, в частности, соответствующим выбором типа просветления оптики с учетом фактического спектрального пропускания оптических стекол. Если этого не учитывать, то селективное спектральное пропускание может существенно исказить цветопередачу, что особенно недопустимо при пользовании цветной необратимой пленкой.

В 1970 году нами разработан более светосильный штатный объектив



Рис. V, 5 Объектив «Орхидея-1» для визирно-дальномерных фотоаппаратов 24×36 мм

«Гелиос-94» (см. табл. V, 2) с относительным отверстием 1:1,8. В положительных линзах объектива применены лантановые кроны (СТК), что позволило повысить качество оптического изображения объектива по сравнению с серийным объективом «Юпитер-8» при одновременно повышенной светосиле «Гелиоса-94». По группе штатных объективов с нормальной светосилой 1 : 2,8 во всех странах до сих пор весьма широко применяются анастигматы типа «Тессар» (см. рис. IV, 8), аналогами которых по оптической схеме являются объективы «Индустар». Лишь в более редких случаях применяют здесь простые трехлинзовые «Триплеты». В табл. V, 3 приведены данные о некоторых объективах нормальной светосилы, используемых как в зеркальных, так и в визирно-дальномерных камерах 24 × 36 мм. Их испытания проводились на фотоматериалах типа KH, разрешающих около 120—130 мм<sup>-1</sup>.

Таблица V,3

|                                                                                                                                                             | Опти                                    | ческие х                                                    | аракте                                 | ристики                                    | ское<br>ание,                    | тонен-                                 | Фотографическая раз-<br>решающая сила, мм <sup>-1</sup> |                                  |                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------------|----------------------------------|----------------------------------|--|
| Марка объектива                                                                                                                                             | Марка объектива $f', \\ hm = 2w, \circ$ | 2w, °                                                       | s', мм                                 | Геометриче<br>виньетиров<br>%              | Число комі<br>тов и линз         | 1, = 0                                 | <i>1'</i> = 10 <i>мм</i>                                | <i>l'</i> =20 мм                 |                                  |  |
| «Индустар-81» (СССР)<br>«Тессар» (ФРГ)<br>«Канон-Ленз S» (Япония)<br>«Индустар-26» (СССР)<br>«Индустар-61» (СССР)<br>«Колор-Скопар» (ФРГ)<br>«Теосор» (СПР) | 38<br>52<br>48<br>52<br>52<br>52<br>50  | 1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8 | 59<br>45<br>47<br>45<br>45<br>45<br>46 | 30<br>43,7<br>42,0<br>41,0<br>40,7<br>40,7 | 59<br>40<br>60<br>50<br>48<br>48 | 3/4<br>3/4<br>3/3<br>3/4<br>3/4<br>3/4 | 45<br>50<br>55<br>27<br>46<br>49                        | 25<br>37<br>33<br>23<br>37<br>29 | 19<br>31<br>32<br>18<br>27<br>28 |  |
| «Тессар» (ГДР)<br>«Фуджинон» (Япония)<br>«Индустар-70» (СССР)<br>«Вега-3» (СССР)<br>«Индустар-50» (СССР)                                                    | 52<br>47<br>52<br>52<br>52              | 1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:3,5          | 45<br>46<br>45<br>45<br>45             | 41,8<br>38,8<br>39,2<br>38,0<br>39,0       | 38<br>50<br>65<br>59<br>60       | 3/4<br>3/4<br>3/4<br>4/5<br>3/4        | 48<br>40<br>50<br>55<br>43                              | 34<br>27<br>26<br>38<br>27       | 32<br>27<br>22<br>21<br>25       |  |

Штатные объективы с нормальной светосилой

Из таблицы видно, насколько еще не исчерпаны возможности простейшего четырехлинзового анастигмата «Индустар». Его совершенствование успешно продолжается применением в нем лантановых стекол. Промышленное освоение еще более тяжелых кронов — типа ториевых стекол — позволит создать в ближайшие годы еще более высококачественные объективы этой схемы. Вместе с тем сопоставление табл. V, 2 и V, 3 может навести читателя на неправильные выводы: шестилинзовый «Планар» и четырехлинзовый «Тессар» (ГДР) имеют приблизительно одинаковую разрешающую силу как в центре поля (48 и 52  $mm^{-1}$ ), так и на краю поля  $l' = 20 \ mm$  (32 и 32  $mm^{-1}$ ). Казалось бы, стоит ли из-за повышения светосилы приблизительно в два раза (2,8<sup>2</sup>:  $2^2$ ) применять более сложные оптические схемы? Однако преимущества объективов для центра поля l' = 0 и края поля  $l' = 20 \ mm$ ; сплошные кривые соответствуют данным для меридионального сечения, пунктирные — для сагиттального сечения.

Обращаем внимание, насколько величины коэффициентов передачи контраста у объективов «Планар» выше, чем у «Тессара» — особенно для меридионального сечения на краю поля.

Из данных табл. V, 3 также следует, что отечественный объектив «Индустар-61» находится на уровне лучших современных образцов этого типа. Расчет его выполнен Г. Слюсаревым и В. Соколовой.

Переходя к группе особо светосильных объективов с относительным отверстием 1 : 1,5 и выше, обратим прежде всего внимание на те оптические схемы, которые обеспечивают большой задний фокальный отрезок (35—38 *мм*), что позволяет применять их в зеркальных фотоаппаратах.

В табл. V, 4 приведены данные о некоторых особо светосильных объективах, пригодных также и для форматов снимков 28 × 28 мм, применяемых в соответствующих фотоаппаратах. Интересен асферичес-кий объектив «Эра-18».



Рис. V, 6. Частотно-контрастные характеристики объективов «Планар» (f'=50 мм) и «Тессар» (f'=50 мм)

При оценке качества оптического изображения особо светосильных анастигматов необходимо несколько снизить те требования, которые были установлены выше при проведении градации (по качеству) объективов светосильных и нормальной светосилы. По качеству изображения наилучшим среди исследованных в этой группе является объектив «Суммилюкс» фирмы «Лейтц» (ФРГ), однако он имеет малый задний фокальный отрезок (s' = 28,3 мм) и, следовательно, пригоден только для визирно-дальномерных фотоаппаратов.

Для зеркальных камер наилучшим является разработанный нами оригинальный объектив «Эра-6», имеющий при шестилинзовой схеме большой задний отрезок (s' = 39,6 мм).

По своим конструктивным параметрам и оптическим качествам объектив «Эра-6» может быть рекомендован не только в качестве сменного зеркальных фотоаппаратов, но и штатным объективом зеркальных аппаратов высшего класса; его оптическая схема была уже нами приведена выше (см. рис. IV, 11, г).

Помещенный рядом с ним объектив «Супер-Такумар» фирмы «Асахи» (Япония) имеет при приблизительно одинаковом качестве изображения восемь линз, т. е. на две линзы больше. Реклама была создана рекордному по светосиле японскому объективу «Канон-Ленз», имеющему относительное отверстие 1 : 0,95. Как показали исследования промышленного образца, объектив обладает пониженным качеством оптического изображения по полю.

Таблица V,4

|                                                                                                                                                                                                                                                                                          | Опти                                                                                                                                                                                                                                                                   | ические ха                                                                                                 | ское<br>ание,                                                        | онен-                                                                                        | Фотографическая раз-<br>решающая сила, мм <sup>-1</sup>        |                                                                    |                                                                      |                                                                      |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Марка объектива                                                                                                                                                                                                                                                                          | f',<br>мм                                                                                                                                                                                                                                                              | ε                                                                                                          | 2w, °                                                                | s', мм                                                                                       | Геометриче<br>виньетиров<br>%                                  | Число комп<br>тов и линз                                           | <i>l' =</i> 0                                                        | Г'=10 мм                                                             | l'=20 мм                                                             |
| «Восход-3» (СССР)<br>«Суммилюкс» (ФРГ)<br>«Эра-6» (СССР)<br>«Супер-Такумар» (Япо-<br>ния)<br>«Гексанон» (Япония)<br>«Юпитер-3» (СССР)<br>«Канон-Ленз» (Япония)<br>«Рекорд-4» (СССР)<br>«Канон-Ленз» (Япония)<br>«Ауто-Топкар» (Япония)<br>«Канон-Ленз» (Япония)<br>«Ханон-Ленз» (Япония) | 52           50           52           50           52           50           52           50           52           50           52           50           52           50           52           50           52           50           58           58           49 | 1:1,4<br>1:1,4<br>1:1,5<br>1:1,4<br>1:1,4<br>1:1,5<br>1:0,95<br>1:0,95<br>1:1,4<br>1:1,4<br>1:1,2<br>1:1,2 | 45<br>46<br>45<br>46<br>45<br>45<br>46<br>45<br>46<br>41<br>41<br>50 | 37,6<br>28,3<br>39,6<br>36,4<br>34,5<br>23,5<br>20,1<br>22,3<br>36,6<br>36,9<br>36,0<br>38,0 | 62<br>70<br>63<br>58<br>66<br>68<br>82<br>69<br>72<br>60<br>61 | 6/7<br>5/6<br>6/8<br>5/6<br>3/7<br>5/7<br>6/9<br>6/7<br>5/7<br>5/7 | 45<br>46<br>40<br>42<br>41<br>37<br>41<br>42<br>40<br>39<br>30<br>50 | 25<br>33<br>28<br>32<br>31<br>28<br>25<br>27<br>31<br>30<br>23<br>39 | 28<br>32<br>21<br>22<br>18<br>24<br>11<br>15<br>23<br>24<br>14<br>18 |

Особо светосильные объективы для фотоаппаратов 24×36 мм

Конечно, задача создания столь светосильного широкоугольного анастигмата является исключительно трудной.

В этом мы убедились при разработке объектива «Рекорд» (см. рис. II, 31, *в*). Этот анастигмат, разработанный Д. Волосовым, Н. Хмельни-



Рис. V, 7. Оптические схемы японских объективов: a-«Канон-Ленз» (f'=50 мм; 1:0,95);  $\delta$  – «Канон-Ленз» (f'=58 мм; 1:1,2)

ковой и И. Дриацкой, в варианте «Рекорд-4», приведенном в табл. V, 4, имеет относительное отверстие 1 : 0,9 при поле зрения 45°; при сравнительно большом заднем фокальном отрезке (s' = 22,3 мм) он имеет длину лишь 67,5 мм; схема объектива — девятилинзовая.

Задача существенно упрощается при уменьшении относительного отверстия. Например, в объективе «Канон-Ленз» ( $f' = 58 \ mm$ ; 1:1,2) уже оказалось возможным увеличить задний фокальный отрезок до 36 *мм*; конечно, задача тем более упростилась, что при этом угол поля зрения был также уменьшен до 41°.

На рис. V, 7 приведены оптические схемы этих двух объективов.

По пути дальнейшего усложнения оптической схемы системы — применения девятилинзовой конструкции — пошла фирма «Ниппон Когаку» (Япония), выпустив объектив «Никкор» (f' = 50 мм; 1:1,1;  $2w = 46^{\circ}$ ) (рис. V 8). Сведений о его оптических качествах мы не имеем. Судя по патентным данным, в четырех положительных линзах этого объектива применены тяжелые лантановые кроны. Кроме того, во многих светосильных, в частности в особо светосильных, объективах с целью уменьшения массы, габаритов и виньетирования по полю применены необычно малые толщины линз по оси и по краю.

Эти технологические особенности подчас обеспечивают принципиальную возможность конструктивной реализации данной оптической схемы. В заключение укажем, что в рассматриваемой проблеме создания особо светосильных и достаточно широкоугольных объективов было бы весьма уместным применение асферических поверхностей, что позволило бы более совершенно решать подобные задачи. Работы в этом направлении ведутся повсеместно — как у нас, так и за рубежом.

Переходим к группе сменных объективов к фотоаппаратам 28 × 28 и 24 × 36 мм. И



Рис. V, 8. Оптическая схема японского объектива «Никкор» (f'=50 мм; 1;1,1)

здесь обсудим лишь те объективы, образцы которых были в нашем распоряжении и были подвергнуты достаточно полным исследованиям. Среди широкоугольных сменных анастигматов наибольшую трудность вызывает их разработка для зеркальных камер; в этих случаях величины задних фокальных отрезков достигают, а в более короткофокусных системах и превосходят значения фокусных расстояний. В табл. V, 5 приведены данные о широкоугольных объективах для зеркальных и дальномерных камер.

Отличным объективом является «Мир-1». Он был разработан нами в 1954 году на основе оптической схемы «Флектогон» д-ра Г. Цёльнера (ГДР). В отличие от объектива «Флектогон», в котором применены лантановые тяжелые кроны, мы применили простые оптические стекла. Вместе с тем нам удалось более совершенно корригировать сферическую аберрацию высших порядков и все хроматические аберрации в области спектра от G' ( $\lambda = 434, 1 \ \text{нm}$ ) до  $C(\lambda = 656, 3 \ \text{нm})$ , в частности хроматические аберрации лучей широких наклонных пучков, что привело к повышению качества оптического изображения. На рис. V, 9, *а* приведена оптическая схема объектива и указаны примененные в нем марки оптических стекол. На рис. V, 9, *б* указана разрешающая сила объектива, определенная на фотоматериале M3 и ЧКХ объективов «Мир-1» и «Флектогон» в центре поля (рис. V, 9, *в*).

Заметим, что лучшие современные короткофокусные широкоугольные светосильные объективы имеют коэффициенты передачи контраста 50—60 % в центре поля при частотах  $N' = 50^{-1}$  и 70—80 % — при частотах 25  $mm^{-1}$ ; на краю поля (l' = 20 mm) соответственно имеют 15 — 20 % при  $N' = 50 mm^{-1}$  и 30—40 % — при  $N' = 25 mm^{-1}$ . Эти величины мы называем, обобщая экспериментальные данные, полученные А. Ащеуловым и его сотрудниками (Н. Березиным, Н. Соколовой, Т. Павличук, М. Хухриной и другими), а позднее Н. Евтеевой, Т. Лесиной и другими, испытывавшими большое количество зарубежных и отечественных любительских объективов.

Хорошими по качеству оптического изображения, почти достигающими качества объектива «Мир-1», являются «Эльмарит R» и «Супер-Такумар» (см. табл. V, 5); однако в первом из них применена семилин-



Рис. V, 9. Характеристики широкоугольного объектива «Мир-1» (а-в) и схема особо широкоугольного объектива «Мир-20» (г)

зовая оптическая схема, а второй объектив имеет меньшее относительное отверстие (1:3,5), при более сложной восьмилинзовой оптической схеме. Из патентной, журнальной и рекламной литературы известно более 60 объективов разных типов с фокусными расстояниями около 35 мм и относительными отверстиями 1:2—1:2,8 разных фирм и стран — Японии, ФРГ, США, Англии, Франции, ГДР и др. Однако достаточное однозначное представление о достигнутом здесь техническом уровне дает отечественная и японская оптика, воплотившая в себе (с использованием широкой покупки иностранных лицензий) все наиболее и закрепленное патентной документацией.

К группе широкоугольных отечественных объективов для зеркальных камер относится приведенный в той же таблице объектив «Мир-14» (f' = 24 мм; 1 : 3,5;  $2w = 84^\circ$ ). В 1968 году Д. Волосовым, Н. Хмельниковой и Т. Шаманиной разработан еще более широкоугольный объектив «Мир-20» (f' = 20 мм; 1 : 3,5;  $2w = 94^\circ$ ). Он имеет оригинальную девятилинзовую оптическую схему (рис. V, 9, e). Названный объектив является сравнительно малогабаритным; длина оптики 60 мм при диаметре (наибольшем) первой линзы 62  $\text{ мм}^*$ .

<sup>\*</sup> Весьма интересен объектив «Зодиак-2», рассчитанный В. В. Тарабукиным.

Таблица V,5

Широкоугольные сменные объективы для фотоаппаратов 24×36 мм

|                 | Опти       | ческие ха | рактер | истики | ание,<br>понен-               | Фотографическая раз-<br>решающая сила, мм-1 |        |            |          |
|-----------------|------------|-----------|--------|--------|-------------------------------|---------------------------------------------|--------|------------|----------|
| Марка объектива | f',<br>лім | ε         | 2w, °  | s', мм | Геометриче<br>виньетиров<br>% | Число коми<br>тов и линз                    | l' = 0 | 1' = 10 мм | l'=20 мм |

## 1. Объективы к зеркальным камерам

| «Зодиак-2» (СССР)<br>«Мир-32» (СССР)<br>«Мир-20» (СССР)<br>«Мир-14» (СССР) | 15<br>24<br>20<br>24 | 1:3,5<br>1:2,5<br>1:3,5<br>1:3,5 | 180<br>84<br>94<br>84 | 41,9<br>39,3<br>38,0<br>38,5 | <br>40<br>45   | 5/9<br>8/9<br>8/9<br>7/8 | 50<br>53<br>50<br>52 | 25<br>36<br>35<br>34 | $     \begin{array}{c}       12 \\       18 \\       30 \\       25     \end{array} $ |
|----------------------------------------------------------------------------|----------------------|----------------------------------|-----------------------|------------------------------|----------------|--------------------------|----------------------|----------------------|---------------------------------------------------------------------------------------|
| «Мир-10» (СССР)<br>«Мир-1» (СССР)<br>«Флектогон» (ГДР)                     | 28<br>37<br>37       | 1:3,5<br>1:2,8<br>1:2,8          | 75<br>62<br>62        | 38,3<br>36,7<br>36,8         | 41<br>58<br>52 | 7/8<br>5/6<br>5/6        | 40<br>55<br>50       | 30<br>36<br>33       | 35<br>35<br>30                                                                        |
| «Эльмарит R» (ФРГ)<br>«Супер-Такумар» (Япо-<br>ния)                        | 35<br>35             | 1:2,8                            | 64<br>64              | 38,3<br>37,5                 | 57             | 5/7<br>6/8               | 50<br>50             | 37<br>41             | 27 26                                                                                 |
| «Браун-Рефлекс Литагон»<br>(ФРГ)<br>«Илока-Еригон Роден-<br>шток» (ФРГ)    | 35<br>35             | 1:3,5                            | 64.                   | 42,1<br>37,2                 | 47<br>60       | _                        | 44<br>57             | 30<br>32             | 20<br>26                                                                              |
|                                                                            |                      |                                  |                       |                              |                |                          |                      |                      |                                                                                       |

2. Объективы к дальномерным камерам

| «Спутник-4» (СССР)<br>MP-2 (СССР)<br>«Орион-15» (СССР)<br>«Супер-Ангулон» (ФРГ)<br>«Канон» (Япония)<br>«Юпитер»-12» (СССР)<br>«Суммикрон» (ФРГ)<br>«Качон» (Япония) | 20<br>19<br>28<br>21<br>28<br>35<br>35<br>35 | 1:4,5<br>1:5,6<br>1:6<br>1:4<br>1:2,8<br>1:2,8<br>1:2 | 92<br>95<br>75<br>90<br>75<br>62<br>62<br>62<br>62 | 12,6<br>11,0<br>21,8<br>7,4<br>20,0<br>7,6<br>22,7<br>19,8 | 0<br>67<br>44<br>80<br>70<br>73<br>75 | 5/8<br>4/6<br>4/4<br>4/9<br>3/5<br>6/8 | 52<br>40<br>55<br>67<br>55<br>60<br>50<br>39 | 30<br>36<br>34<br>40<br>36<br>27<br>37<br>25 | 23<br>18<br>26<br>26<br>17<br>23<br>27<br>21 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| «Канон» (Япония)                                                                                                                                                    | 35                                           | 1:1,5                                                 | 62                                                 | 19,8                                                       | 75                                    | —                                      | 39                                           | 25                                           | 21                                           |

Из группы широкоугольных объективов для дальномерных камер весьма интересен объектив «Супер-Ангулон» фирмы «Шнейдер» (ФРГ) (f' = 21 мм; 1: 4;  $2w = 90^{\circ}$ ), имеющий высокие оптические характеристики и хорошее качество изображения. Достигнуто это применением сложной девятилинзовой оптической схемы. Приближается к нему почти по всем своим характеристикам наш объектив «Спутник-4» (f' = 20; 1: 4,5;  $2w = 92^{\circ}$  — см. табл. V, 5), обладающий повышенной равномерностью распределения освещенности изображения по полю; освещенность убывает пропорционально 2,5-й степени косинуса угла поля зрения. Объектив формирует резкое контрастное изображение по всему полю. Несколько уступает ему по светосиле и качеству оптической схему «Руссар» (рис. V, 10, *a*). Среди объективов с фокусным расстоянием 35 *мм* для дальномерных камер интересен объектив повышенной светосилы «Суммикрон» (f' = 35 мм; 1: 2;  $2w = 62^{\circ}$ ) фирмы

«Лейтц» (ФРГ). Несмотря на повышенную светосилу, в нем удалось достигнуть хорошего качества оптического изображения при восьмилинзовой оптической схеме.

В заключение назовем оригинальную разработку фирмы «Цейсс-Оберкохен» (ФРГ) особо широкоугольного объектива «Хологон», ( $f^{t} = 15 \text{ мм}$ ;  $1:8; 2\omega = 110^{\circ}$ ). Образец этого объектива мы не исследовали, а располагаем лишь журнальными данными. Объектив, якобы, состоит только из трех линз, имеющих необычную форму (рис. V, 10,  $\delta$ ); в частности, необычна форма внутренней линзы. По тем же сведе-



Рис. V, 10. Оптические схемы: а — широкоугольного объектива MP-2 типа «Руссар»; б — особо широкоугольного объектива «Хологон» (фирма «Цейсс — Оберкохен»)

ниям, объектив обладает повышенной равномерностью распределения освещенности изображения по полю: освещенность на краю поля примерно вдвое выше, чем это следует из закона косинуса четвертой степени. Объектив в достаточной мере является ортоскопическим.

Рассмотрим группу сменных длиннофокусных объективов к фотоаппаратам 24 × 36 мм. И здесь обсудим лишь те объективы, образцы которых были у нас в распоряжении и были подвергнуты лабораторным испытаниям.

В табл. V,6 приведены данные о длиннофокусных объективах для камер 24 × 36 *мм*.

По этой группе мы имеем ряд отличных объективов. Отличным является «Зоннар» (f' = 85 мм; 1 : 2). На основе применения особо тяжелых кронов в нем при той же оптической схеме существенно повышена разрешающая сила на краю поля — более чем на 10  $\text{мm}^{-1}$  по сравнению с объективом «Юпитер-9». Отличным является объектив «Эльмарит» (f' = 90 мм) фирмы «Лейтц», в котором при простой пятилинзовой схеме удалось достигнуть весьма высокого качества оптического изображения, сохранив при этом большое относительное отверстие — 1 : 2,8. Отличным является разработанный нами объектив «Вега-13» (f' = 100 мм; 1 : 2,8 — исполнитель расчета Л. Иванова), имеющий простую пятилинзовую схему (рис. V,11).

По группе объективов с фокусными расстояниями 135—150 мм и повышенной светосилы наилучшим является пятилинзовый объектив «Эльмарит» (f' = 135 мм; 1:2,8) фирмы «Лейтц» (ФРГ).

### Таблица V,6

|                                                                                                                                              | Опти                                          | ческие ха                                               | арактер                                      | оистики                                              | ское<br>ание                           | тонен-                                           | Фотографическая раз-<br>решающая сила, мм <sup>-1</sup> |                                        |                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------|--|
| Марка объектива                                                                                                                              | f',<br>мм                                     | E                                                       | 2 <b>w</b> ,°                                | s', мм                                               | Геометриче<br>виньетиров<br>%          | Число комі<br>тов и линз                         | 0 = ,1                                                  | <i>l'</i> =10 мм                       | <i>l'</i> =20 мм                       |  |
| «Зоннар» (ФРГ)<br>«Юпитер-9» (СССР)<br>«Гелиос-40» (СССР)<br>«Эльмарит» (ФРГ)<br>«Эльмар» (ФРГ)<br>«Вега-13» (СССР)<br>«Супер-Такумар» (Япо- | 85<br>85<br>90<br>90<br>100<br>105            | 1:2<br>1:1,5<br>1:2,8<br>1:4<br>1:2,8<br>1:2,8<br>1:2,8 | 28<br>28<br>28<br>27<br>27<br>27<br>24<br>23 | 41,3<br>40,7<br>45,0<br>50,1<br>76,5<br>52,7<br>59,9 | 37<br>35<br>50<br>33<br>43<br>30<br>32 | 3/7<br>3/7<br>4/6<br>4/5<br>3/4<br>5/5<br>4/5    | 50<br>44<br>48<br>60<br>52<br>50<br>42                  | 36<br>35<br>20<br>46<br>45<br>36<br>37 | 36<br>23<br>34<br>37<br>20<br>36<br>31 |  |
| «Гектор» (ФРГ)<br>«Эльмарит» (ФРГ)<br>«Таир-11» (СССР)<br>«Роденшток-Ротелар»<br>(ФРГ)                                                       | 125<br>135<br>135<br>135                      | 1:2,5<br>1:2,8<br>1:2,8<br>1:2,8<br>1:4                 | 20<br>18<br>18<br>18                         | 90,7<br>64,9<br>78,6<br>36,9                         | 20<br>33<br>44<br>53                   | 3/4<br>4/5<br>3/4<br>—                           | 46<br>46<br>39<br>48                                    | 32<br>39<br>32<br>36                   | 17<br>35<br>26<br>30                   |  |
| «Юпитер-11» (СССР)<br>«Юпитер-6» (СССР)<br>«Супер-Динарекс» (ФРГ)<br>«Телит» (ФРГ)<br>«Орестогор» (ГДР)<br>«Никкор-Q-Ауто» (Япо-             | 135<br>180<br>200<br>200<br>200<br>200<br>200 | 1:4<br>1:2,8<br>1:4<br>1:4<br>1:4<br>1:4<br>1:4         | 18<br>14<br>12<br>12<br>12<br>12<br>12       | 62,2<br>79,4<br>38,3<br>103,1<br>50,6<br>48,8        | 50<br>40<br>61<br>26<br>42<br>49       | 3/4<br>3/5<br>4/4<br>5/5<br>4/4                  | 52<br>35<br>35<br>38<br>50<br>54                        | 45<br>24<br>28<br>33<br>44<br>41       | 35<br>18<br>22<br>28<br>38<br>33       |  |
| «Юпитер-21» (СССР)<br>«Телемар-22» (СССР)<br>«Таир-3» (СССР)<br>«Телезенитар» (СССР)<br>«Апо-Телекс-1» (СССР)<br>МТО-500 (СССР)              | 200<br>200<br>300<br>300<br>400<br>500        | 1:4<br>1:5,6<br>1:4,5<br>1:4,5<br>1:5<br>1:8            | 12<br>12<br>8<br>6<br>5                      | 94,1<br>80,4<br>142,0<br>66,3<br>117<br>40,0         | 35<br>27<br>40<br>20<br>15<br>—        | 3/4<br>3/4<br>3/3<br>4/6<br>5/6<br>Зер-<br>каль- | 54<br>52<br>45<br>42<br>64<br>38                        | 45<br>36<br>43<br>36<br>60<br>26       | 36<br>31<br>38<br>32<br>55<br>18       |  |
| 3M-1 (CCCP)<br>MTO-1000 (CCCP)                                                                                                               | 500<br>1000                                   | 1:8<br>1:10                                             | 5<br>2,5                                     | 40,0<br>61,0                                         | _                                      | нолин-<br>зовый<br>То же<br>» »                  | 42<br>34                                                | 34<br>27                               | 25<br>18                               |  |

## Длиннофокусные объективы для камер 24×36 мм

По группе объективов с фокусным расстоянием 200 *мм* и отверстием 1 : 4 наилучшим по своим оптическим качествам при наипростейшей трехкомпонентной четырехлинзовой схеме является объектив «Юпитер-21». Отличным по качеству оптического изобра-

жения и непревзойденным по простоте своей трехлинзовой оптической схемы является разработанный автором более 35 лет назад светосильный телеобъектив «Таир-3» (f' = 300 мм; 1:4,5), удостоенный совместно с нашими объективами «Таир-11», «Мир-1» и другими объективами (МР-2 и МТО-500 Д. Максутова) высшей награды на Всемирной выставке в Брюсселе 1958 года «Гран при». На рис. V, 12, а



Рис. V, 11. Оптическая схема объектива «Вега-13»

приведена оптическая схема этого телеобъектива и его фотографическая разрешающая сила.

Из той же группы телеобъективов назовем зеркально-линзовый объектив с менисковым компенсатором МТО-500 (f' = 500 мм; 1:8). На рис. V, 12 в приведена его оптическая схема и фотографическая разрешающая сила.

Этот объектив уже много лет выпускается серийно (он был разработан Д. Максутовым в 1953 году).

В 1958 году на основании исследования этой оптической схемы автор пришел к выводу о возможности повышения качества оптического



Рис. V, 12. Характеристики телеобъективов: а, б — линзового «Таир-З»; в, г — зеркально-линзовых МТО-500 и ЗМ-1

изображения менисковых систем в результате улучшения коррекции астигматизма без усложнения их оптической схемы. На основе этих исследований был разработан зеркально-менисковый объектив (ЗМ-1) с более высоким разрешением по полю—приблизительно на 7—8 мм<sup>-1</sup>. В отличие от объектива МТО, в новой схеме двухлинзовый компенсатор выполнен несклеенным, что и позволило лучше корригировать полевую аберрацию астигматизма. На рис. V, 12, г пунктиром указана кривая разрешающей силы телеобъектива ЗМ-1\*.

Остается рассмотреть группу панкратических, быстро совершенствующихся объективов.

В конце главы IV мы описали некоторые общие оптические свойства подобных объективов. Еще несколько лет назад обсуждался вопрос об оснащении фотоаппаратов панкратическими объективами. Однако возможность получения произвольного переменного масштаба изображения, что позволяет вписывать сюжет при его съемке наилучшим образом, особенно важна при фотографировании на цветной обратимой пленке, где изменение компоновки кадра при печати невозможно, а также и некоторые другие преимущества обеспечили быстрое проникновение панкратической оптики в фотоаппаратуру. Один из первых панкратических фотообъективов, так называемый «Фойхтлендер-Зу-

<sup>\*</sup> Особого внимания заслуживает апохромат «Апо-Телекс-1» (табл. V, 6).

мар», был разработан в 1959 году фирмой «Фойхтлендер» (ФРГ). Он имеет относительное отверстие 1 : 2,8 с плавным изменением фокусно-го расстояния от 36 до 82 мм при формате изображения 24 × 36 мм.

Создание панкратических объективов для фотоаппаратов встречает ряд специфических трудностей по сравнению с их разработкой для телевидения или профессиональной кинематографии; основными из них являются: более жесткие требования к габаритам; необходимость форсирования величин полей зрения объективов. Зеркальный фотоаппарат  $24 \times 36 \ m$ имеет массу около 1 *кг*; естественно, объектив к нему должен быть сравним по массе и размерам с этим аппаратом. Поле зрения основного (штатного) объектива фотоаппарата соответствует его фокусному расстоянию, которое приблизительно равно диагонали кадра, и, следовательно, угол поля зрения основного объектива достигает 45-50°. Эти три параметра — широкоугольность, малые габариты и небольшие массы — являются взаимно противоречивыми.

Делались попытки эти внутренне противоречивые параметры в какой-то мере совместить, воспользовавшись возможностью создания для фотографии объективов с дискретно изменяющимися фокусными расстояниями, поскольку в данном случае, в отличие от киносъемки, не требуется эффекта «плавного наезда». Однако последующие разработки показали, что такое допущение не приводит к существенному упрощению механической конструкции объектива и технологии изготовления. Эти выводы подтверждены также и опытом многих организаций-разработчиков, создавших свыше сорока различных панкратических объективов.

Почти все они разработаны для зеркальных однообъективных фотоаппаратов с откидным зеркалом, расположенным позади объектива, что требует сравнительно большого заднего фокального отрезка не менее 39-36 мм у камер 24 × 36 мм. Это создает дополнительные трудности при их оптических расчетах, и, конечно, всякие конструктивные мероприятия, допускающие применение объективов с уменьшенным задним фокальным отрезком, упрощают решение этой оптически сложной задачи.

Перечисленные трудности оптико-механического и эксплуатационного характера привели к ограничению практически реализуемых параметров панкратических объективов для фотографии: все они имеют небольшие отверстия — 1:3,5—1:5,6, и, во всяком случае, не выше 1: 2,8; кратность изменения их фокусных расстояний также невелика— 1,6—2-кратное, реже 2,5 — 3-кратное; массы объективов составляют 0,6—1 кг, реже 2—3 кг — у длиннофокусных объективов и в системах с повышенной кратностью изменения фокусных расстояний — в 3— 3,5 крат.

Подобно классификации фотообъективов с постоянным фокусным расстоянием, панкратические объективы удобно классифицировать, исходя из величин их минимальных фокусных расстояний:

широкоугольные панкратические объективы, у которых мини-мальное фокусное расстояние f'<sub>мин</sub> не превышает 45 мм;
 иормальные (универсальные) панкратические объективы, у кото-

рых минимальные фокусные расстояния от 45 до 60 мм;

3) длиннофокусные панкратические объективы, у которых минимальные фокусные расстояния от 70 до 100 *мм*;

4) особо длиннофокусные панкратические объективы, у которых минимальные фокусные расстояния превышают 150 *мм*.

В табл. V, 7 приведены некоторые сведения о широкоугольных панкратических об ъективах.

Таблица V,7

|                                                                 | ения<br>тоя-                                      | отвер-                   |                    |                                 |                | Габа       | ариты,<br><i>мм</i>     |            |
|-----------------------------------------------------------------|---------------------------------------------------|--------------------------|--------------------|---------------------------------|----------------|------------|-------------------------|------------|
| Марка объектива                                                 | Пределы измен<br>фокусного расс<br>ния, <i>мм</i> | Относительное<br>стие, є | Кратность <i>т</i> | Тип<br>компенсации              | Число линз     | длина      | максимальный<br>диаметр | Macca, kg  |
| «Янтарь-5» (СССР)<br>«Фойхтлендер-Зумар»<br>(ФРГ — США)         | 40—80<br>36—82                                    | 1:2,8<br>1:2,8           | 2<br>2,3           | Механическая<br>Оптическая      | 12<br>14       | 120<br>120 | 41<br>78                | 0,6<br>0,8 |
| «Ауто-Никкор-Зум» (Япо-                                         | 35—85                                             | 1:2,8                    | 2,4                | —                               | 13             | _          | _                       |            |
| «Зумалик» (Франция)<br>«Рубин-1» (СССР)<br>«Цейсс-Варио-Зоннар» | 35—75<br>37—80<br>40—120                          | 1:2,8<br>1:2,8<br>1:2,8  | 2,1<br>2,2<br>3,0  | Механическая<br>Оптическая<br>— | 15<br>14<br>13 | 120<br>175 |                         | 0,8<br>1,8 |
| (ФРГ)<br>«Ауто-Никкор-Зум» (Япо-                                | 43—86                                             | 1:3,5                    | 2,0                | Механическая                    | 9              | 100        | 67                      | 0,4        |
| «Рубин-2а» (СССР)                                               | 45—80                                             | 1:3,5                    | 1,8                | Механическая                    | 10             | 110        | 64                      | 0,4        |

Широкоугольные панкратические объективы для фотоаппаратов

Каждый из этих объективов заменяет обычный набор с постоянным фокусным расстоянием 35—40; 50—55 и 80—85 мм.

Несмотря на малую кратность изменения фокусных расстояний, имеются конструкции как с оптической, так и с механической компенсацией сдвига плоскости изображений; это замечание касается и последующих групп.

Поскольку у этих объективов углы полей зрения изменяются в диапазоне от 63—53 до 30—20°, то при столь больших относительных отверстиях (1: 2,8—1: 3,5) их оптические схемы не могут «вырождаться» в телеобъективы даже при больших фокусных расстояниях; иными словами их оптические схемы должны иметь свойства анастигматов с увеличенным задним фокальным отрезком при всех фокусных расстояниях, а следовательно, их общие длины должны превышать величины максимальных фокусных расстояний. Действительно, у более широкоугольных систем длины в 1,5 раза превышают максимальные значения фокусных расстояний; у менее широкоугольной системы «Ауто-Никкор-Зум» (f' = 43—86 мм) ее длина лишь в 1,2 раза больше максимального фокусного расстояния; именно стремление такого сокращения габаритов, а следовательно, и масс и явилось основной причиной перехода к ее менее широкоугольным характеристикам, что повлекло за собой существенное уменьшение диаметра первого компонента и соответственно диаметров остальных линз. Более того, такое сокращение углов поля зрения позволило упростить и оптическую схему системы: вместо четырнадцати-тринадцати лишь девять линз.

На рис. V, 13 приведена оптическая схема объектива, выпускаемого японской фирмой «Ниппон-Когаку К. К.». Он жестко встроен в зеркальный фотоаппарат «Никкорекс-Зум-35»; имеет оптическую компенсацию; состоит из трех компонентов, из которых *I* и *III* жестко связаны между собой и совместно перемещаются, изменяя фокусное расстояние; компонент *II* неподвижен. Вместе с компонентом *III* перемещается и апертурная диафрагма, что требует непрерывного изменения ее диаметра — синхронно с изменением фокусного расстояния объек-



Рис. V, 13. Оптическая схема и кривые разрешающей силы объектива «Ауто-Никкор-Зум» (f'=43-86~ мм)

тива для того, чтобы относительное отверстие всей системы оставалось постоянным. Фокусировка системы на конечное расстояние (от 1,2 *м* до «бесконечности») осуществляется подвижкой первого компонента.

Как видим из таблицы V, 7, объектив имеет сравнительно малые габариты и массу. Это достигнуто в результате уменьшения угла поля зрения (до 53° вместо 63—60°) и отверстия (до 1 : 3,5 вместо 1 : 2,8). На том же рис. V, 13, б приведены графики фотографической разрешающей силы, определенной (как и для других описываемых здесь панкратических объективов) на кинопленке типа M3 с разрешением около 120  $mm^{-1}$  без светофильтра. Разрешающая сила указана для двух крайних значений фокусных расстояний. Хотя величины разрешающей силы не снижаются в пределах всего поля зрения ниже 15—13  $mm^{-1}$ , но, как увидим ниже, у всех панкратических систем контраст оптического изображения понижен: весьма трудно корригировать аберрации лучей широких наклонных пучков для всех фокусных расстояний и для одной фиксированной плоскости изображений.

Дополнительные трудности, возникающие при разработке широкоугольных панкратических анастигматов, — достижение достаточно удовлетворительного исправления дисторсии, которая по абсолютной величине при всех фокусных расстояниях должна оставаться по полю в пределах 4—5% и не более 6—7%, при которых искажения изображений еще заметно не сказываются. Трудности коррекции дисторсии еще усугубляются необходимостью достижения больших задних фокальных отрезков.

Назовем из группы панкратических фотообъективов «Фойхтлендер-Зумар», разработанный еще в 1959 году и изготовляющийся фирмами «Фойхтлендер» (ФРГ) и «Зумар» (США). У объектива угол поля зрения изменяется от 62 до 29° (f' = 36-82 мм) при относительном отверстии 1 : 2,8. Оптическая схема и графики разрешающей силы представлены на рис. V, 14. Компенсация сдвига плоскости изображения — оптическая. Изменение фокусного расстояния осуществляется перемещением жестко связанных компонентов II и IV; компоненты I и III неподвижны при изменении фокусного расстояния, но для дистанционной фокусировки объектива (от 1,3*м* и до «бесконечности») предусмотрено пере-



Рис. V, 14. Оптическая схема и кривые разрешающей силы объектива «Фойхтлендер — Зумар» (//=36-82 мм)

мещение компонента I. Сведения о габаритах и массе объектива указаны в табл. V,7.

Первый отечественный панкратический фотообъектив «Рубин-1» был разработан автором и Б. Левитиной для малоформатного зеркального фотоаппарата «Зенит-6». Оптическая схема объектива представлена на рис. V,15. При расчете объектива было обращено особое внимание на совершенствование коррекции хроматических аберраций широких наклонных пучков с целью повышения качества изображения при цветной фотографии, когда панкратический объектив может оказаться особенно уместным. Разработанный у нас недавно объектив «Рубин-2а» имеет малые габариты и вес и разрешает в центре около 50 мм<sup>-1</sup> и по полю 22 мм<sup>-1\*</sup>.

Заметим, что вся группа широкоугольных панкратических объективов разработана по схеме вариообъективов (см. § 8 главы IV), так как не было никакой — ни оптической, ни конструктивной — необходимости осуществлять параллельный ход лучей в пространстве впереди корректора (см. рис. V, 15, *a*), компенсирующего остаточные аберрации предшествующей части оптической системы, изменяющей фокусное расстояние системы в целом.

Некоторые внешние параметры группы нормальных (универсальных) панкратических фотообъективов даны в табл. V,8.

<sup>\*</sup> Следует отметить объектив «Янтарь-5» (табл. V, 7), разработанный Н. Градобоевой и З. Добросердовой.

Нормальные (универсальные) панкратические фотообъективы

| Марка объектива                                         | Пределы изменения<br>фокусного расстоя-<br>ния, мм | Относительное отвер-<br>стие в | Кратность <i>т</i> | Тип<br>компенсации | Число линз | Габа<br>м.<br>енигт | максимальный<br>диаметр | Ma <del>c</del> ca, <i>ké</i> |
|---------------------------------------------------------|----------------------------------------------------|--------------------------------|--------------------|--------------------|------------|---------------------|-------------------------|-------------------------------|
| «Канон-Зум» (Япония)<br>«Шнейдер-Вариогон»<br>(ФРГ)     | 45—200<br>45—100                                   | 1:2,8<br>1:2,8                 | 4,5<br>2,2         | _                  | _          |                     | _                       | -                             |
| (ФРГ)<br>«Коника-Гексанон» (Япо-<br>ния)                | 47—100                                             | 1:3,5                          | 2,1                |                    |            | 100                 | 58                      | -                             |
| «Роккор-Ауто-Зум» (Япо-                                 | 50—100                                             | 1:3,5                          | 2,0                |                    | 14         | 125                 | 78                      | 0,85                          |
| «Анженье-Зум» тип LB3                                   | 50—200                                             | 1:3                            | 4,0                | Механическая       | -          | -                   | —                       | 2,75                          |
| «Зум-Биокор» (Япония)<br>«Ауто-Никкор-Зум» (Япо-        | $50-100 \\ 50-300$                                 | 1:3<br>1:4,5                   | 2,0<br>6,0         | То же<br>—         |            | 110<br>300          | 103                     | 1,2<br>2,1                    |
| «Тамрон-Зум» (Япония)<br>«Канонматик-Зум» (Япо-<br>ния) | 55—90<br>55—135                                    | 1:4<br>1:3,5                   | 1,6<br>2,4         | <br>Механическая   | 7<br>13    | 115<br>140          | 70<br>85                | 0,60<br>0,77                  |

В отличие от широкоугольных панкратических объективов, здесь несколько уменьшаются углы полей зрения, а при одновременном хотя бы небольшом уменьшении относительных отверстий возможно со-



Рис. V, 15. Оптическая схема и кривые разрешающей силы объектива «Рубин-1» (f'=37-80 мм)

кратить габариты систем: длина объектива приблизительно равна или лишь несколько больше величины максимального фокусного расстояния  $f'_{\text{макс}}$ .

Весьма интересно сопоставление японских объективов: «Рокор-Ауто-Зум», выпущенного в 1963 году, и «Зум-Биокор», выпущенного в 1962 году. Оба имеют одинаковые пределы изменения фокусных расстояний (50—100 мм), но первый из них несколько менее светосильный (1:3,5 вместо 1:3), эксплуатационные преимущества первого объектива несомненны, в частности его масса в 1,5 раза меньше. Интересен объектив «Канонматик-Зум» (f' = 55—135 мм; 1:3,5), выпущенный

Таблица V,9

# Длиннофокусные панкратические фотообъективы

|                                                                                                                                                                                | аения<br>стоя-                                                                      | от-                                                |                                        |                                |                            | Габа<br>м                              | риты,<br>м                       |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------|----------------------------|----------------------------------------|----------------------------------|----------------------------------------------|
| Марка объектива                                                                                                                                                                | Пределы измен<br>фокусного расс<br>ния, <i>мм</i>                                   | Относительное<br>верстие в                         | Кратность <i>т</i>                     | Тип<br>комленсации             | Число линз                 | длина                                  | максимальный<br>диаметр          | Macca, ke                                    |
| «Супер-Такумар-Зум»                                                                                                                                                            | 70—150                                                                              | 1:4,5                                              | 2,1                                    | _                              | 15                         | 225                                    | 70                               | 1,1                                          |
| (Япония)<br>«Рокор-Ауто-Зум» (Япо-                                                                                                                                             | 80—160                                                                              | 1:3,5                                              | 2,0                                    | Механическая                   | 15                         | 210                                    | 80                               | 1,3                                          |
| «Солигор-Миранда-Зум»<br>(Япония)                                                                                                                                              | 90—140                                                                              | 1:2,8                                              | 1,6                                    | -                              | _                          | 165                                    | _                                | 1,02                                         |
| «Петри-Ауто-Зум» (Япо-                                                                                                                                                         | 80—200                                                                              | 1:4,5                                              | 2,5                                    | Механическая                   | 11                         | _                                      | _                                | -                                            |
| «Шнейдер-Вариогон»<br>(ФРГ)                                                                                                                                                    | 80—240                                                                              | 1:4                                                | 3,0                                    | То же                          | 14                         | 200                                    | 97                               | 1,65                                         |
| (ФГГ)<br>«Тамрон-Зум» (Япония)<br>«Сан-Хи-Теле-Зум» (Япо-                                                                                                                      | 80—250<br>85—210                                                                    | 1:3,8<br>1:4,8                                     | $^{3,2}_{2,5}$                         | Механическая                   | 14<br>13                   | 240<br>164                             | 72<br>58                         | 1,26<br>0,67                                 |
| ния)<br>«Цейсс-Варио-Зоннар»<br>(ФРГ)                                                                                                                                          | 85—250                                                                              | 1:4                                                | 2,9                                    | -                              | 15                         | 260                                    | 90                               | 2,3                                          |
| (ФРГ)<br>«Энна-Теле-Зум» (ФРГ)<br>«Ауто-Никкор-Теле-Зум»                                                                                                                       | $85-250\ 85-250$                                                                    | 1:4<br>1:4                                         | 2,9<br>2,9                             | <br>Оптическая                 | 12<br>15                   | 190<br>300                             | 83<br>105                        | 1,2<br>1,8                                   |
| (Япония)<br>«Канон-Зум» (Япония)<br>«Ясика-Ясинон-Зум»                                                                                                                         | 85—300<br>90—190                                                                    | 1:5<br>1:5,8                                       | $3,5 \\ 2,1$                           | -                              | 15<br>9                    | 270<br>170                             | <b>7</b> 8<br>56                 | 1,77<br>0,55                                 |
| (Апония)<br>«Астронар-Зум» (Япония)<br>«Эдиксар-Зум» (Япония)<br>«Тамрон-Зум» (Япония)<br>«Тамрон-Зум» (Япония)<br>«Калигар-Зум» (Япония)<br>«Минольта-Роккор-Зум»<br>(Япония) | $\begin{array}{r} 95-205\\ 95-205\\ 95-205\\ 95-250\\ 100-200\\ 100-200\end{array}$ | 1:6,3<br>1:6,3<br>1:5,6<br>1:5,6<br>1:5,6<br>1:5,6 | 2,1<br>2,1<br>2,1<br>2,6<br>2,0<br>2,0 | Оптическая<br>—<br>—<br>—<br>— | 7<br>7<br>9<br>9<br>7<br>8 | 175<br>185<br>185<br>200<br>180<br>175 | 59<br>61<br>56<br>62<br>58<br>55 | 0,63<br>0,63<br>0,55<br>0,72<br>0,63<br>0,54 |
| «Бауэр-Теле-Зум» (Япо-                                                                                                                                                         | 100—200                                                                             | 1:5,6                                              | 2,0                                    | —                              | 8                          | 190                                    | 70                               | 0,9                                          |
| «Варио-Зенитар» (СССР)<br>«Йака-Теле-Зум» (Япо-                                                                                                                                | 100—200<br>100—200                                                                  | 1:5,6<br>1:5,6                                     | 2,0<br>2,0                             | Оптическая<br>Механическая     | 11<br>8                    | 195                                    | 62<br>—                          | 0,67<br>0,86                                 |
| «Юплен-Зум» (Япония)<br>«Асахи-Супер-Такумар-                                                                                                                                  | 100—200<br>100—270                                                                  | 1:4,5<br>1:4,5                                     | 2,0<br>2,7                             |                                | 8<br>15                    | 190<br>300                             | 70<br>70                         | 0,9                                          |
| «Сен-Теле-Зум» (Япония)                                                                                                                                                        | 110-180                                                                             | 1:4,5                                              | 1,6                                    | —                              | 9                          | 180                                    | -                                | 1,1                                          |

японской фирмой «Канон-Камера Ко.» в 1964 году. Объектив охватывает набор фокусных расстояний: 55, 85 и 135 мм; при этом его оптические качества также вполне удовлетворительные; для крайних значений фокусных расстояний он разрешает около 40 мм<sup>-1</sup> в центре поля и не менее 20 мм<sup>-1</sup> по полю при  $f' = 55 \, \text{мM}$  и не менее 15 мм<sup>-1</sup> при  $f' = 135 \, \text{мM}^{-1}$ . Дистанционная фокусировка осуществляется перемещением первой линзы; наименьшая дистанция съемки — 2,1 м. По-ви-

димому, оптические характеристики этого объектива близки к оптимальным по группе универсальных панкратических фотообъективов; может быть, следует, сохранив те же пределы изменения фокусных расстояний (55—135 мм), несколько уменьшить отверстие — до 1 : 4 вместо 1 : 3,5, что снизит массу объектива приблизительно до 0,6 кг и сократит его длину до 120—125 мм.

Большие разработки были выполнены главным образом японскими оптиками по созданию обширной группы длиннсфокусных панкратических фотообъективов (табл. V,9), у которых величины минимальных фокусных расстояний в пределах 70—100 мм.

За последние годы наметилась определенная тенденция: снижать относительные отверстия систем, что приводит к весьма значительному сокращению габаритов и масс объ-

ективов. Уже при отверстиях 1 : 4,5—1 : 5,6 габариты и массы объективов достаточно малы: длина панкратического телеобъектива равна и даже несколько меньше величины максимального фокусного расстояния системы  $f'_{\text{макс}}$ . Кратность изменения фокусных расстояний обычно ограничивается ве-



Рис. V, 16. Оптическая схема объектива «Астронар-Зум» (f'=95-205 мм)

личинами 2—2,5. При указанных параметрах массы объективов не превышают 1 кг.

Переход от минимальных фокусных расстояний 80-85 мм к величинам ƒ'<sub>мин</sub> порядка 90—95 мм при соответственном снижении отверстий от 1:3,5—1:4 до 1:5,6—1:6,3 позволяет упростить оптическую схему системы: вместо пятнадцати-двенадцати линз задача решается девяти-семилинзовой схемой, что, конечно, не только уменьшает массу объектива, но и упрощает технологию его изготовления. Например, весьма интересен японский объектив «Астронар-Зум» (f' = 95-205 мм). Его относительное отверстие 1 : 6,3 в интервале фокусных расстояний 95—180 мм и уменьшается до 1:7 при переходе к фокусным расстояниям 180—205 мм. Объектив имеет простую семилинзовую оптическую схему (рис. V, 16) и является одним из самых легких (масса 630 г). Компенсация сдвига плоскости изображения — оптическая; при изменении фокусного расстояния движутся жестко связанные между собой компоненты I и III при неподвижных II и IV компонентах. Дистанционная фокусировка — от 1,8 м до «бесконечности» осуществляется первым компонентом. При изменении фокусного расстояния длина объектива изменяется: от наибольшей длины 244 мм (при f' = 205 мм и при дистанции съемки 1,8 м) до наименьшей длины 175 мм (при f' = 95 мм и дистанции «бесконечность»).

Особо длиннофокусные панкратические фотообъективы были разработаны главным образом за последние десять лет японскими оптиками. В табл. V, 10 приведены некоторые сведения по этой группе объективов. Здесь не удалось создать систем достаточно компактных и легких: объективы имеют длину около 0,5 *м*, а массу 2—3 *кг*. Пути совершенствования этих параметров пока не ясны.

Относительное отвер-стие є Габариты, Пределы изменения фокусного расстоя-ния, *мм* мм максимальный диаметр ш Тип Марка объектива число линз Кратность компенсации ß Macca, длина 1:8,0 3,1 16 490 90 2,75 «Рокор-Ауто-Зум» (Япо-160-500 ния) «Сан-Хи-Теле-Зум» (Япо-1:5.82,311 430 86 2,55 190 - 430ния) 2,0 1,28 200-400 «Тамрон-Зум» (Япония) 1:6.3 8 350 81 «Ауто-Никкор-Теле-Зум» 200-600 1:9,5-3,0 Оптическая 13 490 105 2,80 1:10.5(Япония) «Тамрон-Зум» (Япония) 1000—4000 1:16—1:64 4.0 1.4 14 447

Особо длиннофокусные панкратические фотообъективы

Таким образом, из всего многообразия рассмотренных панкратических объективов для формата  $24 \times 36 \ mm$  можно считать целесообразным, если учесть возможные оптические характеристики и технически приемлемые эксплуатационные параметры, разработку двух панкратических анастигматов с большим задним фокальным отрезком (не менее  $38 \ mm$ ) для зеркальных фотоаппаратов: одного — по группе широкоугольных панкратических объективов\* с пределами изменения фокусных расстояний приблизительно от 35 до 100 mm при отверстиях 1: 3,5 (см. табл. V, 7) и одного — панкратического длиннофокусного объектива с пределами изменения фокусных расстояний от 90—95 до  $250 \ mm$  при отверстиях около 1: 5,6 (см. табл. V, 9). В этих направлениях и проводятся наши разработки.

По многим группам объективов мог бы быть осуществлен дальнейший шаг как в направлении совершенствования их оптических и эксплуатационных характеристик, так и повышения качества оптического изображения, если была бы освоена технология массового изготовления точных асферических поверхностей.

Переходим к рассмотрению оптики для любительских фотоаппаратов формата кадра 18 × 24 мм.

За последние годы неуклонно возрастает интерес к миниатюрным фотоаппаратам. Целесообразность развития мелкомасштабной фотографии будет возрастать по мере совершенствования разрешающей способности оптико-фотографической системы объектив — фотослой и, следовательно, возможности осуществления больших последующих увеличений изображений с негатива.

В табл. V, 11 приведены данные об отечественных и некоторых иностранных образцах объективов для фотоаппаратов 18 × 24 мм.

При оценке оптических качеств объективов следует учитывать, что

<sup>\*</sup> Расчет объектива «Варио-Гоир-17» (f = 35 — 100 мм, 1:3,5) выполнен в 1977 г. М. Шпякиным.

количество изображаемых деталей на единице площади негатива у миниатюрных фотоаппаратов должно быть больше, чем у аппаратов более крупномасштабных; но для этого оптико-фотографическая система должна иметь существенно большую разрешающую силу. К сожалению, ни в иностранной, ни в отечественной оптике мы этого не наблюдаем: по группе объективов с нормальной светосилой (1:2,8—1:3,5) мы вынуждены признать хорошими объективы, разрешающие в пределах всего поля около 30 мм<sup>-1</sup>; правда, при этом применены простейшие оптические схемы; четы-

рех- и пятилинзовые. По группе светосильных объективов интерес представляет объектив повышенной светосилы «Восход-2» (f' = 32 мм; 1:1,6), имеющий увеличенный задний фокальный отрезок 26,3 мм при сравнительно высоком для его светосилы качестве оптического изображения. Объектив разработан нами для зеркальных фотоаппаратов. На рис. V, 17 приведена его оптическая схема.



Рис. V, 17. Оптическая схема светосильного объектива «Восход-2» (f'=32 мм, 1:1,6)

#### Таблица V,11

Объективы для фотоаппаратов 18×24 мм

|                                                                                                                                                                                           | Оптич                                                          | неские жа                                                                              | аракте                                             | оист <b>и</b> ки                 | ское<br>ание,                 | тонен-                                 | Фотографическая раз-<br>решающая сила, <i>мм</i> -1 |                                              |                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|-------------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| Марка объектива                                                                                                                                                                           | t' .<br>мм                                                     | e                                                                                      | 2w, °                                              | s'. мм                           | Геометриче<br>виньетиров<br>% | Число коми<br>тов и линз               | /' = 0                                              | <i>l'</i> = 10 мм                            | <i>l'</i> =20 мм                             |  |
| 1. Объективы с нормальной светосилой                                                                                                                                                      |                                                                |                                                                                        |                                                    |                                  |                               |                                        |                                                     |                                              |                                              |  |
| «Рикен» (Япония)<br>«Канон-SH» (Япония)<br>«Канон-SF» (Япония)<br>«Яшинон» (Япония)<br>«Индустар-69» (СССР)<br>«Индустар-65» (СССР)<br>«Олимпус D Зуйко» (Япо-<br>ния)<br>«Лира-4» (СССР) | 25<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>30 | 1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:3,5<br>1:2,8 | 61<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 | 23,3<br>25,4<br>22,0<br>22,4<br> |                               | 3/5<br>3/5<br>3/4<br>3/4<br>3/4<br>3/4 | 57<br>48<br>58<br>51<br>50<br>50<br>60<br>50        | 32<br>42<br>50<br>24<br>37<br>39<br>49<br>37 | 27<br>22<br>32<br>21<br>25<br>32<br>44<br>23 |  |
|                                                                                                                                                                                           | 2. (                                                           | Светосил                                                                               | іьные                                              | объект                           | ивы                           | •                                      | •                                                   |                                              |                                              |  |
| «Гексанон» (Япония)<br>«Яшинон» (Япония)<br>«Фуджинон» (Япония)<br>«F-Зуйко-Ауто S» (Япо-<br>ния)                                                                                         | 30<br>32<br>33<br>38                                           | 1:1,9<br>1:1,7<br>1:1,9<br>1:1,9                                                       | 53<br>50<br>49<br>43                               | 23,2<br>19,2<br>19,6<br>26,8     | 60<br>68<br>50<br>55          | 5/6<br>6/6<br>5/6                      | 53<br>57<br>58<br>51                                | 35<br>42<br>49<br><b>3</b> 6                 | 22<br>32<br>39<br>29                         |  |
| «Гелиос-89» (СССР)<br>«Восход-2» (СССР)<br>ОКС-8-35-1 (СССР)<br>«Рекорд-5» (СССР)                                                                                                         | 30<br>32<br>35<br>36                                           | 1:1,9<br>1:1,6<br>1:2<br>1:0,9                                                         | 53<br>50<br>46<br>45                               | 21,5<br>26,3<br><br>15,0         |                               | 4/6<br>6/7<br>5/7<br>6/9               | 46<br>48<br>52<br>—                                 | 33<br>30<br>45<br>—                          | 22<br>26<br>36<br>—                          |  |

Рекордным по светосиле является объектив «Рекорд-5», рассчитанный в 1967 году Д. Волосовым и Н. Хмельниковой с относительным отверстием 1: 0,9, его задний фокальный отрезок равен 15 *мм*, что позволяет его применить в дальномерных камерах. Объектив имеет оптическую схему, приведенную на рис. II, 31, *в*.

Мы поместили в таблице V, 11 объектив ОКС-8-35-1, предназначенный для профессиональной 35-*мм* киносъемки, который будет описан в следующем параграфе этой главы; конечно, необходимо соответствующим образом согласовать по садочные размеры.

В качестве сменной оптики необходимы еще по крайней мере один широкоугольный и два-три длиннофокусных объектива.

Выше мы описали оптически высококачественный объектив «Мир-14» (f' = 28 мм; 1 : 3,5;  $2w = 84^{\circ}$ ) с задним фокальным отрезком 38,5 мм. Целесообразно перерассчитать этот объектив для фокусного расстояния 17 мм; 1 : 3,5;  $2w = 84^{\circ}$ , что соответствует кадру 18  $\times 24$  мм; при этом задний фокальный отрезок будет равен 27 мм. Объектив будет малогабаритным: его длина составит около 45 мм при максимальном диаметре первой линзы около 34 мм.

В качестве длиннофокусных объективов целесообразно применение простых и легких объективов «Таир» с фокусным расстоянием 85—90 мм и относительным отверстием 1 : 2,8, перерассчитанным из объектива «Таир-11», и объектива с фокусным расстоянием 150 мм и тем же отверстием 1 : 2,8, для чего по своим оптическим свойствам вполне подходит киносъемочный объектив для 35-мм фильмов того же типа «Таир» — ОКС-1-150 (f' = 150 мм; 1 : 2,8), имеющий отличное оптическое изображение и разрешающий в пределах всего поля 18 × 24 мм не менее 45 мм<sup>-1</sup>. В качестве третьего особо длиннофокусного объектива рекомендуется разработанный нами зеркально-менисковый объектив ЗМ-2 с фокусным расстоянием 350 мм и отверстием 1 : 5,6, имеющий оптическую схему, близкую к схеме МТО (см. рис. V, 12, a).

Эта схема отличается тем, что линзовый компенсатор, расположенный в сходящемся пучке лучей, является двухлинзовым несклеенным, чем достигнута лучшая коррекция всех полевых аберраций.

В заключение укажем, что и в миниатюрных фотоаппаратах начинают применяться объективы с переменным фокусным расстоянием. Выполнен у нас расчет панкратического объектива «Рубин-З», у которого фокусное расстояние изменяется от 28 до 56 *мм* при относительном отверстии 1 : 3,5; объектив имеет задний фокальный отрезок 32 *мм*, что позволит при необходимости применять его в зеркальных камерах.

Иногда камеры 18  $\times$  24 *мм* оснащаются и длиннофокусными панкратическими объективами. Например, японская фирма «Олимпиус» в 1963 г. разработала объектив «Зуйко-Ауто-Зум», у которого фокусное расстояние изменяется от 50 до 90 *мм* при относительном отверстии 1 : 3,5. Однако, несмотря на примененную здесь десятилинзовую оптическую схему (рис. V, 18), фотографическая разрешающая сила при малых фокусных расстояниях снижается до 15—14 *мм*<sup>-1</sup> на краю поля. При этом объектив имеет механическую компенсацию сдвига плоскости изображения, достигаемую возвратно-поступательным перемещением компонента *111* по сложному закону. Изменение фокусного расстояния осуществляется перемещением компонента *II* по линейному закону. Дистанционная наводка — от «бесконечности» до расстояния 1,5 *м* — производится перемещением первого компонента. Минимальная длина объектива при установке на «бесконечность» равна

82 мм; при установке на 1,5 м первый компонент выдвигается на 10 мм.

Оптика миниатюрных фотоаппаратов, в частности типа зеркальных, имеющих размер кадра  $14 \times 21 \, \text{мм}$ , обычно комплектуется основным (штатным) объективом с нормальным относительным отверстием (1: 2,8) и сменными широкоугольными и длиннофокусными. В табл. V, 12 приведены некоторые данные об объективах, в частности для миниатюрного отечественного аппарата «Нарцисс»  $14 \times 21 \, \text{мм}$ . Величины разрешающей силы указаны для серийно выпускаемых объективов, которые на 20 - 15% ниже, чем у опытных образцов.



Во всех объективах применены обычные оптические стекла — прос-

Рис. V, 18. Оптическая схема и графики разрешающей силы объектива «Зуйко-Ауто-Зум» (f'=50-90 мм)

тые тяжелые кроны. Кроме перечисленных в таблице в миниатюрных камерах могут быть также использованы (с помощью переходного кольца) все объективы для фотоаппаратов 18 × 24 мм.

Таблица V,12

| Марка объектива                                 |                      | Оптиче                       | ские ха              | р <b>акте</b> р <b>и</b>     | юнен-                                 | Фотографическая раз-<br>решающая сила, мм <sup>-1</sup> |                      |                      |
|-------------------------------------------------|----------------------|------------------------------|----------------------|------------------------------|---------------------------------------|---------------------------------------------------------|----------------------|----------------------|
|                                                 | f',<br>мм            | ε                            | 2w, °                | s', мм                       | коэффи-<br>циент<br>про пуска-<br>ния | Число комг<br>тов и линз                                | <i>I</i> '' = 0      | !"=-12 мм            |
| «Мир-5»<br>«Мир-6»<br>«Вега М-1»<br>«Юпитер-17» | 28<br>28<br>35<br>52 | 1:2<br>1:2,8<br>1:2,8<br>1:2 | 48<br>48<br>40<br>27 | 27,2<br>26,4<br>28,8<br>26,2 | 0,8<br>0,8<br>0,8<br>0,8              | 6/7<br>4/5<br>4/5<br>4/5                                | 35<br>35<br>35<br>30 | 20<br>20<br>20<br>16 |

Объективы для фотоаппарата 14×21 мм

2. Объективы для среднеформатных фотоаппаратов  $6 \times 6$ ,  $6 \times 9$  и  $9 \times 12$  см. Основными объективами для указанных форматов снимков являются универсальные четырехлинзовые анастигматы «Индустар» и пятилинзовые системы «Вега». В более дешевых камерах иногда применяют простейшие трехлинзовые объективы «Триплет» (Т). Столь же простые четырехлинзовые схемы типа «Таир» использованы при разработке длиннофокусных телеобъективов и лишь в широкоуголь-

ных светосильных системах необходимо применение более сложных шести-, а иногда и семилинзовых оптических схем. Псскольку негативы этих форматов подвергают небольшим последующим увеличениям — двух-трехкратным, — а иногда печатают и без увеличения, то разрешающая сила оптико-фотографической системы здесь может быть снижена приблизительно в два раза по сравнению с разрешающей силой систем малоформатных аппаратов, составляя в центре поля  $25 - 30 \text{ мм}^{-1}$  с плавным снижением до  $12 - 15 \text{ мм}^{-1}$  на краю поля зрения. В табл. V,13 приведены сведения об объективах для среднеформатных фотоаппаратов; мы поместили в таблице также некоторые объективы несерийные, но в свое время разработанные и изготовленные.

Некоторые из объективов, хотя и выпускаются серийно, специально не приспособлены для того или иного среднеформатного фотоаппарата,

Таблица V,13

|                                                                                                                                                               | (<br>xaj                                                                 | Оптическ<br>рактерис                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ие<br>тъки                                                          | си                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Число                                                                                                                     | Фотографическая<br>разрешающая<br>сила, мм <sup>-1</sup>                   |                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| марка ооъектива                                                                                                                                               | f', мм                                                                   | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2w, °                                                               | Формат<br>снимка                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | компонентов<br>и линз                                                                                                     | в центре                                                                   | на<br>краю                                                                 |  |
| «Мир-22»<br>«Мир-38»<br>«Уран-13»<br>Т-22<br>«Индустар-58»<br>Т-35<br>«Индустар-29»<br>Т-21<br>«Вега-12»<br>«Индустар-56»<br>«Юпитер-36»<br>«Таир-33»<br>ЗМ-3 | 45<br>65<br>70<br>75<br>75<br>80<br>80<br>90<br>110<br>250<br>300<br>600 | 1:3,51:3,51:2,51:4,551:41:2,81:6,31:2,81:2,81:3,551:4,51:4,51:4,51:4,51:4,51:4,51:4,51:4,51:4,51:4,51:4,51:4,51:3,51:4,51:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:2,81:3,81:3,81:4,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:2,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,151:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3,81:3 | 84<br>66<br>61<br>59<br>59<br>55<br>55<br>46<br>42<br>19<br>16<br>8 | $\begin{array}{c} 6 \times 6 \\ 6 \times 6 \\$ | 7/8<br>5/6<br>5/7<br>3/3<br>3/4<br>3/3<br>3/4<br>3/3<br>4/5<br>3/4<br>3/4<br>3/4<br>3/4<br>3/4<br>Зеркально-лин-<br>зовый | 48<br>47<br>33<br>24<br>35<br>24<br>30<br>28<br>50<br>25<br>50<br>25<br>50 | 20<br>21<br>20<br>12<br>15<br>10<br>14<br>12<br>18<br>12<br>25<br>18<br>35 |  |
| MP-3<br>«Аргон-1»<br>«Уран-27»<br>«Индустар-24»<br>«Индустар-23»<br>«Индустар-27»<br>«Уран-25»<br>«Таир-30»                                                   | 35<br>90<br>100<br>105<br>110<br>113<br>200<br>300                       | 1:6,8<br>1:3,5<br>1:2,5<br>1:3,5<br>1:4,5<br>1:3,5<br>1:3,5<br>1:4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112<br>62<br>57<br>54<br>52<br>51<br>30<br>20                       | $6 \times 9$<br>$6 \times 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/6<br>5/7<br>3/4<br>3/4<br>3/4<br>5/7<br>3/4                                                                             | 35<br>30<br>45<br>23<br>30<br>24<br>43<br>27                               | 10<br>24<br>13<br>13<br>16<br>14<br>30<br>12                               |  |
| <b>Т-26</b><br>«Спутник- <b>7</b> »<br>«Индустар- <b>2</b> »<br>«Ортагоз»<br>«Индустар-55»<br>«Индустар-36»                                                   | 135<br>75<br>135<br>135<br>135<br>140<br>150                             | 1:6,8<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52<br>88<br>55<br>55<br>56<br>55                                    | $8 \times 10,5$<br>$9 \times 12$<br>$9 \times 12$<br>$9 \times 12$<br>$9 \times 12$<br>$9 \times 12$<br>$9 \times 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/3<br>5/8<br>3/4<br>4/4<br>3/4<br>3/4                                                                                    | 22<br><br>25<br>25<br>38<br>38<br>38                                       | $     \frac{11}{7}     \frac{7}{12}     \frac{8}{10}     10 $              |  |

| Отечественные объекл | чвы среднеформатны | х фотоаппаратов |
|----------------------|--------------------|-----------------|
|----------------------|--------------------|-----------------|

например, «Индустар-23» и «Индустар-55» выпускаются для фотоувеличителей; в этих случаях потребуется их монтировка в фотоаппарате.

Интерес представляют новые два объектива для камер 6 × 6 см с предельными характеристиками: широкоугольный объектив «Мир-22», состоящий из восьми линз и имеющий большой задний фокальный отрезок (s' = 61 мм) при малой длине объектива (87 мм), и весьма компактный зеркально-линзовый длиннофокусный объектив ЗМ-3 (f' = 600 мм), имеющий собственную длину лишь 150 мм при заднем фокальном отрезке 79 мм. Таким образом, оба объектива завершают достаточно полное оснащение оптикой зеркальные фотоаппараты 6 ×  $s \in cm$ . Объективы разработаны Д. Волосовым, Н. Хмельниковой и Г. Прядиловой.



Рис. V, 19. Оптическая схема и графики разрешающей силы объектива «Биогон» (f'=75 мм)

Более скромно представлена оптика для форматов снимков 9 × 12 см. Здесь необходим объектив с основным фокусным расстоянием около 150 мм и относительным отверстием 1 : 2,8—1 : 3,5. Необходим промышленный выпуск для этого же формата широкоугольника с фокусным расстоянием 70—80 мм, относительным отверстием 1 : 4 — 1 : 5 и полем зрения около 90°. Эти параметры имеет рассчитанный объектив «Спутник-7». Из иностранных объективов с указанными характеристиками известен объектив д-ра Д. Бертеле «Биогон» (f' = 75 мм; 1 : 4,5;  $2w = 90^{\circ}$ ). Этот объектив на «изопанхроме» тип 17 разрешает около 40 мм<sup>-1</sup> в центре поля с плавным снижением разрешения до 12—11 мм<sup>-1</sup> на краю поля. Объектив имеет восьмилинзовую оптическую схему (рис. V, 19) и длину около 148 мм, т. е. в два раза превышает его фокусное расстояние. Отсутствует для камер этого же формата телеобъектив с фокусным расстоянием около 250 мм и относительным отверстием 1 : 5,6—1 : 6,3, разработка которого особых трудностей не встретит.

Расчеты объективов с указанными характеристиками у нас также выполнены и их промышленное освоение пополнит ассортимент оптики камер 9 × 12 см.

3. Объективы крупноформатных фотоаппаратов  $13 \times 18$  и  $18 \times 24$ см. В камерах этих форматов снимков в качестве основных объективов обычно применяются универсальные анастигматы «Индустар», у которых максимально достижимый угол поля не превышает 55—56°; их фокусные расстояния около 200 и 300 мм соответственно для форматов снимков  $13 \times 18$  и  $18 \times 24$  см. В табл. V, 14 приведены некоторые сведения об объективах для этих фотоаппаратов.

| Марка объектива                                                             |                                 | Опт<br>харак                              | ические<br>теристи         | ки                                                                                                       | Число компонентов<br>и линз     | Фотографическая<br>разрешающая сила,<br>мм <sup>-1</sup> |                        |  |
|-----------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|------------------------|--|
|                                                                             | <b>ј',</b> мм                   | e                                         | 2w, °                      | Формат<br>снимка,<br><i>см</i>                                                                           |                                 | в центре                                                 | на краю                |  |
| «Индустар-4»<br>«Индустар-51»<br>«Уран-9»<br>«Индустар-13»<br>«Индустар-37» | 210<br>210<br>250<br>300<br>300 | 1:4,5<br>1:4,5<br>1:2,5<br>1:4,5<br>1:4,5 | 56<br>56<br>54<br>53<br>53 | $13 \times 18$<br>$13 \times 18$<br>$18 \times 18$<br>$18 \times 24$<br>$18 \times 24$<br>$18 \times 24$ | 3/4<br>3/4<br>5/7<br>3/4<br>3/4 | 20<br>21<br>30<br>15<br>20                               | 5<br>8<br>10<br>5<br>6 |  |

## Объективы для крупноформатных фотоаппаратов

Серийно в настоящее время выпускаются два объектива: «Индустар-51» (f' = 210 мм) и «Индустар-37» (f' = 300 мм), более или менее находящиеся на современном техническом уровне; если пойти на параллельный выпуск вариантов более дорогих и совершенных объективов с лантановыми стеклами, то разрешающая сила на краю поля у них повысится с 6—8 мм<sup>-1</sup> соответственно до 9—11 мм<sup>-1</sup>.

# § 2. КИНОСЪЕМОЧНЫЕ ОБЪЕКТИВЫ ДЛЯ 35-мм ПЛЕНКИ

Отечественная кинооптика начала развиваться в конце 30-х годов. В Ленинграде было создано небольшое предприятие кинооптики. Научно-техническое руководство оптическими разработками осуществлял автор, совмещая его с работой в Государственном оптическом институте. Таким образом, отечественная кинооптика имела возможность рационально использовать ряд оптических схем, созданных для смежных областей фотографической оптики. В 1941 году предприятие прекратило свое существование. В конце 40-х годов возобновились кинооптические разработки в оптической лаборатории на Ленинградском заводе киноаппаратуры («Ленкинап»). Вскоре был создан отдел кинооптического приборостроения в составе ленинградского ЦКБ киноаппаратуры. Оптические разработки в этих организациях по-прежнему проводились в творческом содружестве с ГОИ и кафедрой оптики ЛИКИ.

кого приобростроения в составе ленинградского цКВ киноаппаратуры. Оптические разработки в этих организациях по-прежнему проводились в творческом содружестве с ГОИ и кафедрой оптики ЛИКИ. Выпускаемый в настоящее время комплект «Объективов киносъемочных» (ОКС) достаточно обширен по своим оптическим характеристикам и наводится почти по всем параметрам на современном техническом уровне.

Объективы комплекта имеют фокусные расстояния от 12 до 300 *мм*, что соответствует углам поля зрения от 97 до 5°. В табл. V, 15 приведены некоторые характеристики объективов этого комплекта.

#### Характеристики киносъемочных объективов для 35-мм пленки

|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                    | 9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | на                                                                                                                                 | Число компонентов<br>и линз                                                                                                          | Фотографи<br>разрешающ<br>ла,                                                                                                                                                   | рения                                                                                                                              |                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Наименование объективов                                                                                                                                                                                                                                                                                             | Фокусное<br>расстояние, мм                                                                                                                                                                         | Геометрическо<br>относительное<br>отверстие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Эффективное<br>относительное<br>отверстие                                                                                                                                                               | Освещенность<br>краю поля, %                                                                                                       |                                                                                                                                      | в центре<br>поля                                                                                                                                                                | на краю<br>поля                                                                                                                    | Угол поля<br>объектива, °                                                                                                              |
| «Ликар-2» (ОКС1-12-1)<br>«Ликар-10» (ОКС1-14-1)<br>ОКС1-16-1<br>«Ликар-1» (ОКС2-16-1)<br>ОКС1-18-1<br>ОКС1-22-1<br>ОКС1-28-1<br>ОКС1-28-1<br>ОКС1-32-1<br>ОКС1-32-1<br>ОКС1-35-1<br>ОКС1-35-1<br>ОКС1-50-1<br>ОКС1-50-1<br>ОКС1-100-1<br>ОКС1-100-1<br>ОКС1-100-1<br>ОКС1-100-1<br>ОКС1-300-1<br>«Ленар»<br>«Фотон» | 12<br>14<br>16<br>16<br>18<br>22<br>28<br>35<br>35<br>35<br>40<br>50<br>75<br>80<br>100<br>150<br>200<br>300<br>Переменное<br>от 40 до<br>160 <i>мм</i><br>Переменное<br>от 37 до<br>140 <i>мм</i> | 1:2,5<br>1:2,8<br>1:3,8<br>1:2,8<br>1:2,8<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,1<br>1:2,5<br>1:2,1<br>1:2,1<br>1:2,8<br>1:2,5<br>1:2,1<br>1:2,5<br>1:2,1<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,8<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:2,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5<br>1:3,5 | 1:2,9<br>1:3,1<br>1:4,2<br>1:3,2<br>1:3,2<br>1:2,5<br>1:2,3<br>1:2,3<br>1:2,3<br>1:2,3<br>1:2,3<br>1:2,4<br>1:2,4<br>1:2,4<br>1:2,4<br>1:2,4<br>1:3,2<br>1:4<br>1:3,2<br>1:4<br>1:3,2<br>1:4,7<br>1:3,9 | $\begin{array}{c} 40\\ 22\\ 22\\ 22\\ 24\\ 27\\ 34\\ 35\\ 40\\ 40\\ 50\\ 60\\ 70\\ 80\\ 80\\ 80\\ 66\\ 66\\ 66\\ 52\\ \end{array}$ | 4/8<br>7/9<br>6/9<br>6/8<br>5/6<br>4/6<br>4/6<br>4/6<br>4/6<br>4/6<br>4/6<br>4/6<br>4/6<br>3/4<br>3/4<br>3/4<br>3/4<br>12/16<br>7/12 | $\begin{array}{c} 70\\ 65\\ 62\\ 67\\ 63\\ 65\\ 65\\ 60\\ 62\\ 57\\ 52\\ 67\\ 60\\ 50\\ 52\\ 53\\ 33\\ 62\\ 40\\ 52\\ 50\\ 52\\ 50\\ 45\\ 33\\ 62\\ 40\\ 52\\ 50\\ \end{array}$ | $\begin{array}{c} 25\\ 30\\ 30\\ 35\\ 28\\ 35\\ 20\\ 28\\ 24\\ 40\\ 30\\ 32\\ 35\\ 35\\ 30\\ 27\\ 30\\ 20\\ 24\\ 22\\ \end{array}$ | 97<br>90<br>82<br>82<br>74<br>63<br>51<br>51<br>46<br>42<br>42<br>37<br>300<br>20<br>19<br>15<br>10<br>7<br>5<br>377<br>10<br>42<br>11 |

Основная группа объективов, которыми оснащаются все отечественные киносъемочные аппараты, имеет фокусные расстояния 28, 32, 35, 40, 50, 75 и 100 *мм*. Все эти объективы (за исключением f' = 32 мм) предусмотрены государственным стандартом ГОСТ 10728—64.

Объективы разработаны на основе трех оптических схем: шестилинзовой схемы «Гелиос»; семилинзовой оригинальной схемы «Уран» (см. рис. II, 31, *a*) и семилинзовой схемы английского объектива «Кук Спид Панхро» фирмы «Тейлор—Гобсон» (рис. V, 20). Вся эта группа объективов по своим оптическим качествам находится на уровне лучших зарубежных образцов, в частности английских анастигматов «Кук Спид Панхро» фирмы «Тейлор— Гобсон».

В группу светосильных широкоугольных объективов входят анастигматы с фокусными расстояния-



Рис V, 20. Оптическая схема английского объектива «Кук Спид Панхро» (фирма «Тейлор – Гобсон») ми 12, 16, 22 и 28 мм. Из этой группы упомянутым ГОСТом не предусмотрен рекордный объектив f' = 12 мм; в рекомендуемом ряде фокусных расстояний указаны f' = 10 и 14 мм, о разработке которых будет сказано ниже. Все образцы этого комплекта созданы на основе оригинальных оптических схем, разработка которых автором и его сотрудниками (Э. Конторович и Н. Лебедевой) продолжа-





в

Рис. V. 21. Оптические схемы объективов: а — «Ликар-1» (ОКС2-16-1); б — асферического объектива «Ликар-2»; в-внешний вид объективов ОКС1-16 и «Ликар-1» (ОКС2-16-1)

лась около шести лет. Наибольший интерес представляют два объектива: «Ликар-1» (ОКС2-16-1) и «Ликар-2» (ОКС-12-1), разработанные в отраслевой лаборатории кинооптики ЛИКИ и изготовленные в ЦКБК. Первый из них имеет девятилинзовую схему, в которой все преломляющие поверхности удалось сохранить сферическими (рис. V, 21, *a*). Он имеет малые габариты и массу: длина 65 *мм*; световой диаметр наибольшей первой линзы 62 *мм*, масса 355 г. Для сопоставления укажем, что первый вариант объектива ОКС1-16-1 имел массу 1400 г и несравнимо бо́льшие габариты. На рис. V, 21, в помещены сравнительные фотографии этих объективов.

При высоком относительном отверстии (1:2,8) и поле зрения около 82° он разрешает около 67 *мм*<sup>-1</sup> в центре поля со снижением разрешения до 35 *мм*<sup>-1</sup> по полю. Второй объектив — «Ликар-2» имеет угол поля зрения 97° при высокой светосиле 1:2,5. Он состоит из восьми линз, из которых вогнутая поверхность фронтальной линзы является асферической и имеет форму слегка деформированного эллипсоида вращения; меридиональное сечение этой поверхности выражается уравнением:

$$y^2 = 26,918x - 0,48x^2 + 0,0027x^3.$$
 (V,14')

Оптическая схема объектива (рис. V, 21, *б*) содержит лишь восемь поверхностей, граничащих с воздухом; два компонента — трехлинзовые склеенные. В табл. V, 16 приведены конструктивные элементы оптической системы.

Таблица V.16

| Danuvau                                                                                                                                                                                | Толщины                                                                                                                                                        | Оптически                                                                                                         | ие постояннь<br>текол                                                                      | Марки                                                                    | ы, <i>мм</i>                                                           |                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| поверхностей, мм                                                                                                                                                                       | душные проме-<br>жутки, мм                                                                                                                                     | n <sub>e</sub>                                                                                                    | n <sub>D</sub>                                                                             | v                                                                        | стекол                                                                 | Светові<br>диаметр                                                               |  |
| $r_{1} = 76,74$ $r_{2} = 13,459*$ $r_{3} = 64,86$ $r_{4} = -235,0$ $r_{5} = 20,56$ $r_{6} = 11,614$ $r_{7} = 9,908$ $r_{8} = 458,1$ $r_{9} = 696,6$ $r_{10} = -8,59$ $r_{11} = -20,56$ | $d_{1} = 4,0$ $d_{2} = 55,0$ $d_{3} = 3,2$ $d_{4} = 0,8$ $d_{5} = 15,4$ $d_{6} = 1,7$ $d_{7} = 3,4$ $d_{8} = 2,0$ $d_{9} = 5,2$ $d_{10} = 11,1$ $d_{10} = 3,0$ | 1,615506<br>1,0<br>1,615506<br>1,0<br>1,578326<br>1,761712<br>1,489118<br>1,0<br>1,489118<br>1,761712<br>1,659961 | 1,6130<br>1,0<br>1,6130<br>1,5747<br>1,7550<br>1,4874<br>1,0<br>1,4874<br>1,7550<br>1,6568 | 60,6<br><br>60,6<br><br>41,3<br>27,5<br>70,0<br><br>70,0<br>27,5<br>51,1 | ТК14<br>—<br>ТК14<br>—<br>ЛФ5<br>ТФ5<br>ЛК3<br>—<br>ЛК3<br>ТФ5<br>ТК21 | 65,0<br>38,2<br>27,8<br>27,4<br>24,1<br>12,0<br>10,6<br>9,8<br>9,2<br>8,3<br>8,6 |  |
| $r_{12} = -16,672$                                                                                                                                                                     | $\sum d = 94,8$                                                                                                                                                | f' = 12,48                                                                                                        | s'=19,55                                                                                   | _                                                                        | s = 18,59                                                              | 10,6                                                                             |  |

Конструктивные элементы оптики объектива «Ликар-2» (ОКС1-12-1)

Заметим, что третий член уравнения асферического профиля выражает отступление от эллипсоидальной поверхности, однако попытка исключить его, т. е. ограничиться асферической поверхностью второго порядка, приводит к существенному снижению качества коррекции аберраций лучей широких наклонных пучков. В объективе «Ликар-2»

<sup>\*</sup> Поверхность асферическая.

эти аберрации хорошо корригированы как в отношении величин  $\Delta y' = \delta g'$  в меридиональном сечении, так и в отношении аберраций  $\delta G'$  в главном сагиттальном сечении (рис. V, 22). В целях достижения более

 $G_{z}=-13^{\circ}22'56'' G_{z}=-22^{\circ}53'48'' G_{z}=-36^{\circ}46'19'' G_{r}=-43^{\circ}29'18'' G_{r}=-48^{\circ}26'48''$ G,=0 102(tg6'- 102(tg6'- 102(tg6'- 102(tg6'- 102(tg6'- 102(tg6'-10 2 tq6' -tg*6'гл*) -tg6'21)| tg**6**211 ) -tg6'гл) -tg62/) a α 15 15 15 OZP hIZ 10 10 10 10 10 5 .5 5 ∆y' ∆y' Ay' Δų 0,05 --0,05 -0,05 0,05 0.05 -0.05 -0,05 0.05 0.05 -0.05 0.05 -0.05 -5 -5 -5 -5 -5 -5 -10 -10 -10 -10 -10 -10 orp h -15 -15 -15 -15 -15 15 -20--20--20 la' -20 -20 -20 n'n π G,=-13°22'56″G,=-22°53'48″G,=-36°45'18″G,=-43°29'18″G,=-48°26'48″ 102tq8′ 10 2 tq 8' 102 tq 8' 10<sup>2</sup>tqδ' 10 2 ta 8' α п π 15 15 15 15 15 10 1// 1/ 10 10 5 5 .5 8G' 8G' 8G' 8G' 8G' 0,05 0.05 -0,05 -005 0.05 -0,05 0.05 0,05 0.05 --0,05 -5 -5 -5 -5 - 5 -10 -10 -10 -10 -10 -15 -15 -15 -15 -15 10 -20 -2.0 α' -20a' -20 π -2.0

аа'-прямая, соответствующая наилучшей плоскости установки, смещена относительно плоскости Гаусса на 0,08мм в сторону объектива

Рис. V, 22. Аберрация лучей наклонных пучков в меридиональном и сагиттальном сечениях объектива «Ликар-2»

равномерного распределения освещенности изображения по полю осуществлен ход главных лучей, близкий к телецентрическому; точнее, главные лучи составляют малые углы  $\omega'$  с оптической осью (на рис. V, 22 углы лучей обозначены через  $\sigma'$  и  $\delta'$ , как принято в отечественных оптико-расчетных организациях). Как следует из формулы (I, 129, в этом случае величина  $\cos^3 w'$  близка к единице и падение освещенности по полю будет зависеть от разности  $\Delta tgu' = \Delta tg\sigma'$  и углов  $\xi' = \delta'$ . В объективе «Ликар-2» освещенность на краю поля составляет 40% от освещенности в центре поля, что соответствует падению освещенности, пропорциональному 2,6-й степени (I, 128 и I, 130) косинуса угла *w* поля в пространстве предметов (t = 2,6). Это удалось достигнуть введением асферической поверхности, которая позволила существенно уменьшить углы главных лучей в пространстве изображений w' без введения при этом недопустимой величины дисторсии: в объективе дисторсия введена около —4% с целью некоторой компенсации искажений естественной перспективы, имеющих место при фотографировании широкоугольными объективами. Ценная работа была выполнена А. Ганом и его сотрудниками по изготовлению этого объектива.

Уже первые образцы показали его высокие качества: объектив разрешает около 70 мм<sup>-1</sup> в центре поля со снижением разрешения до 25 мм<sup>-1</sup> на краю поля. Эти успешные результаты позволили нам выполнить в отраслевой лаборатории кинооптики ЛИКИ разработки еще более широкоугольного асферического объектива «Ликар-11» с фокусным расстоянием 10 мм, относительным отверстием 1 : 2,5 и полем зрения 110° и объектива «Ликар-10» (ОКС1-14-1) со сферическими поверхностями с фокусным расстоянием 14 мм, относительным отверстием 1 : 2,8 и углом поля зрения 90°.

Этими разработками завершается основной комплект светосильных широкоугольных объективов, предусмотренный отечественным ГОСТом.

В группу длиннофокусных киносъемочных систем входят телеобъективы с фокусными расстояниями 150, 200 и 300 мм, разработанные Д. Волосовым, и А. Шахнович на основе четырехлинзовой схемы типа «Таир». Эти светосильные телеобъективы имеют малые габариты: при общей длине, не превосходящей 90—95% величины фокусного расстояния, их задний фокальный отрезок не превышает 60% фокусного расстояния объектива; обладают хорошим качеством оптического изображения и равномерным распределением разрешающей силы по полю.

Целесообразна разработка и более длиннофокусных объективов с фокусными расстояниями 500, 750 и 1000 *мм*, что расширит творческие возможности кинооператоров.

В конце табл. V, 15 приведены оптические характеристики для двух крайних значений фокусных расстояний панкратических объективов «Ленар» и «Фотон». При киносъемке часто возникает необходимость плавного перехода от общего плана к крупному: такие эффекты «наезда» в какой-то мере могут быть имитированы киносъемкой панкратическим объективом.

В ряде стран ведутся разработки таких объективов: во Франции (фирмами «Сом—Бертье», «Анженье»), в Англии («Тейлор», «Тейлор-Гобсон»), в Японии («Никкон», «Канон»), в ФРГ («Шнейдер»), в ГДР («Камера унд Киноверке»), в США («Волензак»), в Чехословакии («Меопта») и др.

Известный объектив «Пан-Синор» («Сом — Бертье») является панкратическим объективом типа трансфокатор (см. § 8 главы IV), состоящим из пятикомпонентной афокальной насадки переменного увеличения от  $\Gamma_{\text{мин}} = 0,5$  до  $\Gamma_{\text{макс}} = 2,0$  и расположенного позади нее объектива с фокусным расстоянием около 80 *мм*. Компоненты второй и четвертый насадки линейно перемещаются вдоль оптической оси, обеспечивая компенсацию сдвига плоскости изображения. Афокальная насадка достаточно хорошо корригирована и, таким образом, позволяет применять сменные объективы, устанавливаемые позади насадки. Например, установив позади насадки объектив с фокусным расстоянием 100 *мм*, получим панкратическую систему с фокусным расстоянием, изменяющимся от 50 до 200 *мм*, но при соответственно меньшем отверстии — около 1: 4,5 вместо 1: 3,8. Конечно, при этом необходимо совмещение выходного зрачка насадки со входным зрачком объектива.

По описанной схеме ЦКБК разработаны два варианта объективов «Ленар», позволяющие их применять в кинокамере с зеркальным обтюратором («Ленар-1») и без такового («Ленар-2»). В последнем случае объектив снабжен визирным устройством для наблюдения за снимаемым объектом. Однако объективы этого типа неизбежно имеют большие габариты и массу; например, масса объектива «Ленар» — около 1,6 кг, длина его — около 230 мм и диаметр первого компонента 86 см.

Более компактен панкратический объектив фирмы «Анженье», построенный по схеме вариообъектива (см. главу IV) с механической компенсацией сдвига плоскости изображения. К объективам этой удачной схемы относится объектив «Фотон» (см. табл. V, 15), расчет которого выполнила А. Шахнович.

В последнее время ведется интенсивная работа по разработке новых оптических схем и созданию панкратических киносъемочных объективов повышенных полей зрения и расширенными пределами изменений фокусных расстояний. За границей интересные результаты получены той же фирмой «Анженье», разработавшей для 35-мм кинокамер объектив «Анженье-Зум 10  $\times$  25» с десятикратным изменением фокусного расстояния (от 25 до 250 мм) при относительном отверстии 1 : 3,2. Объектив имеет сравнительно малые габариты и массу: его длина 326 мм при диаметре (наибольшего) первого компонента 100 мм; масса 2,4 кг.

Оптико-кинематическая схема остается идентичной (см. рис. V, 38) для ряда разработанных фирмой объективов, в частности описываемого ниже (§ 5) объектива «Анженье-Зум 10 × 12 ВМС» для 16-мм кинокамер, явившегося первым в мире панкратическим объективом со столь широкими пределами изменений фокусных расстояний.

Отраслевой лабораторией кинооптики ЛИКИ выполнен и передан ЦКБК вариант разработки панкратического объектива «Варио-Ликар-1», фокусное расстояние которого изменяется от 26 до 260 мм при относительном отверстии 1 : 3,5. Первый компонент объектива (четырехлинзовый) остается неподвижным при изменении фокусного расстояния системы и служит для дистанционной наводки объектива; второй компонент (также четырехлинзовый) перемещается по простому линейному закону; третий компонент (двухлинзовый) перемещается соответственно уравнению второго порядка; последний — четвертый компонент (восьмилинзовый) — остается неподвижным и корригирует остаточные аберрации предшествующей части системы. Таким образом, система в целом содержит 18 линз.

Как показали исследования, целесообразна и перспективна дальнейшая работа по сокращению габаритов и повышению оптических качеств подобных систем.

# § 3. КИНОСЪЕМОЧНЫЕ АНАСТИГМАТЫ-АНАМОРФОТЫ ДЛЯ ШИРОКОЭКРАННОЙ КИНЕМАТОГРАФИИ

В первой половине 50-х годов получила развитие техника широкоэкранной кинематографии, основанная на применении анаморфотных афокальных насадок, состоящих из цилиндрических линз с параллельными образующими цилиндрических преломляющих поверхностей, устанавливаемых впереди обычных (сферических) киносъемочных объективов.

Разработкой оптических систем для широкоэкранного кинематографа занимаются многие фирмы в ряде стран: «Сатек», «Тотальвизион» и «Франскоп» во Франции; «Арнольд и Рихтер», «Иско» и «Мёллер» в ФРГ; «Бауш и Ломб» в США; «Ага» в Швеции; «Дайэй» в Японии и др. По своим оптическим и техническим параметрам отечественные анаморфотные системы находятся на уровне лучших иностранных образцов, а по некоторым характеристикам их превосходят.

Анаморфотные оптические системы, как известно, имеют две взаимно перпендикулярные плоскости симметрии. Фокусные расстояния (следовательно, и масштабы изображений), а также углы поля зрения в этих двух плоскостях различны.

Обозначим линейное увеличение и фокусное расстояние в одной из плоскостей анаморфота, которую назовем горизонтальной, через  $\beta_{r}$  и  $f'_{r}$ ; соответственно через  $\beta_{B}$  и  $f'_{B}$  — линейное увеличение и фокусное расстояние в другой, вертикальной плоскости системы. Отношение  $\frac{\beta_{r}}{\beta_{B}}$  назовем анаморфозой системы:

$$A = \frac{\beta_{\rm r}}{\beta_{\rm B}} \,. \tag{V,15}$$

Для бесконечно удаленной плоскости предметов анаморфоза выразится отношением фокусных расстояний, т. е.

$$A = \frac{f'_{\mathbf{r}}}{f'_{\mathbf{B}}}.$$
 (V,16)

Это свойство анаморфотов дает возможность при съемке «сжимать» изображение в одном из направлений, а при проекции восстанавливать на экране нормальные пропорции изображаемых предметов, что создает эффект широкого киноэкрана при 35-мм кинопленке. В отечественных широкоэкранных системах отношение ширины ки-

В отечественных широкоэкранных системах отношение ширины киноэкрана к его высоте равно 2,35 : 1, что для принятого формата кинокадра 22,0 × 18,67 *мм* требует двукратного анаморфирования изображения ( $A = \frac{1}{2}$ ) при киносъемке. В главном горизонтальном сечении
оптическое действие афокальной анаморфотной насадки, устанавливаемой впереди киносъемочного объектива, эквивалентно действию телескопической системы типа «перевернутого Галилея»: в этом сечении насадка уменьшает фокусное расстояние объектива в два раза и соответственно расширяет его угол поля зрения. В другом (вертикальном) сечении насадка не вызывает изменений оптических характеристик объектива.

Как следует из выражения (V, 9), анаморфоза в центре поля  $A_{0,\infty}$ для бесконечно удаленной плоскости предметов равна увеличению телескопической системы в горизонтальном сечении насадки, т.е.

$$A_{0,\infty} = \frac{f'_{c\phi} \cdot \Gamma_0}{f'_{c\phi}} = \Gamma_0 = \frac{f'_1}{f'_2}.$$
 (V,17)

где  $f'_{c\phi}$  — заднее фокусное расстояние сферического объектива;  $\Gamma_0$  — телескопическое увеличение в центре поля:  $f'_1$  и  $f'_2$  — задние фокусные расстояния первого и второго компонентов афоркальной анаморфотной насадки в ее горизонтальном сечении: очевидно, в этом сечении  $\Gamma = \frac{1}{2}$ .

Рассмотрим здесь некоторые результаты теоретических исследований анаморфотных анастигматических систем, выполненных Д. Волосовым и Ш. Печатниковой в 1954—1956 годах и примененных авторами при проектировании и расчетах основных (базовых) вариантов анаморфотных систем «Бифокатор», выпускаемых нашей промышленностью под шифрами НАС (насадка анаморфотная съемочная) и БАС (блок анаморфотный съемочный).

1. В анаморфотных афокальных цилиндрических системах обеспечивается сопряженность (стигматичность) изображений только для одной пары плоскостей — бесконечно удаленных плоскостей предметов и изображений. Если же плоскость предметов находится на конечном расстоянии D, то в целях обеспечения сопряженности плоскостей предметов и изображений должна быть нарушена афокальность насадки. Для этого наряду с дистанционным перемещением сферического объектива перемещается один из компонентов насадки; в результате изменяется анаморфоза системы в центре поля. Отношение анаморфозы  $A_{0, D}$  в центре поля при некоторой дистанции Dпредмета к величине анаморфозы  $A_{0,\infty}$  приближенно может быть выражено формулой:

$$\frac{A_{0,D}}{A_{0,\infty}} \approx 1 + \frac{\Delta d_D}{f'_1},$$
 (V,18)

где  $\Delta d_D$  — изменение расстояния между компонетами телескопической системы при изменении дистанции предмета от «бесконечности» до величины D.

Так как в рассматриваемых насадках величины  $\Delta d_D$  и  $f'_1$  имеют одинаковые знаки, то на основании формулы (V, 18) и  $A_{0,\infty} < A_{0,D}$ , т. е. с уменьшением дистанции до фотографируемого предмета анаморфоза системы увеличивается. Дистанционное изменение анаморфозы имеет место во всех существующих анаморфотных системах. При съемке с близких дистанций оно вносит недопустимые остаточные анаморфотные искажения изображений. Чтобы уменьшить это явление, нами при разработке оптики описываемых ниже анаморфотных насадок величине анаморфозы  $A_{0,\infty}$  было задано значение не 0,50, а 0,48, что обеспечивало при средних дистанциях съемки ( $D \approx 5 m$ ) значение анаморфозы равное обратной величине анаморфозы проекционной системы (A = 2); при дистанциях меньше 5 *м* значение анаморфозы оставалось несколько бо́льшим 0,5.

2. Величина анаморфозы изменяется также с изменением угла  $\sigma$  поля, т. е. по мере перемещения предмета от центра к краю поля. Для угла  $\sigma$  величина анаморфозы  $A_{\sigma}$  может существенно отличаться от величины анаморфозы  $A_{0}$  в центре поля, как это имеет место в некоторых



Рис. V, 23. Схематическое изображение элемента плоскости, расположенного вне оптической оси анаморфотной системы

неудачно разработанных иностранных и отечественных анаморфотных насадках.

На рис. V, 23 схематически представлено горизонтальное (меридиональное) сечение анаморфотной системы; главный луч составляет с оптической осью в пространстве предметов угол —  $\sigma$ , а в пространстве изображений — угол —  $\sigma'$ .

Для определения анаморфозы  $A_{\sigma}$  рассматриваем элементы dy и dzв плоскости предметов вблизи главного луча и соответствующие им элементы dy' и dz' в плоскости изображений:

$$dy = (x - a) \frac{d\sigma}{\cos^2 \sigma}; \quad dy' = (x' - a') \frac{d\sigma'}{\cos^2 \sigma'};$$
  

$$dz = (x - a) \frac{d\gamma}{\cos \sigma}; \quad dz' = (x' - a') \frac{d\gamma'}{\cos \sigma'}.$$
(V,19)

Если анаморфотная система состоит из цидиндрических линз с параллельными образующими цилиндров, то  $d\gamma = d\gamma'$  и, следовательно:

$$\beta_{\rm B} = \frac{dz'}{dz} = \frac{(x'-a')}{(x-a)} \frac{\cos\sigma}{\cos\sigma'};$$
  

$$\beta_{\rm F} = \frac{dy'}{dy} = \frac{(x'-a')}{(x-a)} \frac{\cos^2\sigma}{\cos^2\sigma'} \frac{d\sigma'}{d\sigma}.$$
(V,20)

Подставив выражение (V, 19) в формулу (V, 15), получаем, что анаморфоза системы

$$A_{\sigma} = \frac{\beta_{\Gamma}}{\beta_{B}} = \frac{\cos \sigma}{\cos \sigma'} \frac{d\sigma'}{d\sigma} . \qquad (V,21)$$

Из обобщенного инварианта Лагранжа — Гельмгольца (при n = n') вытекает соотношение:

$$dm\cos\sigma\,d\sigma = dm'\cos\sigma'\,d\delta',\qquad (V,22)$$

где dm и dm' — бесконечно малые элементы в плоскостях входного и выходного зрачков горизонтального сечения.

После подстановки в формулу (V, 21) значения  $\frac{d_{\sigma}}{d_{\sigma}}$ , определенного из равенства (V, 22), получим общее выражение:

$$A_{\rho} = \frac{dm}{dm'} \frac{\cos^2 \sigma}{\cos^2 \sigma'} . \qquad (V,23)$$

Вместо отношения бесконечно малых элементов  $\frac{d_m}{d_{m'}}$  можно приближенно принять (если дисторсия в зрачках системы не очень велика) отношение конечных значений  $\frac{\Delta_m}{\Delta_{m'}}$ , известное из расчета лучей широкого наклонного пучка, т. е.

$$A_{\sigma} \approx \frac{\Delta m}{\Delta m'} \frac{\cos^2 \sigma}{\cos^2 \sigma'}.$$
 (V,23')

Это простое выражение было использовано Д. Волосовым и Ш. Печатниковой при разработке оптики отечественных анаморфотных насадок для количественной оценки изменения анаморфозы по полю.

3. Нами тогда же была установлена зависимость между величиной и характером исправления дисторсии в горизонтальном (меридиональном) сечении насадки и изменением анаморфозы по полю. Выражение для дисторсии Δ<sub>σ</sub> телескопической системы можно написать в виде:

$$\operatorname{tg} \sigma' = \Gamma_0 \operatorname{tg} \sigma \left( \Delta_{\sigma} + 1 \right). \tag{V.24}$$

Путем дифференцирования этого выражения нетрудно получить соотношение:

$$\frac{d\sigma'}{d\sigma} = \Gamma_0 \Big[ (\Delta_{\sigma} + 1) \frac{\cos^2 \sigma'}{\cos^2 \sigma} + \operatorname{tg} \sigma \, \cos^2 \sigma' \, \frac{d\Delta_{\sigma}}{d\sigma} \Big]. \qquad (V,25)$$

Подставив в эту формулу отношение  $\frac{d\sigma'}{d\sigma}$ , найденное из выражения (V, 21), получаем уравнение:

$$A_{\sigma} = \Gamma_0 \left[ \left( \Delta_{\sigma} + 1 \right) \frac{\cos \sigma'}{\cos \sigma} + \frac{d\Delta_{\sigma}}{d\sigma} \sin \sigma \, \cos \sigma' \right], \qquad (V,26)$$

устанавливающее связь между величиной дисторсии  $\Delta_{\sigma}$ , ее производной  $\frac{d\Delta\sigma}{d\sigma}$  и анаморфозой  $A_{\sigma}$ .

Анализ этого выражения показывает, что для сохранения постоянства анаморфозы по полю дисторсия системы не должна равняться нулю (как это ранее ошибочно полагали некоторые авторы анаморфотных систем), а должна иметь определенную величину (отрицательную по знаку) при небольшой величине аберрации дисторсии высших порядков в соответствии с (V, 26).

Результаты этих исследований были также использованы нами в процессе разработки оптики всех вариантов систем «Бифокатор» (НАС и БАС).

4. Аберрации горизонтального сечения, выражаемые в угловых мерах, рассчитываются по обычным формулам, применяемым при расчете



Рис. V, 24. Ход косого луча в анаморфотных системах

телескопических центрированных систем. Оценку допустимых величин аберраций при этом удобно производить, относя их к плоскости изображений объектива, установленного позади анаморфотной насадки; получаемые величины поперечных аберраций насадки алгебраически суммируются с величинами поперечных аберраций объектива.

Для оценки и последующей коррекции аберраций лучей, не лежащих в плоскостях симметрии анаморфота, необходим расчет косых лучей. На рис. V, 24 изображен один из таких лучей AB, выходящий из точки A плоскости предметов; DE — проекция этого луча на горизонтальное (меридиональное) сечение; AF — проекция того же луча на вертикальное (сагиттальное) сечение;  $\overline{\sigma_1}$  — угол между проекцией *DE* косого луча и оптической осью;  $\theta_1$  — угол между лучом *AB* и его проекцией *DE*;  $\overline{\theta_1}$  — угол между проекцией *AF* и оптической ось .

В системах с двумя плоскостями симметрии заданным линейным размерам изображения будут соответствовать разные углы поля зрения; обозначим эти углы в пространстве предметов через  $\sigma_1$  для горизонтального сечения и через  $u_1$  — для перпендикулярного ему сечения.

Угол косого луча с оптической осью в пространстве предметов определяется его составляющими —  $\sigma_1$  и  $\overline{\theta_1}$ ; очевидно, что

$$\overline{\sigma}_{\mathbf{i}} = \sigma_{\mathbf{i}}; \quad \overline{\theta}_{\mathbf{i}} = u_{\mathbf{i}}. \tag{V.27}$$

Зная углы  $\overline{\sigma_1}$  и  $\overline{\theta_1}$ , определяем угол  $\theta_1$  по формуле:

$$\operatorname{tg} \theta_{\mathbf{i}} = \operatorname{tg} \overline{\theta}_{\mathbf{i}} \cos \overline{\sigma}_{\mathbf{i}}. \tag{V,27'}$$

При преломлении косого луча через поверхность угол θ определяется соотношением:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2. \tag{V,28}$$

Углы падения *i*<sub>1</sub> и преломления *i*<sub>2</sub> проекции *DE* косого луча в главном (в нашем случае — горизонтальном) сечении связаны инвариантом:

$$n_1 \cos \theta_1 \sin i_1 = n_2 \cos \theta_2 \sin i_2. \tag{V,29}$$

Если вместо n<sub>1</sub> и n<sub>2</sub> ввести некоторые «фиктивные» показатели преломления:

$$N_1 = n_1 \cos \theta_1; \quad N_2 = n_2 \cos \theta_2,$$
 (V,29')

то выражение (V, 22) примет форму обычного инварианта преломления:

$$N_1 \sin i_1 = N_2 \sin i_2, \tag{V,30}$$

или в общем виде:

$$N\sin i = N'\sin i'. \tag{V,30'}$$

Таким образом, расчет хода косого луча сводится к расчету преломления его проекции на главное сечение по обычным схемам расчета преломления меридионального луча через центрированную систему поверхностей, но при этом вводятся фиктивные показатели преломления N и N'.

5. Расчет косых лучей позволяет определить аберрации пучка лучей, не лежащих в плоскостях симметрии анаморфота, в частности величину искривления изображений вертикальных и горизонтальных линий предмета, т. е. аберрацию, специфичную для оптических систем, не имеющих оси симметрии.

Расчет косого луча определяет углы  $\sigma_{k+1}$  и  $\theta_{k+1}$  в пространстве

изображений после k-й поверхности. Если показатели преломления сред пространства предметов и изображений одинаковы, то

$$\theta_{\mathbf{x}+\mathbf{i}} = \theta_{\mathbf{i}}.\tag{V,31}$$

В результате расчета центрального луча, имеющего на входном зрачке координаты m = 0 и M = 0, определяем разность углов:

$$\Delta \sigma' = \overline{\sigma}'_{k+1} - \sigma_{k+1}, \qquad (V, 32)$$

где σ<sub>k+1</sub> — угол между оптической осью и главным лучом горизонтального сечения в пространстве после k-й преломляющей поверхности. Величина Δσ′ определяет угловую аберрацию, характеризующую искривление изображений вертикальных линий.

Искривление изображений горизонтальных линий в пространстве после *k*-й поверхности определится угловой аберрацией:

$$\Delta \overline{\theta}' = \overline{\theta}_{h+1} - u_{h+1} = \overline{\theta}_{h+1} - \overline{\theta}_{1}, \qquad (V,33)$$

так как  $u_{k+1} = u_1 = \overline{\theta}_1$ ; угол  $\overline{\theta}_{k+1}$  определяется по формуле:

$$\operatorname{tg}\overline{\theta}_{k+1} = \frac{\operatorname{tg}\theta_{k+1}}{\cos\overline{\sigma}_{k+1}}.$$
 (V,34)

6. Уточним условия, влияющие на искривление горизонтальных линий. Приняв во внимание выражения (V, 27), (V, 27') и (V, 31), получим:

$$\operatorname{tg}\overline{\theta}_{k+1} = \frac{\operatorname{tg} u_1 \, \cos \overline{\sigma_1}}{\cos \overline{\sigma_{k+1}}}, \qquad (V,35)$$

а так как в рассматриваемом случае углы  $u_1$  и  $u_{k+1}$  равны между собой, то

$$\operatorname{tg}\overline{\theta}_{k+1} = \frac{\operatorname{tg} u_{k+1} \, \cos \overline{\sigma}_1}{\cos \overline{\sigma}_{k+1}} , \qquad (V,35')$$

Обратим внимание, что если  $\Gamma_0 \neq 1$ , то  $\overline{\sigma}_1 \neq \overline{\sigma}_{k+1}$ , а следовательно,  $\overline{\theta}_{k+1} \neq u_{k+1}$ , что объясняет неизбежное искривление изображений горизонтальных линий. Это искривление в значительной степени зависит от углов  $\overline{\sigma}_1$  и  $\overline{\sigma}_{k+1}$ , т. е. от увеличения насадки и от величины угла поля зрения, и мало зависит от оптических конструктивных элементов цилиндрической анаморфотной насадки с параллельными образующими цилиндров, имеющих круговой профиль в своих главных сечениях. На рис. V, 25 схематически представлено явление искривления изображений вертикальных и горизонтальных линий анаморфотом.

7. Размеры световых отверстий цилиндрических линз определяются следующим образом. Из приведенных выше формул определяют углы косого луча, проходящего сквозь систему. Определим координаты точек пересечения луча с преломляющими поверхностями. На рис. V, 24 видно, что этими координатами могут быть выбраны величины h

и *t*, определяющие точку *B* пересечения косого луча *AB* с преломляющей цилиндрической поверхностью. Для некоторой *k*-й преломляющей поверхности

$$h_h = r_h \sin \varphi_h , \qquad (V,36)$$

где  $h_k$  — высота пересечения луча с поверхностью в горизонтальном сечении;  $r_k$  — радиус кривизны поверхности в том же горизонтальном сечении;  $\varphi_k$  — угол между оптической осью и радиусом  $r_k$ , проведенным в точку падения луча.

Для этой же k-й поверхности координата определяется по формуле:

$$t_k = t_{k-1} + \Delta t_k , \qquad (V,37)$$

причем

$$\Delta t_{k} = \frac{(a_{k-1} + a_{k} - a_{k-1})}{\cos \overline{\sigma_{k}}} \operatorname{tg} \theta_{k}, \qquad (V,38)$$

где алгебраическая сумма  $d_{k-1} + a_k - a_{k-1}$  — есть расстояние между двумя плоскостями, проведенными перпендикулярно оптической



Рис. V, 25. Искривление вертикальных и горизонтальных линий анаморфотом

оси и проходящими через точки пересечения косым лучом k-й и k—1-й цилиндрических поверхностей;  $d_{k-1}$  — расстояние между вершинами этих поверхностей, отсчитываемое вдоль оптической оси.

Начальные значения величин  $t_1$  и  $\Delta t_1$ , входящих в рекуррентные формулы (V, 37) и (V, 38), определяются из выражения:

$$t_1 = M_1 + \Delta t_1, \qquad (V,39)$$

причем

$$\Delta t_{\mathbf{i}} = \frac{(-s_{\Gamma,\overline{n}} + a_{\mathbf{i}})}{\cos \overline{\sigma_{\mathbf{i}}}} \operatorname{tg} \theta_{\mathbf{i}}, \qquad (V,39')$$

где s<sub>гл</sub> — расстояние плоскости входного зрачка от первой преломляющей поверхности; a<sub>1</sub> — «стрелка» на первой поверхности.

Вычисление координат точек пересечения косых лучей с преломляющими поверхностями позволяет точно определить световые размеры цилиндрических линз анаморфотных насадок.

8. Анаморфотные системы обладают еще одним специфическим свойством, значительно снижающим качество изображения систем, — разностью глубин изображаемого пространства в различных сечениях анаморфота.

Смещению dx плоскости предметов вдоль оптической оси будет соответствовать смещение dx' плоскости изображений, различное для горизонтального и вертикального сечений анаморфота вследствие различия фокусных расстояний в этих сечениях:

$$dx'_{\rm r} = \frac{f'_{\rm r}^2}{x^2} dx; \quad dx'_{\rm B} = \frac{f'_{\rm B}^2}{x^2} dx.$$
 (V,40)

Поперечные размеры кружков рассеяния лучей представятся в виде:

$$dy'_{\rm r} = \varepsilon_{\rm r} \, dx'_{\rm r}; \quad dy'_{\rm B} = \varepsilon_{\rm B} \, dx'_{\rm B}, \qquad (V,40')$$

где є<sub>г</sub> и є<sub>в</sub> относительные отверстия анаморфота в горизонтальном и вертикальном сечениях; угловые размеры кружков рассеяния в соответствующих сечениях анаморфота выразятся соотношениями:

$$\frac{dy'_{\Gamma}}{f'_{\Gamma}} = \frac{\varepsilon_{\Gamma} f'_{\Gamma}}{x^2} dx; \quad \frac{dy'_{B}}{f'_{B}} = \frac{\varepsilon_{B} f'_{B}}{x^2} dx. \qquad (V,40'')$$

Если относительные отверстия в обоих сечениях анаморфота равны, то отношение угловых размеров кружков рассеяния в двух сечениях равно отношению фокусных расстояний. Это создает разность глубин резко изображаемого пространства в двух направлениях; этот эффект тем более неприятен для восприятия, что он наблюдается уже в центре изображения. Рационально соблюсти условие равенства максимально допустимых значений угловых размеров кружков рассеяния в обоих сечениях анаморфота, т. е.

$$\frac{dy'_{\Gamma}}{f'_{\Gamma}} = \frac{dy'_{B}}{f'_{B}} . \tag{V.41}$$

Тогда из уравнения (V, 40'') находим, что

$$\varepsilon_{p} f_{r}' = \varepsilon_{B} f_{B}', \qquad (V, 42)$$

откуда

$$\frac{\epsilon_{\rm B}}{\epsilon_{\rm r}} = \frac{f_{\rm r}'}{f_{\rm B}'},\qquad({\rm V},42')$$

403

### Таблица V,17

# Характеристики анаморфотных систем

|                                                | ЭИНROT:<br>ММ                              | ə                                           | -онто<br>Энтоде                                 | -идиш                                                     | Величина а<br>при <b>D</b> | наморфозы<br>= 4 <i>м</i>   | Ф. тогра<br>разрешаю<br>мм                 | фическая<br>щая сила,       | вн                           | HOTH                    |
|------------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------|--------------------------------------------|-----------------------------|------------------------------|-------------------------|
| Наименование анаморфотной<br>насадки или блока | Фокусное расс<br>объектива <sup>†</sup> ', | Сеометрическо<br>отистизонто<br>з эитэдэвто | е отапияное отво<br>сительное отво<br>тута<br>з | Угол поля по<br>Угол поля по<br>пе кадра 2 w <sub>г</sub> | в центре<br>поля<br>l'=0   | на краю<br>поля<br>I'=11 мм | в центре<br>поля<br><i>l'=</i> 0 <i>мм</i> | на краю<br>поля<br>I'=11 жм | Освещенность<br>Краю поля, % | и чинз<br>Нисло компоне |
| 35HAC12-1                                      | 30                                         | 1:2,8                                       | 1:2,8                                           | 72°30′                                                    | 0,48                       | 0,476                       | 68                                         | 35                          | 50                           | 8/11                    |
| 35HAC10-1                                      | 35                                         | 1:2,5                                       | 1:3,1                                           | 64°18′                                                    | 0,485                      | 0,474                       | 64                                         | 24                          | 40                           | 8/11                    |
| HAC8-1                                         | 40                                         | 1:2,5                                       | 1:3,4                                           | 57°17′                                                    | 0,467                      | 0,45                        | 66                                         | 18                          | 36                           | 6/10                    |
| 35BAC4-13-1                                    | 50                                         | 1:2                                         | 1:2,6                                           | 47°30′                                                    | 0,485                      | 0,47                        | 60                                         | 26                          | 44                           | 6/10                    |
| 35BAC4-14-1                                    | 80                                         | 1:2                                         | 1:2,3                                           | 30°46′                                                    | 0,48                       | 0,46                        | 54                                         | 26                          | 70                           | 6/10                    |
| 35HAC4-1                                       | 100                                        | 1:2,8                                       | 1:3,2                                           | 24°49′                                                    | 0,48                       | 0,50                        | 44                                         | 24                          | 99                           | 6/10                    |
| 35BAC2-1                                       | 150                                        | 1:3,5                                       | 1:4,2                                           | 16°42′                                                    | 0,49                       | 0,48                        | 33                                         | 27                          | 80                           | 7/10                    |
| 35BAC3-1                                       | 200                                        | 1:4,5                                       | 1:5,6                                           | 12°34′                                                    | 0,49                       | 0,48                        | 30                                         | 27                          | 06                           | 7/10                    |
|                                                |                                            |                                             |                                                 |                                                           |                            |                             |                                            |                             |                              |                         |
|                                                |                                            |                                             |                                                 |                                                           |                            |                             |                                            |                             |                              |                         |
|                                                |                                            |                                             |                                                 |                                                           |                            |                             |                                            |                             |                              |                         |
|                                                |                                            |                                             |                                                 |                                                           |                            |                             |                                            |                             |                              |                         |

или на основании формулы (V, 9):

$$\frac{\epsilon_{\rm B}}{\epsilon_{\rm r}} = A_0. \tag{V,42''}$$

Таким образом, для устранения разности глубин резко изображаемого пространства в разных сечениях анаморфота относительные отверстия объектива в вертикальном и горизонтальном сечениях должны быть различными: отношение их величин должно быть равным анаморфозе системы. В том сечении анаморфота, в котором фокусное расстояние больше, относительное отверстие должно быть меньше, и наоборот. Осуществить это возможно путем установки в центрированном объективе апертурной ирисовой диафрагмы не круглой, а эллипсоидальной формы.

На основании исследований специфических свойств анаморфотных систем вначале в ГОИ, а с 1959 года — на кафедре физики и оптики ЛИКИ Д. Волосовым и Ш. Печатниковой были разработаны оптические схемы и проведены расчеты (в выполнении которых им помогали А. Шахнович и Р. Фахретдинова) всех отечественных анаморфотов. В ЦКБК были изготовлены все опытные образцы. В табл. V, 17 приведе-



Рис. V. 26. Схема анаморфотной насадки «Бифокатор-4» (НАС-4) в горизонтальном (меридиональном) сечении

ны все основные оптические характеристики анаморфотных киносъемочных систем, выпускаемых нашей промышленностью. Они изготовляются в виде насадок НАС и блоков БАС к объективам широкого диапазона фокусных расстояний — от 22 до 200 мм\*.

Объективы средних фокусных расстояний — 50 мм, 1:2; 75 мм, 1:2; 80 мм, 1:2 и 100 мм, 1:2,8 — оснащаются насадками (или выпускаются в

виде блоков) с афокальной анаморфотной системой «Бифокатор-4» (НАС-4 или БАС-4). Это четырехлинзовая двухкомпонентная система, у которой оба компонента склеены из двух цилиндрических линз (рис. V, 26). Система малогабаритная: ее длина 100 мм. Дистанционная фокусировка осуществляется перемещением второго компонента, что, по-видимому, несколько удобнее для оформления конструкции насадки, чем перемещение первого компонента, как было в наших ранних разработках. В пределах изменения дистанции от 1,5 м до «бесконечности» второй компонент передвигается на 11 мм. Расстояние  $d_D$  между главными плоскостями неподвижного первого компонента и движущегося второго компонента при различных дистанциях съемки определяется по формуле:

$$d_{D} = \frac{D + 2f'_{1} + \sqrt{D^{2} - 4(f'_{1} + D)f'_{2}}}{2(f'_{1} + D)} D, \qquad (V,43)$$

\* См. сноску на стр. 408.

где D — расстояние плоскости предметов от главной плоскости первого компонента. Заметим, что величина анаморфозы  $A_{0,D}$  остается равной величине 0,50 для дистанций съемок от 5 до 8 *м* и уменьшается до 0,487 для дистанции «бесконечность»; величина  $A_{0,D}$  постепенно увеличивается до 0,537 (т. е. на 7%) при съемке с дистанций 1,5 *м*.

В насадке благодаря введению плавно нарастающей отрицательной дисторсии, достигающей на краю поля ( $\sigma_1 = -28^\circ$ ) -5%, величина анаморфозы по полю остается постоянной, точнее, на краю поля зрения величина анаморфозы  $A_{\sigma}$  отличается от ее значения в центре поля (для дистанций около 4-5m) не более чем на 4%, что наблюдатель совершенно не замечает; в этом одно из замечательных качеств отечественных анаморфотных систем.

Анаморфот «Бифокатор-4» имеет хорошее исправление монохроматических и хроматических аберраций лучей широких наклонных пучков как в горизонтальном сечении, так и косых лучей. Эти аберрации в центральной области поля не превышают 1' (угловая минута), а по полю —2'. Последнее определило высокую разрешающую силу этих систем; совместно с соответствующими сферическими объективами (см. табл. V, 17) анаморфотные насадки разрешают лишь немногим меньше, чем разрешали сами сферические объективы: около 45—60 мм<sup>-1</sup> (с разными объективами по-разному) в центре поля с плавным снижением до  $24-26 \text{ мм}^{-1}$  на краю поля. Искривление  $\Delta \sigma'$  вертикальных линий на краю поля, выраженное в угловой мере, равно 7'; искривление  $\Delta \overline{\theta'}$  горизонтальных линий достигает на краю поля 50'.

Опытные образцы анаморфотов были изготовлены ЦКБК. Лабораторные и эксплуатационные испытания проводились НИКФИ и киностудиями «Ленфильм» и «Мосфильм». Первые образцы отечественных анаморфотов были подвергнуты весьма тщательным и квалифицированным эксплуатационным испытаниям кинооператором «Ленфильма» А. Москвиным при съемке широкоэкранного фильма «Дон Кихот». Результаты испытаний повседневно анализировались и обсуждались с автором, что способствовало совершенствованию анаморфотов в процессе их создания.

Тогда же возникла идея создания анаморфотной насадки, обладающей неизменной величиной анаморфозы при любой дистанции съемки:

$$A_{0, D} \approx A_{0, \infty} \approx 0.5. \tag{V.44}$$

Для этого нами была разработана двухкомпонентная анаморфотная насадка, у которой одновременно с изменением расстояния  $d_D$  между компонентами (при фокусировке системы на различные дистанции D) изменяется величина фокусного расстояния одного из компонентов насадки. Исследования показали, что более рационально изменять фокусное расстояние  $f'_2$  второго компонента. Переменные величины  $d_D$  и D связаны уравнением:

$$d_D^3 + 2D d_D^2 + D (f_1' + D) d_D + D^2 f_1' = 0, \qquad (V,45)$$

где f'<sub>1</sub> — фокусное расстояние первого компонента, остающееся неиз-

менным. Заднее фокусное расстояние второго компонента должно изменяться по закону:

$$f_2' = \frac{2D \, d_D}{D + d_D} \,. \tag{V,46}$$

Аберрационные расчеты и коррекция такой системы были выполнены Ш. Печатниковой. Пришлось усложнить оптическую схему системы, сделав первый компонент насадки четырехлинзовым, состоящим из двухлинзовых склеенных компонентов (рис. V, 27). Второй компонент, состоящий из двух простых линз, имеет переменное фокусное расстояние, что осуществляется путем изменения расстояния между линзами; точнее, с целью упрощения кинематики оказалось возможным при съемке с дистанций от 2,25 *м* до «бесконечности» не изменять фокусного расстояния второго компонента: компонент перемещается целиком, обеспечивая обычную дистанционную фокусировку; при коротких же дистанциях — от 1,2 до 2,25 *м* — одновременно с перемещением второго компонента происходит сближение его линз, что изменяет фокусное расстояние компонента и обеспечивает тем самым неизменность анаморфозы  $A_{0,D}$  при съемке с малых дистанций.

В системе, выпущенной под маркой «Бифокатор-5» (НАС5), удалось достигнуть хорошего исправления всех аберраций. Анаморфотная на-





Рис. V, 28. Схема оптики «Бифокатор-8»

садка корригирована для угла поля зрения по горизонту 67° и по вертикали 26° для выходного зрачка 25 *мм*. Эти параметры позволяют устанавливать позади насадки объективы с фокусными расстояниями 40 и 50 *мм* при отверстиях 1 : 2, а также объективы с фокусными расстояниями 80 и 100 *мм* при отверстиях 1 : 2,8 и 1 : 3,5. К сожалению, эта разработка промышленного производства не получила.

Особый интерес представляют (см. табл. V, 17) широкоугольные анаморфотные анастигматические насадки «Бифокатор-7» (35HAC10-1) и «Бифокатор-8» (35HAC12-1), обеспечивающие возможность киносъемки с объективами фокусных расстояний 35 и 30 мм. Для этого нам пришлось изменить оптическую схему насадки, применив в ее первом

407

Рис. V, 27. Схема оптики анаморфотной широкоугольной насадки НАС-5 в главном меридиональном (горизонтальном) сечении

компоненте комбинацию из двух несклеенных линз (рис. V, 28). При этом удалось сохранить малые габариты системы: ее длина не превышает 87 мм. Эта насадка, оптика которой разработана под маркой «Бифокатор-8», имеет угол поля зрения по горизонтали 87,5°, по вертикали 34,5°; диаметр выходного зрачка 12 мм, что соответствует относительному отверстию объектива 1 : 2,5 при фокусном расстоянии 30 мм. Это самая широкоугольная и светосильная система среди известных анаморфотных анастигматических систем\*. Она обладает хорошим исправлением всех аберраций и, следовательно, высоким качеством оптического изображения: совместно со сферическим объективом (f' = 30 мmпри отверстии 1 : 2,8) система 35НАСІ2-1 разрешает 68 мм<sup>-1</sup> в центре поля с плавным снижением разрешения до 35 мм<sup>-1</sup> на краю поля.

Последующие теоретические исследования и конкретные расчеты, выполненные в отраслевой лаборатории кинооптики ЛИКИ, привели к еще более широкоугольной системе — «Бифокатор-9» с углом поля зрения по ширине кадра в пространстве предметов 92°, что позволяет применить совместно с насадкой серийный объектив с фокусным расстоянием 28 мм и относительным отверстием 1 : 2,5. При его расчете (выполненном Ш. Печатниковой) первой цилиндрической поверхности насадки были задан некруговой профиль в ее главном сечении; такая замена кругового профиля асферическим потребовалась для сохранения постоянства величины анаморфозы  $A_{\sigma}$  по полю. Насадка «Бифокатор-9» имеет габариты, аналогичные предыдущей системе; уравнение кривой некругового профиля цилиндрической поверхности имеет вид:

$$y^2 = 520x - x^2 + 0.25x^3, \qquad (V,47)$$

т. е. введена деформация кругового профиля\*\*.

Освоение технологии изготовления цилиндрических оптических поверхностей с некруговым профилем в их главном сечении представило бы интерес, так как позволило бы расширить поле анаморфотных систем по крайней мере до 120°. Решение такой проблемы в свою очередь позволило бы создать широкоугольные анаморфотные системы с переменным фокусным расстоянием путем установки впереди обычного (сферического) объектива с переменным фокусным расстоянием широкоугольной и достаточно светосильной анаморфотной насадки. Такой комбинированный блок, состоящий из описанного выше киносъемочного объектива «Фотон» с переменным фокусным расстоянием (f' = = 37—140 мм, 1:3,5) и установленной впереди него широкоугольной насадки «Бифокатор» (НАС), был изготовлен ЦКБК.

<sup>\*</sup> В 1976 г. автором предложены «моноанаморфоты», в которых сочетаются сферические и цилиндрические поверхности.

<sup>\*\*</sup> В 1974 году Д. Волосовым, Н. Лебедевой и Э. Лозовской была разработана система «Бифокатор» с углом поля зрения по ширине кинокадра 106°, что позволяет применять ее с серийным объективом с фокусным расстоянием 22 мм и относительным отверстием 1:2,8. Система состоит из простых цилиндрических поверхностей кругового профиля.

Создание малогабаритных светосильных сферических объективов с широкими пределами изменения фокусных расстояний позволило бы в свою очередь усовершенствовать параметры анаморфотных систем с переменными характеристиками: повысить их широкоугольность, светосилу и пределы изменения фокусных расстояний.

### § 4. ОБЪЕКТИВЫ ДЛЯ СЪЕМКИ ШИРОКОФОРМАТНЫХ 70-*мм* КИНОФИЛЬМОВ

Одно из основных направлений развития кинотехники — широкоформатная кинематография. В этой системе съемка кинофильмов производится на широкую 70-*мм* пленку с форматом кадра 52,5 × 23 *мм* с последующей проекцией на широкий (обычно искривленный по цилиндрической поверхности) киноэкран с соотношением ширины к высоте 2,2 : 1, поскольку размеры проекционного окна кинопроектора 48,6 × 22 *мм*.

Новая система потребовала создания специальной кинотехнической съемочной, обрабатывающей и проекционной аппаратуры, в частности комплекта широкоугольных светосильных съемочных объективов. Их разработке и совершенствованию уделялось большое внимание. В результате основной комплект объективов для съемки на широкую 70-*мм* кинопленку по всем параметрам находится на современном техническом уровне. Разработка оптических схем, расчеты и изготовление этой оптики были выполнены ЛИКИ (кафедрой Д. Волосова) и ЦКБК (отделом,



Рис. V, 29. Оптическая схема объектива ОКС4-40-1 (f'=40 мм)

руководимым А. Ганом), а в некоторой части ЛИТМО (кафедрой М. Русинова).

Пока еще трудно обосновать необходимые оптические характеристики объективов для съемки на широкий кадр (52,5 × 23 мм). Повидимому, наиболее распространенными окажутся объективы с полями зрения 50—90°. Особо интересен объектив ОКС4-40-1 восьмилинзовой оптической схемы типа «Мир» (рис. V, 29); его разработка является результатом нашего дальнейшего радикального усовершенствования объектива ОКС2-40-1, имевшего

меньшее отверстие (1:3,5) и бо́льшие габариты. Новый объектив имеет общую длину лишь 75,5 *мм* при световом диаметре наибольшей первой линзы 69 *мм* и при большом заднем фокальном отрезке 39 *мм*, что позволяет применить объектив в зеркальных фотоаппаратах и киносъемочных камерах с зеркальным обтюратором.

Конструктивные элементы оптики объектива ОКС-4-40-1 приведены в табл. V. 18.

В объективах столь асимметричной оптической схемы, как известно (см. главу IV), весьма трудно корригировать аберрацию дисторсии, в частности дисторсию высших порядков, быстро нарастающую по полю. В объективе аберрацию дисторсии высших порядков удалось хорошо корригировать при одновременной коррекции хроматизма увеличения в результате применения в линзах первого склеенного компонента оптических стекол, имеющих большую разность показателей преломления при сравнительно небольшой разности показателей дисперсий (чисел Аббе). Дисторсия же третьего порядка, величина которой нарастает пропорционально квадрату тангенса угла поля зрения, была преднамеренно введена около —4% на краю поля (и отрицательная по знаку) с целью частичной компенсации перспективных искажений изображений, возникающих при съемке широкоугольным объективом.

Объектив ОКС4-40-1 разрешает в центре поля 62 мм<sup>-1</sup> с плавным снижением разрешения до 35 мм<sup>-1</sup> на краю поля. Этот анастигмат, как основной объектив комплекта, был подвергнут подробным сравнительным испытаниям в отношении качества оптического изображения одновременно с английским объективом с аналогичными оптическими характеристиками фирмы «Тейлор — Гобсон». Сопоставление разрешающей силы объективов, контраста изображения, распределе-

### Таблица V,18

| Радиусы, поверхно-                                                                                                                                                                                                                                          | Толщины линз                                                                                                                                                                                  | Оптические г<br>стеко                                                                                                            | остоянные<br>л                                                                                     | Марки                                                                    | Световые                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| стей, мм                                                                                                                                                                                                                                                    | и воздушные<br>промежутки. <i>мм</i>                                                                                                                                                          | n <sub>D</sub>                                                                                                                   | ۷                                                                                                  | стекол                                                                   | диаметры.<br><i>мм</i>                                                                                       |
| $r_{1} = 209, 4$ $r_{2} = -1224, 6$ $r_{3} = 77, 62$ $r_{4} = 49, 20$ $r_{5} = 25, 89$ $r_{6} = 27, 10$ $r_{7} = \infty$ $r_{8} = 14, 093$ $r_{9} = 87, 9$ $r_{10} = 10, 691$ $r_{11} = -10, 139$ $r_{12} = -12, 66$ $r_{13} = -80, 35$ $r_{14} = -18, 293$ | $d_{1} = 9,3$ $d_{2} = 6,0$ $d_{3} = 1,9$ $d_{4} = 2,72$ $d_{5} = 29,1$ $d_{6} = 4,4$ $d_{7} = 1,7$ $d_{8} = 4,2$ $d_{9} = 1,1$ $d_{10} = 9,3$ $d_{11} = 0,92$ $d_{12} = 0,21$ $d_{13} = 4,7$ | 1,6568<br>1,5004<br>1,0<br>1,5004<br>1,0<br>1,6725<br>1,0<br>1,6126<br>1,7550<br>1,0<br>1,7550<br>1,0<br>1,7550<br>1,0<br>1,6140 | 51,1<br>66,0<br>-<br>66,0<br>-<br>32,2<br>-<br>58,3<br>27,5<br>-<br>27,5<br>-<br>27,5<br>-<br>55,1 | ΤΚ21<br>Κ2<br><br>Κ2<br><br>ΤΦ2<br><br>ΤΚ16<br>ΤΦ5<br><br>ΤΦ5<br><br>ΤK8 | 69,4<br>63,9<br>52,4<br>47,9<br>40,5<br>24,5<br>23,3<br>16,2<br>14,5<br>12,7<br>12,6<br>14,2<br>17,7<br>13,7 |
|                                                                                                                                                                                                                                                             | $\Sigma d = 75,55$                                                                                                                                                                            |                                                                                                                                  |                                                                                                    |                                                                          |                                                                                                              |

Конструктивные элементы оптики объектива ОКС4-40-1

## Таблица V,19

# Характеристики киносъемочных объективов для 70-мм пленки

| Наменование<br>объективов         Рас<br>объективов         Объективно<br>положите         Рас<br>объективов           Объективов         Объективов         В         Стисе в<br>объективов         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В         В </th <th></th> <th>-R 9T3</th> <th>-онто е<br/>-отно-</th> <th></th> <th>%</th> <th>ВН</th> <th>BOTH:</th> <th>Фотогра<br/>разрешаю<br/><i>м</i></th> <th>фическая<br/>щая сила,<br/>t<sup>-</sup>,</th> <th>вин</th> <th>พ.พ<br/>พ.พ</th> <th>s , s ei</th>                                          |                          | -R 9T3                       | -онто е<br>-отно-                               |                                             | %                          | ВН                           | BOTH:                   | Фотогра<br>разрешаю<br><i>м</i> | фическая<br>щая сила,<br>t <sup>-</sup> , | вин                  | พ.พ<br>พ.พ                     | s , s ei      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------|------------------------------|-------------------------|---------------------------------|-------------------------------------------|----------------------|--------------------------------|---------------|
| cap-10*       28       1:3,5       1:3,8       86       50       -       54         1       40       1:3       1:3,6       70       35       6/8       62         1       56       1:3       1:3,4       78       35       4/7       67         1       56       1:2,5       1:3,4       78       35       4/7       67         1       56       1:2,5       1:3,4       86       63       5/7       65         1       75       1:2,8       1:3,4       86       63       5/7       65         1       75       1:2,8       1:3,2       77       50       4/7       54         -1       100       1:2,8       1:3,2       77       55       4/6       55         -1       125       1:2,8       1:3,2       77       55       4/6       55         -1       125       1:2,8       1:3,2       77       55       4/6       55         -1       125       1:2,8       1:3,2       77       55       4/6       55         -1       200       1:2,8       1:3,2       76       70       3/4       45 </td <td>мено вание<br/>Бъективо в</td> <td>Фокусное рас<br/>Фокусное рас</td> <td>Геометрическо<br/>Сительное отв<br/>Сительное отв</td> <td>Эффективное<br/>онаслудонто<br/>у з энтодэвто</td> <td>Коэффициент<br/>Коэффициент</td> <td>Освещенность<br/>Краю поля, %</td> <td>и линз<br/>Цисло компоне</td> <td>в центре<br/>поля</td> <td>на краю<br/>поля</td> <td>yron nons spe<br/>2 w</td> <td>Задний фокалі<br/>Уарезок, s'F'</td> <td>Масса объекти</td> | мено вание<br>Бъективо в | Фокусное рас<br>Фокусное рас | Геометрическо<br>Сительное отв<br>Сительное отв | Эффективное<br>онаслудонто<br>у з энтодэвто | Коэффициент<br>Коэффициент | Освещенность<br>Краю поля, % | и линз<br>Цисло компоне | в центре<br>поля                | на краю<br>поля                           | yron nons spe<br>2 w | Задний фокалі<br>Уарезок, s'F' | Масса объекти |
| -1       40 $1:3$ , $6$ $70$ $35$ $6/8$ $62$ $-1$ $56$ $1:3$ $1:3,4$ $78$ $35$ $4/7$ $67$ $-1$ $56$ $1:2,5$ $1:3,4$ $78$ $35$ $4/7$ $67$ $-1$ $56$ $1:2,5$ $1:3,4$ $86$ $63$ $5/7$ $65$ $-1$ $75$ $1:2,8$ $1:3,2$ $77$ $56$ $4/7$ $56$ $-1$ $75$ $1:2,8$ $1:3,2$ $77$ $50$ $4/7$ $55$ $-1$ $100$ $1:2,8$ $1:3,2$ $77$ $56$ $4/6$ $57$ $-1$ $100$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $-1$ $150$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $-1$ $120$ $1:2,8$ $1:3,2$ $77$ $56$ $4/6$ $55$ <t< td=""><td>scap-10»</td><td>28</td><td>1:3,5</td><td>1:3,8</td><td>86</td><td>20</td><td> </td><td>54</td><td>20</td><td>91°20′</td><td>31,5</td><td>1000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | scap-10»                 | 28                           | 1:3,5                                           | 1:3,8                                       | 86                         | 20                           |                         | 54                              | 20                                        | 91°20′               | 31,5                           | 1000          |
| -1 $56$ $1:3$ $1:3,4$ $78$ $35$ $4/7$ $67$ $-1$ $56$ $1:2,5$ $1:3$ $80$ $55$ $5/7$ $65$ $-1$ $56$ $1:3,4$ $86$ $63$ $5/7$ $65$ $-1$ $75$ $1:2,8$ $1:3,4$ $86$ $63$ $5/7$ $65$ $-1$ $75$ $1:2,8$ $1:3,2$ $77$ $50$ $4/7$ $54$ $0-1$ $100$ $1:2,8$ $1:3,2$ $77$ $50$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $0-1$ $120$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $55$ $0-1$ $120$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $55$ $0-1$ $200$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:2,5$ $1:4$ $76$ $76$ $76$ $50$ $1:4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                       | 40                           | 1:3                                             | 1:3,6                                       | 70                         | 35                           | 6/8                     | 62                              | 35                                        | 71°12′               | 39,8                           | 420           |
| -1 $56$ $1:2,5$ $1:3$ $80$ $55$ $5/7$ $65$ $-1$ $56$ $1:3$ $1:3,4$ $86$ $63$ $5/7$ $65$ $-1$ $75$ $1:2,8$ $1:3,4$ $86$ $63$ $5/7$ $65$ $-1$ $75$ $1:2,8$ $1:3,2$ $77$ $50$ $4/7$ $54$ $0-1$ $100$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $0-1$ $150$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $200$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:2,5$ $1:4$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:3,5$ $1:4$ $76$ $70$ $3/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                       | 56                           | 1:3                                             | 1:3,4                                       | 78                         | 35                           | 4/7                     | 67                              | 37                                        | 54°12′               | 39,2                           | 101           |
| -1 $56$ $1:3$ $1:3,4$ $86$ $63$ $5/7$ $62$ $-1$ $75$ $1:2,8$ $1:3,2$ $77$ $50$ $4/7$ $54$ $0-1$ $100$ $1:2,8$ $1:3,2$ $77$ $56$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $0-1$ $150$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $55$ $0-1$ $150$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $55$ $0-1$ $200$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:3,5$ $1:4$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:3,5$ $1:4$ $76$ $70$ $3/4$ $45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1                       | 56                           | 1:2,5                                           | 1:3                                         | 80                         | 55                           | 5/7                     | 65                              | 26                                        | 54°12'               | 34,8                           | I             |
| -1 $75$ $1:2,8$ $1:3,2$ $77$ $50$ $4/7$ $54$ $0-1$ $100$ $1:2,8$ $1:3,4$ $68$ $52$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $5-1$ $125$ $1:2,8$ $1:3,2$ $77$ $55$ $4/6$ $57$ $0-1$ $150$ $1:2,8$ $1:3,2$ $73$ $62$ $4/6$ $50$ $0-1$ $200$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $200$ $1:2,8$ $1:3,2$ $76$ $70$ $3/4$ $45$ $0-1$ $300$ $1:2,5$ $1:4$ $76$ $75$ $3/4$ $40$ $1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                       | 56                           | 1:3                                             | 1:3,4                                       | 86                         | 63                           | 5/7                     | 62                              | 25                                        | 54°12′               | 33,8                           | I             |
| 0-1     100     1:2,8     1:3,4     68     52     4/6     57     5       5-1     125     1:2,8     1:3,2     77     55     4/6     55     5       0-1     150     1:2,8     1:3,2     73     62     4/6     50     5       0-1     200     1:2,8     1:3,2     76     70     3/4     45       0-1     200     1:2,5     1:3,2     76     70     3/4     45       0-1     300     1:3,5     1:4     76     75     3/4     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | 75                           | 1:2,8                                           | 1:3,2                                       | 77                         | 50                           | 4/7                     | 54                              | 42                                        | 41°50'               | 54,0                           | 120           |
| 5-1     125     1:2,8     1:3,2     77     55     4/6     55     2       0-1     150     1:2,8     1:3,2     73     62     4/6     50     2       0-1     200     1:2,8     1:3,2     76     70     3/4     45     2       0-1     300     1:3,5     1:4     76     76     70     3/4     45     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-1                      | 100                          | 1:2,8                                           | 1:3,4                                       | 68                         | 52                           | 4/6                     | 57                              | 37                                        | 31°58′               | 58,0                           | 470           |
| 0-1     150     1:2,8     1:3,2     73     62     4/6     50     5       0-1     200     1:2,8     1:3,2     76     70     3/4     45     5       0-1     300     1:3,5     1:4     76     75     3/4     40     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-1                      | 125                          | 1:2,8                                           | 1:3,2                                       | 17                         | 55                           | 4/6                     | 55                              | 28                                        | 25°50′               | 74,8                           | 710           |
| 0-1         200         1:2,8         1:3,2         76         70         3/4         45         1           0-1         300         1:3,5         1:4         76         75         3/4         40         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-1                      | 150                          | 1:2,8                                           | 1:3,2                                       | 73                         | 62                           | 4/6                     | 50                              | 25                                        | 21°38′               | 90,5                           | 880           |
| 0-1 300 1:3,5 1:4 76 75 3/4 40 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-1                      | 200                          | 1:2,8                                           | 1:3,2                                       | 76                         | 70                           | 3/4                     | 45                              | 25                                        | 15°20′               | I                              | 1300          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1                      | 300                          | 1:3,5                                           | 1:4                                         | 76                         | 75                           | 3/4                     | 40                              | 25                                        | 12°40′               | I                              | 2030          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                              |                                                 |                                             |                            |                              |                         |                                 |                                           |                      |                                |               |

ния освещенности изображений по полю и т. д. подтвердило высокий технический уровень наших разработок и возможность применения отечественной кинооптики при любых ответственных съемках.

Среди объективов, не вошедших в группу серийных, остановимся прежде всего на особо широкоугольных объективах, разработанных в ЛИТМО (кафедра М. Русинова) и ЛИКИ (кафедра Д. Волосова).

В ЛИТМО разработаны «Киноруссары» с фокусными расстояниями 15 и 22 мм. Объективы имеют девятилинзовые оптические схемы (рис. V,30) с однолинзовым и двухлинзовым отрицательными передними компонентами, существенно расширяющими поле зрения системы, но одновременно вносящими большую отрицательную дисторсию; исправление последней требует или усложнения переднего компонента, или асферизации его вогнутой преломляющей поверхности. Как показывают исследования, рациональна асферизация вогнутой поверхности отрицательной менисковой линзы: на рис. V, 30, а вогнутая поверхность передней линзы имеет форму глубокого эллипсоида вращения, т.е. поверхности, меридиональное сечение которой выражается уравнением второго порядка. При полях зрения, не превосходящих 100°, vcложнение переднего отрицательного компонента более или менее удовлетворительно заменяет введение в нем асферической поверхности. Однако при полях зрения, достигающих, а тем более превосходящих 100°, даже введение асферической поверхности второго порядка не может обеспечить хорошей коррекции аберраций широких наклонных пучков у светосильных объективов асимметричной оптической схемы, если не пойти при этом на очень большие габариты системы, в частности на допущение длин систем, в 15-20 и более раз превосходщих величину фокусного расстояния объектива (см. главу IV). Именно по этому пути пошли французские оптики фирмы «Кинооптик», создавая объектив «Супер-Тежеа» (см. рис. V, 35) с относительным отверстием 1 : 1,8 и



Рис. V, 30. Оптические схемы объективов: а — «Киноруссар-8» (f' = 15 мм); б — «Киноруссар-7» (f' = 22 мм)

полем зрения около 112°, у которого вогнутая поверхность передней плосковогнутой отрицательной линзы имеет форму простого параболоида вращения, но при этом длина объектива превышает 150 *мм* при фокусном расстоянии 5,7 *мм*.

Однако в схемах «Киноруссар» не удалось достигнуть хорошей коррекции аберраций широких наклонных пучков при больших углах поля зрения в меридиональном сечении и для внемеридиональных косых лучей. Объективы имеют необычно низкую разрешающую силу по полю и поэтому могут применяться лишь для эпизодической съемки отдельных кинокадров. Кроме того, объективы вследствие широкоугольности дают снимки, в которых особенно отчетливо проявляются перспективные искажения изображений. Пока не ясны оптические способы корректировки этого дефекта. Что касается повышения качества оптического изображения, то эту задачу мы считаем разрешимой.

ЛИКИ (Д. Волосовым и В Н. Лебедевой) выполнена разработка широкоугольного асферического объектива «Ликар-3» (ОКС2-22-1), состоящего из девяти линз, у которого первый компонент двухлинзовый, склеенный с большой разностью показателей преломления стекол; вогнутая поверхность второго компонента имеет асферическую форму, являющуюся деформацией эллипсоида вращения и выражаюуравнением, содержащим щуюся показатели третьей и четвертой степени при аргументе х:



Рис. V, 31. Оптическая схема асферического объектива «Ликар-3» (f' = 22 мм)

$$y^2 + z^2 = a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4,$$
 (V,48)  
где  $a_1 = 40,84; a_2 = -0,46; a_3 = 0,3465 \cdot 10^{-2}, a_4 = 0,23 \cdot 10^{-4}.$ 

Объектив «Ликар-3» имеет фокусное расстояние 22 мм, относительное отверстие 1 : 3,5, угол поля зрения 106° и задний фокальный отрезок 34 мм. Длина объектива 131 мм; диаметр светового отверстия наибольшей первой линзы составляет 95 мм.

Введение большой разности  $\Delta n$  показателей преломления, превышающей 25 единиц третьего знака, и асферической поверхности четвертого порядка позволило достаточно хорошо корригировать аберрации лучей широких наклонных пучков как в меридиональном, так и в главном сагиттальном сечениях всех наклонов. На рис. V, 32 приведены графики аберраций  $\Delta y' = \delta g'$  в меридиональном и аберрации  $\delta G'$  в главном сагиттальном сечениях. Рассмотрение этих аберраций и сопоставление их с таковыми ранее изготовленных образцов киносъемочных объективов показывает, что объектив по своим оптическим параметрам на уровне современных киносъемочных объективов для 70-*мм* пленки, обычно разрешающих 50 — 65 *мм*<sup>-1</sup> в центре поля с плавным снижением разрешения до 25—30 *мм*<sup>-1</sup> на краю поля.

Вариант широкоугольного объектива «Киноруссар-10» ( $f' = 28 \, \text{мм}$ ; 1:3,5;  $2w = 91^{\circ}$ ), разработанный в ЛИТМО М. Русиновым, входит в комплект съемочных объективов для 70-мм пленки; основные параметры его указаны в табл. V,19. Объектив обладает повышенной равномерностью распределения освещенности изображения по полю и освещенность на краю составляет 50% от освещенности изображения в центре поля. Однако повышенная освещенность на краю поля достигнута при одновременном снижении разрешающей силы по полю до 20 мм<sup>-1</sup>, начиная со средних углов поля зрения.



аа'-прямая, соответствующая наилучшей плоскости установки, смещена относительно плоскости Гаусса на 0,10мм в сторону объектива

Рис. V, 32. Аберрации широких наклонных пучков объектива «Ликар-3»

По группе объективов средних фокусных расстояний (см. табл. V, 19) остановимся на системах с фокусными расстояниями 56 и 75 мм. Объективы ОКС1-56-1 (f' = 56 мм) и ОКС4-75-1 (f' = 75 мм) имеют семилинзовую оптическую схему (рис. V, 33, a) типа «Аэро-Эктар». На основе анализа этой схемы автору [3] уже около 35 лет назад удалось разработать безлантановый вариант системы, принятой нами при этих расчетах. В двух вариантах расчетов (ОКС2-56-1 и ОКС3-56-1) применена также семилинзовая, но пятикомпонентная схема (рис. V, 33,  $\delta$ ). Эти разработки мы не считаем оптимальными: возможно дальнейшее усовершенствование объектива f' = 56 мм на основе применения сверхтяжелых кронов типа ториевых. Целесообразно также пополнение комплекта длиннофокусным объективом с фокусным расстоянием 500 мм.



Рис. V, 33. Оптические схемы объективов: a—OKC-56-1 (f'=56 мм) и OKC-75-1 (f'=75 мм); б—OKC2-56-1 и OKC3-56-1 (f'=56 мм)

В заключение остановимся на разработке первого варианта панкратического объектива 70-ОПФ1 с пределами изменения фокусных расстояний от 60 до 240 мм с относительным отверстием 1: 3,5 для съемки широкоформатных фильмов на 70-мм пленке с размерами кадра 52,5× × 23 мм. Расчеты этого объектива (выполненные А. Шахнович при консультации автора) не были доведены до оптимального оптического решения вследствие крайне сжатых сроков выпуска этого объектива в ЦКБК.

На рис. V, 34 приведены графики разрешающей силы этого объектива. Для начала получены неплохие результаты. Конечно, разработка



Рис V, 34. Графики разрешающей силы объектива 70-ОПФІ (f'=60-240 мм при фокусных расстояниях 60, 100 и 240 мм)

представила бы больший практический интерес, если бы панкратический объектив имел более короткое минимальное фокусное расстояние—начиная с 40—45 *мм*, но при этом угол поля зрения достигал бы 68—62°, что пока осуществимо лишь при очень больших габаритах и массе объектива, необычных для киносъемочного.

Актуальной и оптически возможной является задача создания панкратического объектива для киносъемки 70-*мм* фильмов с широкими пределами изменения фокусных расстояний, например от 50—55 до 500 *мм*, что, в частности, возможно на основе использования оптической схемы упомянутого выше объек-

тива «Варио-Ликар-1» (f' = 26 - 260 мм; 1 : 3,5), разработанного для киносъемки 35-мм фильмов.

### § 5. ОБЪЕКТИВЫ ДЛЯ КИНОСЪЕМКИ УЗКОПЛЕНОЧНЫХ 16-мм ФИЛЬМОВ

Созданию специального комплекта высококачественных и светосильных объективов для съемки профессиональных и любительских 16-мм кинофильмов следует уделить должное внимание. Размеры кадра 16-мм пленки (7,45 × 10 мм) при применении высокоразрешающего фотоматериала и оптики вполне пригодны не только для любительской, но и для профессиональной киносъемки.

Эксплуатация узких 16-*мм* фильмов имеет ряд общеизвестных преимуществ: меньшие вес пленки и аппаратуры, габариты, длина и площадь фильма, стоимость фотоматериала и изготовления позитива для копии, меньшая скорость передвижения узкого фильма в проекторе, а следовательно, его меньший износ и т. д.

Таблица V,20

|                             | стояние                 | e                                             | относи-<br>стие                                | ния                    | ентов                  | На                           | Фотограф<br>разреша<br>сила, л | ическая<br>ющая<br>м <sup>-1</sup> |
|-----------------------------|-------------------------|-----------------------------------------------|------------------------------------------------|------------------------|------------------------|------------------------------|--------------------------------|------------------------------------|
| Наимен ование<br>объективов | Фокусное расс<br>f', мм | Геометрическо<br>относительное<br>отверстие ε | Эффективное<br>тельное отвер<br>с $\sqrt{	au}$ | Угол поля зре<br>210,° | Число компон<br>и линз | Освещенность<br>краю поля, % | в рентре<br>поля               | на<br>краю<br>поля                 |
|                             | 7.0                     |                                               | 1.9.0                                          | 00                     | 4.10                   | 70                           | 67                             | 05                                 |
| (OKCI-7-1)                  | 1,0                     | 1.2,5                                         | 1:2,0                                          | 00<br>64               | 4/0                    | 12                           | 67                             | 20                                 |
| OKC1-10                     |                         | 1.2,0                                         | 1:0,1                                          | 64                     | 0/9                    | 00                           | 00                             | 22                                 |
| "Mup 11»                    | 12 5                    | 1.1,0                                         | 1.2,2                                          | 52 5                   | 6/10                   | 20                           | 57                             | 97                                 |
| OVC9 15                     | 12,5                    | 2.2 0                                         | 1.2,1                                          | 45                     | 5/6                    | 50                           | 65                             | 45                                 |
| OKC2-15                     | 15                      | 1.1.8                                         | 1.0,4                                          | 45                     | 5/0                    | 35                           | 68                             | 40                                 |
| "Bora 7»                    | 20                      | 1.1,0                                         | 1.2,1                                          | 35                     | 0/0<br>1/5             | 45                           | 64                             | 26                                 |
| NO 51                       | 20                      | 1.2                                           | 1.2,4                                          | 25                     | 4/0                    | 40                           | 40                             | 20                                 |
| OVC9.90.1                   | 20                      | 1.2,0                                         | 1.0,0                                          | 25                     | 5/6                    | 50                           | 40                             | 20                                 |
| OKC1 25                     | 20                      | 1.1,0                                         | 1.2,2                                          | 00<br>90               | 3/0                    | 60                           | 60                             | 24                                 |
| $OKC_{4}$                   | 50                      | 1.2,0                                         | 1.0,4                                          | 14                     | 4/0                    | 68                           | 50                             | 40                                 |
| «Bara-Q»                    | 50                      | 1.9                                           | 1.2,0                                          | 14                     | 4/0                    | 50                           | 37                             | 29                                 |
| $\sqrt{2}$                  | 50                      | 1.2                                           | 1.2,4                                          | 14                     | 3/1                    | 58                           | 11                             | 34                                 |
| «Индустар-50»               | 52                      | 1.2,2                                         | 1.2,0                                          | 13                     | 3/4                    | 60                           | 38                             | 22                                 |
| OKC9-75                     | 75                      | 1.2,8                                         | 1.3 6                                          | 95                     | 3/4                    | 88                           | 55                             | 50                                 |
| «Meteod-5»                  | 17-69                   | 1.1.9                                         | 1.0,0                                          | 40-10                  | 13/18                  | 40-50                        | 72-50                          | 33-37                              |
| «Варио-Гоир-1»              | 12 - 120                | 1.2 1                                         | 1.2,4                                          | 55_6                   | 10/15                  | 30-35                        | 70-50                          | 25-30                              |
| «Вариогамма-3»              | 12 - 120<br>12 - 240    | 1.3 5                                         | 1.2,3                                          | 56-3                   | 4/18                   | 30 - 40                      | 60-50                          | 25 - 30                            |

Объективы для киносъемки на 16-мм пленке

В 1950 году при выпуске полупрофессионального киносъемочного аппарата 16С-1 в ГОИ был разработан нами первый комплект из шести объективов с фокусными расстояниями от 15 до 250 мм. Однако аппарат выпускался с одним объективом «Индустар» (f' = 20 мм; 1:2,8). Второй вариант киносъемочного аппарата 16С-2 комплектовался двумя объективами «Индустар» с фокусными расстояниями 20 и 50 мм и относительными отверстиями соответственно 1:2,8 и 1:3,5. В начале 60-х годов при создании новой конструкции киносъемочного аппарата 16-СП ЛИКИ в содружестве с ЦКБК был разработан новый комплект объективов ОКС с фокусными расстояниями от 10 до 75 *мм*; за последние годы на основе разработанных в ГОИ схем объективов «Мир», «Таир», «Вега» и «Эра» комплект был пополнен объективами этого типа. Некоторые характеристики объективов комплекта приведены в табл. V, 20 в порядке возрастающих фокусных расстояний.

ГОСТом 9695—61 на основе изучения отечественных и иностранных образцов объективов установлен ряд фокусных расстояний, представленных в таблице. Пока отсутствуют разработки следующих объективов, предусмотренных названным ГОСТом: широкоугольный объектив  $f' = 8 \ mm$  с полем зрения 80° и длиннофокусные объективы с фокусными расстояниями 100, 125 и 150 *мm*; кроме того, отсутствует объектив со средним фокусным расстоянием (32 *мm*). На основе сравнительных исследований иностранных и отечественных образцов были определены минимальные требования к разрешающей силе объективов: не менее 55 *мm*<sup>-1</sup> в центре поля и 35—40 *мm*<sup>-1</sup> на краях поля кадра на кинопленке, разрешающей около 80 *мm*<sup>-1</sup>. Этим условиям отвечает ряд объективов, приведенных в таблице.

Интерес представляет объектив OKC1-10 (f' = 10 мм; 1:2,8), обладающий повышенной освещенностью на краю поля (60%); переход к повышенному относительному отверстию (1:1,8) в объективе OKC3-10 привел к результату, требующему дальнейшего совершенствования: спад освещенности (до 25%) изображения на краю поля недопустимо велик.

Объективы ОКСЗ-15 ( $f' = 15 \ mm$ ; 1 : 1,8) и ОКС2-20 ( $f' = 20 \ mm$ ; 1 : 1,8) являются вариантами системы «Эра» (см. рис. IV, 11, e), оптическая схема которой шестилинзовая, но обладающая большими коррекционными возможностями по сравнению с известной, также шестилинзовой схемой «Планар» (см. рис. IV, 9, e). Как показывают исследования (например, объектива «Эра-6» с  $f' = 50 \ mm$ ; 1 : 1,5;  $2w = 45^{\circ}$ ), рационально было бы и для 16-mm камер разработать объективы того же типа «Эра» с отверстиями 1 : 1,5—1 :1,6. Такой перерасчет весьма просто может быть выполнен и для киносъемочных объективов ОКС с фокусными расстояниями 15 и 20 mm. Над проблемой повышения светосилы объективов всего набора — от короткофокусных до длиннофокусных — работает много иностранных фирм, непрерывно совершен-

ствуя комплекты выпускаемых объективов под марками: «Синегон» (фирма «Шнейдер»), «Кинеталь» («Тейлор—Гобсон»), «Сине-Раптар» («Волензак»), «Сине Навитар» и «Голден Навитар» («Элгиит»), «Сине Эктар» («Кодак»), «Гелигарон» («Роденшток»), «Свитар» («Керн»,) «Опенар» («Меопта») и др.

В табл. V,21 приведены некоторые сведения об исследованных иностранных образцах объективов.

По качеству оптического изображения все эти объективы близки к таковым отечественного производства.

Помимо совершенствования основного комплекта объективов необходима повседневная и систематическая работа по созданию светосильных широкоугольных анастигматов с форсированными оптическими характеристиками.

|                                                                       | Оптич          | еские х                 | арактер  | истики           | е,<br>8                        | HTOB                    | Фотографи<br>разрешан<br>сила, л | ическая<br>ощая<br>им <sup>-1</sup> |
|-----------------------------------------------------------------------|----------------|-------------------------|----------|------------------|--------------------------------|-------------------------|----------------------------------|-------------------------------------|
| Наименование объектива<br>и фирма                                     | f', мм         | ε                       | 2w,°     | s', мм           | Геометрическо<br>виньетировани | Число компоне<br>и линз | в центре поля                    | на краю поля                        |
| «Кинеталь» (« Тейлор —<br>Гобсон»)                                    | 12,5           | 1:1,8                   | 53       | 19,4             | 17                             | 7/9                     | 60                               | 35                                  |
| «Ларгор» («Меопта»)<br>«Ивар» («Керн»)                                | 12,5<br>12,5   | 1:1,8<br>1:1,5          | 53<br>53 | 15, <b>1</b><br> | 34<br>—                        | -                       | 67<br>41                         | 32<br>35                            |
| «Свитар» («Қерн»)<br>«Опенар» («Меопта»)<br>«Қинеталь» («Тейлор —     | 13<br>20<br>25 | 1:1,9<br>1:1,8<br>1:1,8 | 34<br>28 | 14,6<br>14,5     | 47<br>33                       | $\frac{-78}{-4}$        | 50<br>63<br>66                   | 43<br>36<br>35                      |
| Гоосон»)<br>«Ивар» («Керн»)<br>«Опенар» («Меопта»)<br>«Исора («Керца) | 25<br>40<br>26 | 1:2,5<br>1:1,8          | 28<br>17 | 24,6             | <del></del><br>33              |                         | 44<br>63                         | 38<br>40                            |
| «гивар» («керн»)<br>«Кинеталь» («Тейлор —<br>Гобсон»)                 | 50<br>50       | 1:1,8                   | 20<br>14 | 28,2             | 13                             | 4/6                     | 41<br>46                         | 38<br>38                            |
| «Опенар́» («Меопта»)                                                  | 80             | 1:2,8                   | 9        | 21,6             | 15                             | —                       | 48                               | 33                                  |

Некоторые иностранные объективы для 16-мм кинопленки

В этом направлении известность получили широкоугольные системы фирмы «Воллензак» и объективы «Тежеа» и «Супер-Тежеа» фирмы «Кинооптик» (Париж). На рис. V, 35 представлена оптическая схема необычного объектива «Супер-Тежеа», имеющего фокусное расстояние



Рис. V, 35. Оптическая схема объектива «Супер-Тежеа» (f' = = 5,7 мм)

5,7 *мм*, относительное отверстие 1 : 1,8 и угол поля зрения 112°. Вогнутая поверхность фронтальной линзы имеет простую параболоидальную форму, но такое решение оказалось возможным получить при необычно большой длине объектива, превышающей 150 *мм*, т. е. в 25 раз большей величины фокусного расстояния. При сокращении габаритов системы форма асферической преломляющей поверхности усложняется, а при хорошей коррекции аберраций широких пучков лучей больших наклонов оказывается необходимым введение асферической поверхности высших порядков, т. е. уравнение которой содержит высокие степени аргумента *х*:

$$y^2 + z^2 = 2rx + a_2 x^2 + \dots + a_k x^k$$
. (V,49)

В лаборатории кинооптики ЛИКИ для съемки 16-*мм* кинофильмов разработаны объективы, имеющие восьмилинзовую оптическую схему, представленную на рис. V, 21, *б*, фокусные расстояния 7,0 *мм*, углы полей зрения 88°, но несколько различные отверстия — 1 : 2 («Ликар-4») и 1 : 2,5 («Ликар-8»). Вогнутая асферическая поверхность эллипсо-идальной формы и выражается уравнением (объектив «Ликар-8»):

$$y^2 + z^2 = 14,69x - 0,403x^2. \tag{V,50}$$

Объектив имеет малые габариты: длину 55 *мм* при световом диаметре первой линзы 30 *мм*; задний фокальный отрезок равен 11,0 *мм*. На рис. V, 36 приведены графики поперечных аберраций лучей широких наклонных пучков в меридиональном и главном сагиттальном сечениях. Объектив обладает существенно повышенной равномерностью распределения освещенности изображения по полю при хорошей коррекции всех аберраций: снижение освещенности происходит пропорционально первой степени косинуса угла поля зрения и, следовательно, освещенность изображения составляет на краю поля зрения 72% от таковой в центре поля. Образцы этого объектива под шифром OKC1-7-1 были изготовлены в ЦКБК и показали хорошие результаты: фотографическая разрешающая сила объектива составляет 67 *мм*<sup>-1</sup> в центре поля, 40 *мм*<sup>-1</sup> по полю и 35 *мм*<sup>-1</sup> на краю поля.

В табл. V, 20 даны сведения об объективе с переменным фокусным расстоянием «Метеор-5» (f' = 17-69 мм; 1 : 1,9). Это восемнадцатилинзовый объектив с оптической компенсацией сдвига плоскости изображения. На рис. V, 37 представлена оптическая схема системы насадка — объектив и графики разрешающей силы при трех фокусных расстояниях объектива — 17, 35 и 69 мм. Изменение фокусного расстояния происходит в результате перемещения вдоль оптической оси жестко связанных между собой компонентов II и IV по простому линейному закону. Длина всей системы — от первой преломляющей поверхности объектива до плоскости пленки — 163 мм. Дистанционная фокусировка осуществляется соответствующей установкой компонента I.

Как было указано в главе IV, за последние годы были разработаны также панкратические объективы с широкими пределами изменений фокусных расстояний: светосильные системы 1 : 2—1 : 2,4 с соответственно восьми-десятикратными пределами изменений фокусных расстояний; объективы с относительными отверстиями 1 : 3,5—1 : 6 с более широкими — двенадцати-двадцатикратными пределами изменений фокусных расстояний. Большинство этих объективов представляет оптические системы с механической компенсацией сдвига плоскости изображения, имеющие положительный *I* и отрицательный *II* компоненты большой оптической силы. Такая оптико-кинематическая схема дает возможность получить большой угол поля зрения при малом фокусном расстоянии и достаточно высокое относительное отверстие при сравнительно небольшой длине системы. На рис. V, 38 показана принципиальная оптико-механическая схема систем такого типа и относительные положения компонентов при двух крайних и некотором среднем значениях фокусных расстояний. Коррек-



Рис. V, 36. Аберрация широких наклонных пучков объектива «Ликар-8» (f' = 7 мм)

тор (компонент *IV*) системы остается неподвижным; дистанционная фокусировка осуществляется соответствующей установкой компонента *I*; изменение фокусных расстояний достигается перемещением компонентов *II* и *III* вдоль оптической оси. По этой схеме, в частности, разработаны базовые объективы фирм «Анженье» и «Тейлор—Гобсон», на основе которых ими были выпущены комплекты панкратических объективов для профессиональной и любительской кинематографии и телевидения.

Среди объективов для 16-*мм* кинокамер с широкими пределами изменений фокусных расстояний особый интерес представляют объективы «Анженье», «Анженье-Зум 10×12 ВМС», имеющие пределы фокус-



Рис. V, 37. Оптическая схема объектива «Метеор-5» (f'=17-69 мм) и его разрешающая сила при фокусных расстояниях 17, 35 и 69 мм

ных расстояний от 12 до 120 *мм* при отверстии 1 : 2,2, и «Анженье-Зум  $20 \times 12$ » с фокусными расстояниями от 12 до 240 *мм*, но с меняющимся относительным отверстием от 1 : 3,5 до 1 : 4,8 при работе с большими

фокусными расстояниями. Первый из этих объективов имеет малые габариты: длину 196 мм, диаметр компонента 72 мм и большой задний фокальный отрезок (31 мм), позволяющий установку зеркального обтюратора. Объектив состоит из 15 линз.

У нас проводятся исследования и расчеты панкратических объективов с широким интервалом изменений фокусных расстояний как с оптической, так и с механической компенсацией сдвига плоскости изображения. Хотя системы с оптической компенсацией требуют проведения более тщательных



Рис. V, 38. Оптико-кинематическая схема трехкомпонентного вариатора с механической компенсацией сдвига плоскости изображений

разработок в области параксиальной оптики и усложняют задачу в стадии коррекции их аберраций, что требует применения большего числа линз и увеличения габаритов системы, но технология изготовления и сборки систем с оптической компенсацией, по-видимому, проще, чем с механической, и, во всяком случае, допуски на перемещение компонентов в такой системе шире, чем в системе с механической компенсацией. Мы считаем поэтому пока преждевременным ограничиться какой-либо одной оптико-кинематической схемой.

В заключение упомянем группу наших объективов «Варио-Гоир», разработанных в ГОИ в различных вариантах для телевидения и кинематографии. В табл. V, 20 приведены сведения о десятикомпонентном (пятнадцатилинзовом) варианте 16-мм киносъемочного объектива «Варио-Гоир-1», рассчитанном М. Шпякиным. Объектив обладает хорошей коррекцией всех аберраций в пределах десятикратного изменения фокусных расстояний — от 12 до 120 мм — и отверстиях 1 : 2,4. Система имеет небольшие габариты: длину 150 мм при заднем фокальном отрезке 36 мм и диаметре (наибольшем) первой линзы 60 мм. По этой же оптической схеме разработан описываемый в главе VIII телевизионный объектив (см. рис. VIII, 10) для передающих камер с трубками видикон. М. Шпякиным разработан также объектив «Вариогамма» (табл. V, 20).

### § 6. ОБЪЕКТИВЫ ДЛЯ ЛЮБИТЕЛЬСКОЙ КИНОСЪЕМКИ НА 8-мм ПЛЕНКУ И ФОРМАТ «СУПЕР-8»

Как за границей, так и у нас находит широкое распространение любительская кинематография. Для этого используется узкая кинопленка, на которой киноизображению отведены форматы кадра 4,9×3,55 *мм* на так называемой 8-*мм* пленке и 5,69 × 4,21 *мм* — на пленке той же ширины, но с увеличенным форматом кинокадра «Супер-8».

В зависимости от класса сложности любительских кинокамер применяется и оптика: в простых камерах устанавливаются простые трех-, четырех- и пятилинзовые объективы с фокусными расстояниями 10— 13 *мм* и относительными отверстиями от 1: 2,8 и 1: 1,8; при форматах «Супер-8» фокусные расстояния иногда увеличивают до 14—15 *мм*. Впереди объектива часто предусматривается возможность применения сменных афокальных насадок: широкоугольной с увеличением 0,5, уменьшающей вдвое фокусное расстояние объектива и соответственно увеличивающей в два раза угол поля зрения, и насадки с увеличением 2, увеличивающей вдвое фокусное расстояние и соответственно сокращающей угол поля зрения.

В кинокамерах среднего класса сложности применяется более светосильная оптика — с относительными отверстиями 1:1,1—1:1,2. Иногда эти кинокамеры выпускаются с объективом постоянного фокусного расстояния и расположенной впереди него съемной афокальной насадкой переменного увеличения, изменяющей непрерывно телескопическое увеличение в 3,0—2,5 раза, например от 0,6—0,7 до 1,7—1,8; соответственно фокусное расстояние всей системы объектив — насадка при фокусном расстоянии основного объектива около 13 *мм* непрерывно изменяется от 8—9 до 22—23 *мм*.

Выпускаются модели универсальных кинокамер со сменными объективами: широкоугольным с фокусным расстоянием около 6 мм, основным с f' = 12-13 мм и двумя-тремя длиннофокусными объективами, например с фокусными расстояниями 25, 50 и 100 мм. Иногда эта задача решается применением двух афокальных насадок плавнопеременных увеличений, имеющих приблизительно трехкратные пределы изменений телескопических увеличений. Одна насадка предназначена для установки впереди основного объектива, имеющего фокусное расстояние около 13 мм, и, следовательно, изменение фокусного расстояния всей системы осуществляется от 9—10 до 27—30 мм. Вторая насадка устанавливается впереди более длиннофокусного объектива, например с фокусным расстоянием около 50-45 мм, и, следовательно, фокусное расстояние системы изменяется приблизительно от 30 до 90 мм.

Сложные и соответственно наиболее дорогие любительские кинокамеры выпускаются со светосильными панкратическими объективами, имеющими сравнительно широкие пределы изменений фокусных расстояний: при относительных отверстиях 1:1,8-1:1,4, а иногда и 1:1,2 кратность изменений фокусных расстояний достигает 4-5, а иногда и 6-7 крат.

В табл. V, 22 приведены некоторые сведения об отечественных объективах и результаты исследований иностранных образцов.

Таблица V, 22

|                                                                                                                                                                                                                       | Оптиче                                                                 | ские хар                                                                                      | актерис                                                              | гики                                                  | ское<br>ание, %                                         | юнентов                                                     | Фотогр<br>скаяра<br>ющая<br>м.                           | афиче-<br>зреша-<br>і сила,<br>м <sup>-1</sup>              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| Наименование объектива                                                                                                                                                                                                | <i>ј′</i> , мм                                                         | ε                                                                                             | 2 w, °                                                               | s, мм                                                 | Геометриче.<br>виньетиров:                              | Число комг<br>и линз                                        | в центре<br>поля                                         | на краю<br>поля                                             |
| «Ликар-7»* (ОКС1-5-1)<br>«Зунов-Эльмо-Сине»                                                                                                                                                                           | 4,5<br>6,5                                                             | 1:1,8<br>1:1,1                                                                                | 75<br>52                                                             | 7,0                                                   | 0                                                       | 7/8<br>8/8                                                  | 60<br>43                                                 | 30<br>25                                                    |
| (Я пония)<br>T-40 (СССР)<br>x-51 (СССР)<br>«Фобос-1»* (СССР)<br>«Сатурн-5» (СССР)<br>«Март-1»* (СССР)<br>«Триплет» (СССР)<br>«Юпитер-24» (СССР)<br>Ш-1 (СССР)<br>«Флектогон» (ГДР)<br>«Зунов-Эльмо-Сине»<br>(Я пония) | 10<br>12<br>12,5<br>12,5<br>12,5<br>12,5<br>12,5<br>13,0<br>12,5<br>13 | 1:2,8<br>1:2,8<br>1:1,1<br>1:1,8<br>1:1,8<br>1:2,8<br>1:2,8<br>1:1,9<br>1:1,9<br>1:2<br>1:1,1 | 33<br>32<br>27<br>31<br>27<br>27<br>26<br>27<br>26                   | 7,9<br>6,9<br>8,1<br>9,4<br>7,4<br>7,0<br>8,6<br>10,1 | 38<br>37<br>55<br>40<br>40<br>35<br>58<br>34<br>37<br>— | 3/3<br>3/3<br>5/7<br>4/4<br>5/5<br>3/3<br>3/5<br>4/4<br>4/5 | 88<br>60<br>82<br>60<br>70<br>60<br>63<br>76<br>71<br>53 | 44<br>52<br>30<br>50<br>25<br>44<br>36<br>51<br>22          |
| «Зунов-Эльмо-Сине»                                                                                                                                                                                                    | 38                                                                     | 1:1,1                                                                                         | 9                                                                    | —                                                     | -                                                       | 4/5                                                         | 47                                                       | 25                                                          |
| (Улюния)<br>«Метеор-2» (СССР)<br>«Метеор-4» (СССР)<br>ПФ-2 (СССР)<br>«Гранит-3»* (СССР)<br>«Анженье-Зум 8×6,5»<br>(Франция)<br>«Канон-Зум-Ленс С-8»<br>(Япония)<br>«Ник Корско» Япония                                | 9-369-369-377,5-326,5-528,5-428-20                                     | 1:2,4<br>1:1,7<br>1:1,7<br>1:1,4<br>1:1,8<br>1:1,2                                            | 37 - 9<br>37 - 9<br>37 - 9<br>51 - 13<br>56 - 7<br>39 - 8<br>41 - 17 | 14,7<br>11,2<br>11,2<br>5,2<br>11,0<br>10,8           | 74<br>                                                  | 12/16<br>13/18<br>13/18<br>9/13<br>10/13<br>12/17<br>8/9    | 68—60<br>65—50<br>67—57<br>60—50<br>70—50<br>54—45       | 55-40<br>33-31<br>33-15<br>38-27<br>39-35<br>44-40<br>18-26 |
| «Ник-Корекс» эпония<br>«Агат-6А»* (СССР)<br>«Варио-Гоир-2»* (СССР)                                                                                                                                                    | 8—20<br>9—23<br>6,6—66                                                 | 1:1,8<br>1:1,8<br>1/1,8                                                                       | 41 - 17<br>43 - 17<br>58 - 6                                         | 7,4<br>12,2                                           | 6060<br>5035                                            | 8/9<br>9/12<br>11/14                                        | 65—65<br>65—75                                           | 43—42<br>35—45                                              |

Объективы для 8-мм кинокамер

Примечание. Звездочкой

«Супер-8»

отмечены отечественные объективы для формата

Как видим, некоторые объективы имеют пониженную разрешающую силу; в частности на краю поля они разрешают меньше 40, а иногда и 30  $mm^{-1}$ . Ряд объективов имеет пониженную светосилу. Конечно, от триплета и нельзя трсбовать большего относительного отверстия, чем 1 : 2,8—1 : 2,5, но мы считаем, что рациональнее пойти на усложнение оптической схемы на одну линзу и повысить отверстие до 1 : 1,9—1 : 1,8.

В лаборатории кинооптики ЛИКИ разработаны два варианта светосильных особо широкоугольных объективов: «Ликар-6» с фокусным расстоянием 3,5 *мм*, относительным отверстием 1 : 1,8 и углом поля зрения 96°, содержащий вогнутую эллипсоидальную преломляющую поверхность, и объектив Ликар-7» (ОКС1-5-1) с фокусным расстоянием 4,5 *мм*, относительным отверстием 1 : 1,8 и полем зрения 75°, у которого все преломляющие поверхности сферические.



Рис. V, 39 Оптические схемы объективов для 8-мм пленки: а — асферического объектива «Ликар-6» и б — сферического объектива «Ликар-7»

На рис. V, 39 представлены оптические схемы этих объективов; там же указаны габариты, которые у объектива «Ликар-7» особенно малы; оба объектива имеют большие задние фокальные отрезки — 7 мм. Асферический объектив «Ликар-6» содержит вторую поверхность эллипсоидальной формы, уравнение которой:

$$y^2 + z^2 = 8,338x - 0,087x^2.$$
 (V,51)

Объективы обладают хорошим исправлением всех аберраций. На рис. V, 40 приведены графики аберраций широких наклонных пучков объектива «Ликар-6» в меридиональном ( $\Delta y' = \delta g'$ ) и главном сагиттальном ( $\Delta G'$ ) сечениях; столь же совершенно корригирован объектива «Ликар-7». Оба объектива разработаны для формата изображений «Супер-8».

Объективы имеют повышенную равномерность распределения освещенности изображений по полю: у объектива «Ликар-6» снижение освещенности происходит пропорционально первой степени косинуса угла поля зрения и, следовательно, освещенность изображения на краю достигает 67% от освещенности в центре поля. У объектива «Ликар-7» снижение освещенности происходит пропорционально 1,2-й степени косинуса угла поля зрения и, следовательно, освещенность на краю составляет около 70% от освещенности в центре поля. Это оказалось возможным благодаря применению оптических схем объектива, в которых главные лучи в пространстве предметов образуют малые углы w' с оптической осью.

Как было показано в главе I (формула I, 128), в этом случае освещенность вне оптической оси  $E_{w'}$  будет главным образом определяться апертурой широких наклонных пучков лучей в меридиональном сечении, точнее, разностью тангенсов: tg  $u'_m$  — tg $u'_{-m}$ , углов с оптической осью крайних лучей широких меридиональных наклонных пучков, проходящих через объектив (см. рис. I, 42). Если эта разность близка (или даже несколько меньше) к удвоенному тангенсу апертурного угла для точки на оси 2tg  $u'_0$ , то отношение  $\frac{E'w}{E_0'}$  будет близким к единице, так как величины углов  $\xi'$  и  $u'_0$  приблизительно одинаковы, а величина соз<sup>3</sup>w' в формуле (I, 128) при ходе лучей, близком к телецент-



Рис. V, 40. Аберрация широких наклонных пучков объектива «Ликар-6» (f' = -3,5 мм)

рическому, близка к единице. Однако осуществить такой ход главных лучей возможно лишь в оптических системах достаточно больших габаритов; в противном случае неизбежно приходим к недопустимо большим оптическим силам компонентов. Обычно оптическая схема такого объектива проектируется установкой впереди основного компонента объектива сложного отрицательного компонента (см. рис. V, 29) или афокальной насадки (см. рис. V, 39) с телескопическим увеличением, в два-три раза меньшим единицы ( $\Gamma = \frac{1}{2} - \frac{1}{3}$ ).

В первом случае образуем двухкомпонентную систему, у которой первый компонент, имеющий оптическую силу  $\varphi_1$ , — отрицательный, а второй компонент, имеющий оптическую силу  $\varphi_2$ , является сложным основным компонентом объектива; обозначив через d расстояние между главными плоскостями компонентов, получим:

$$\varphi = \varphi_1 + \varphi_2 - d\varphi_1 \varphi_2, \quad s' = (1 - d\varphi_1) F',$$
 (V,52)

где  $F' = \frac{1}{\varphi}$  — фокусное расстояние всей системы; s' — расстояние заднего фокуса от главной точки второго компонента. Если расположить отрицательный компонент вблизи переднего фокуса второго компонента ( $d = f'_2$ ), получим:

$$\varphi = \varphi_2. \tag{V,53}$$

Оптическая сила первого компонента будет влиять лишь на возрастание угла поля зрения *w* и на величину заднего фокального отрезка:

$$s' = f_2' - \frac{f_2'^2}{f_1'}$$
 (V,54)

Расчет такой системы в области аберраций третьего порядка проще всего выполняется по формулам (II, 221) главы II в предположении, что первый компонент системы тонкий, а второй — конечной толщины.

Коэффициенты аберраций второго компонента  $S_1^{(2)}$ ,  $S_{11}^2$ , ... определены при условии нормировки (II, 21). Иногда предпочитают пользоваться нормировкой:

$$a'_{\rho} = 1; \quad h'_{\rho} = s'_{\rho} = 1; \quad \beta_{1} = 1; \quad y_{1} = x_{1}; \quad (V,55)$$

в этом случае выражения коэффициентов аберраций примут вид:

$$S_{I_{\infty}} = \overline{\alpha}^{3} S_{I_{\infty}}^{(1)} + \overline{s}' S_{I}^{(2)};$$

$$S_{II_{\infty}} \overline{\alpha}^{2} S_{II_{\infty}}^{(1)} + \overline{s}' \gamma_{x}^{(1)} S_{II}^{(2)};$$

$$S_{III_{\infty}} = \overline{\alpha} S_{III_{\infty}}^{(1)} + \overline{s}' \gamma_{x}^{(1)^{2}} S_{III}^{(2)};$$

$$S_{I_{V}} = \frac{F'}{f_{I}'} S_{I_{V}}^{(1)} + \frac{F'}{f_{2}'} S_{I_{V}}^{(2)};$$

$$S_{V_{\infty}} = S_{V_{\infty}}^{(1)} + \overline{s}' \gamma_{x}^{(1)^{3}} S_{V}^{(2)},$$
(V,56)

где  $\overline{s'} = \frac{s'}{F'}$  — приведенный задний фокальный отрезок всей системы.

Системы оптической схемы афокальная насадка — объектив имеют эффективное фокусное расстояние:

$$F' = \Gamma f'_{\text{of}}, \qquad (V,57)$$

где  $f'_{o6}$  — фокусное расстояние компонента (объектива), расположенного позади насадки. Рациональность применения насадки заключается в расширении с ее помощью угла поля зрения  $\omega$ :

$$tg\,\omega = \frac{tg\,\omega'}{\Gamma}\,,\qquad (V,58)$$

где  $\Gamma$  — телескопическое увеличение насадки, меньшее единицы: чем меньше  $\Gamma$ , тем большее возрастание углов w происходит, тем короче система, но при этом возрастает аберрация дисторсии, коррекция которой вызывает наибольшие трудности у асимметричных систем этого типа. В стадии коррекции аберраций этот вариант оптической схемы, очевидно, сводится к предыдущему, т. е. задача по-прежнему сводится к коррекции двухкомпонентной системы. Исправление дисторсии требует или усложнения первого компонента (см., например, рис. V, 39, б), или асферизации одной из его преломляющих поверхностей (см. рис. V, 39, *a*).

Как показывают исследования, рациональна асферизация вогнутой поверхности отрицательной менисковой (или плоско-вогнутой) линзы. В рассматриваемой системе «Ликар-6» асферическая поверхность имеет форму эллипсоида вращения: при этом длина объектива (около 45 мм) в 13 раз превышает его фокусное расстояние ( $f' = 3,5 \, \text{мм}$ ). Применение асферической поверхности технологически более простой формы — параболоида вращения — потребовало бы дальнейшего увеличения габаритов объектива, что и осуществлено во французском объективе «Супер-Тежеа» (см. рис. V, 35), длина которого в 25 раз превышает величину фокусного расстояния.

Конечно, у длиннофокусных объективов идти по этому пути невозможно. Например, у киносъемочного объектива «Ликар-2» (f' = 12 мм;  $1: 2,5; 2w = 97^{\circ}$ ) (см. рис. V, 21, б) длина объектива (около 95 мм) лишь в восемь раз превышает его фокусное расстояние, но при этом форма асферической поверхности усложнена: введена асферическая поверхность третьего порядка (деформированный эллипсоид), обеспечившая хорошую коррекцию широких наклонных пучков больших наклонов.

По группе панкратических объективов (см. табл. V, 22) особый интерес представляет объектив «Анженье-Зум 8 × 6,5», являющийся одним из первых объективов с восьмикратным интервалом изменений фокусных расстояний; его длина не превышает 125 *мм* при диаметре первого (наибольшего) компонента 32 *мм*. Оптико-кинематическая схе-



Рис. V, 41. Оптическая схема панкратического объектива «Анженье-Зум 8×6,5»

ма дана на рис. V, 38, а оптическая схема — на рис. V, 41. Первый положительный компонент остается неподвижным при изменении фокусного расстояния объектива и соответствующей его установкой осуществляется дистанционная наводка объектива; отрицательные компоненты *II* и *III* перемещаются при изменении фокусных расстояний. Система в целом имеет схему насадка — объектив, т. е. является трансфокатором (см. главу IV, § 8): последний неподвижный компонент *IV* 

и «объектив», между которыми расположена призма, отводящая часть света в визир; афокальную насадку образуют четыре компонента, расположенные впереди призмы.



Рис. V, 42. Оптическая схема объектива «Варио-Гоир-2» (f'=6,6-66 мм)

Не менее интересным объективом является «Варио-Гоир-2», рассчитанный М. Шпякиным (рис. V, 42). Светоделительная призма, отводящая часть света в визир, расположена позади объектива, что упростило задачу совмещения зрачков вариатора и корректора. Последний содержит первую линзу отрицательную, что позволило увеличить задний фокальный отрезок объектива и разместить в нем светоделительную призму. Объектив имеет малые габариты — длину 118 *мм* при заднем фокальном отрезке 12 *мм*. Изменение фокусного расстояния достигается в результате поступательного перемещения компонента *II* вариатора и синхронного возвратно-поступательного перемещения компонента *III*; дистанционная наводка осуществляется соответствующей подвижкой компонента *I* вариатора.

Интерес представляют простые по конструкции оригинальные системы «Агат-5» и «Агат-6А». На рис. V, 43 приведены их оптические схемы. Система «Агат-5» представляет комбинацию объекти-



Рис. V, 43. Оптические схемы объективов: а — «Агат-5» (f'=30—90 мм) и б — «Агат-6А» (f'=9—23 мм)

ва типа «Таир» с фокусным расстоянием 50 мм с относительным отверстием 1:2, 8, разработанным для кинокадра «Супер-8», и устанавливаемой впереди объектива трехкомпонентной афокальной насадки переменного увеличения от  $\Gamma_{\text{мин}} = 0,606$  до  $\Gamma_{\text{макс}} = 1,840$ , что приводит к изменению фокусного расстояния всей систе-

мы от 30 до 90 *мм* при относительном отверстии 1 : 2,8. Достигается это перемещением вдоль оптической оси обоих компонентов насадки. Длина всей системы от первой поверхности до плоскости изображения 123 *мм* при диаметре компонента *I* 33 *мм*.

Система «Агат-бА» представляет комбинацию пятилинзового объектива «Март-1» (f' = 12,5 мм; 1:1,9), разработанного для кинокадра «Супер-8», и трехкомпонентной афокальной насадки, увеличение которой непрерывно изменяется от  $\Gamma_{\text{мин}} = 0,72$  до  $\Gamma_{\text{макс}} = 1,84$ , что обеспечивает изменение фокусного расстояния всей системы от 9 до 23 мм при относительном отверстии 1:1,8. Для этого перемещаются вдоль оптической оси первые два компонента насадки. Длина всей системы от первой поверхности до плоскости изображения 72 мм. Это направление разработок представляется нам перспективным.

### глава VI

### ФОТОГРАФИЧЕСКИЕ ОБЪЕКТИВЫ СПЕЦИАЛЬНОГО применения

Кратко рассмотрим фотооптику для обзорной и топографической аэрофотосъемки, фоторепродукции, микрофильмирования и т. п.

### § 1. ОБЪЕКТИВЫ ДЛЯ ОБЗОРНОЙ АЭРОФОТОСЪЕМКИ

Аэрофотооптика по своему назначению делится на оптику для топографической и обзорной фотосъемок. В зависимости от пространственного положения оптической оси при аэросъемке различают аэрофотосъемку плановую, перспективную и планово-перспективную. Плановой, или приближенно вертикальной, называется аэрофотосъемка, при которой заданный угол отклонения оптической оси от вертикали  $\alpha_0 = 0^\circ$ , а случайные его колебания  $\Delta \alpha \ll 2-3^\circ$  и, следовато съемие са стической оси разрической оси от вертикали со стической оси о

тельно, фактический угол а отклонения оси равен:

$$\alpha = \alpha_0 \pm \Delta \alpha. \tag{VI,1}$$

Аэросъемка при направлении оптической оси под каким-либо углом отклонения от вертикали называется перспективной, или наклонной, аэрофотосъемкой:

$$\alpha_0 \neq 0^\circ$$
,  $\Delta \alpha \leq 2 - 3^\circ$ .

С геометрической же точки зрения и плановый и перспективный аэроснимки являются результатом центрального проектирования и, следовательно, оба они перспективны.

Аэросъемка с одновременным применением обоих видов фотографирования называется планово-перспективной. К аэросъемке такого вида, в частности, относится панорамная съемка, достигаемая различными способами: вращением объектива, расположением впереди объектива

ми способами, вращением объектива, расположением впереди объектива вращающихся призм или зеркал и т. п. Особняком от перечисленных видов съемки стоит щелевая аэрофото-съемка, построенная на принципе непрерывного фотографирования на движущейся авиапленке полосы местности, которая проецируется объ-ективом сквозь узкую щель в фокальной плоскости камеры, перпенди-

кулярную направлению полета. При щелевой съемке авиапленка по мере перемотки подвергается сплошному экспонированию. Для получения резкого фотоизображения необходимо соблюсти условие равенства скоростей движения пленки  $v_{\rm n}$  и перемещения изображения  $v'_i$  в фокальной плоскости камеры:

$$v_{\rm m} = v_t' = v \frac{f_{\kappa}}{L}, \qquad (\rm VI,2)$$

где *v* — скорость движения камеры.

Важным параметром при аэросъемке, который требует создания достаточно широкого ассортимента объективов различных фокусных расстояний, является масштаб фотографирования. При плановой съемке он является функцией высоты L съемочного полета и фокусного расстояния  $f'_k$  камеры аэрофотоаппарата, а при перспективной съемке, кроме того, и функцией угла отклонения a оптической оси аэрокамеры от вертикали и положения изображения какой-либо точки местности на снимке, определяемого ординатой y этой точки на нем (принимая за ось ординат главную вертикаль):

$$\frac{1}{M} = F(L, f'_{\kappa}, \alpha, y).$$
 (VI,3)

При щелевой аэросъемке масштаб изображения в направлении полета (продольный масштаб) будет:

$$\frac{1}{M_{\upsilon}} = \frac{\upsilon_{\Pi}}{\upsilon}; \qquad (VI,4)$$

поперечный масштаб определится обычной формулой:

$$\frac{1}{M_L} = \frac{f'_{\kappa}}{L}; \qquad (VI,4')$$

из условия (VI, 2) будем иметь равенство масштабов:

$$\frac{1}{M_v} = \frac{1}{M_L} = \frac{v_{\rm n}}{v} = \frac{v_i}{v} = \frac{f_{\rm K}}{L} \,. \tag{VI,5}$$

В зависимости от назначения и предполагаемого характера использования результатов аэросъемки, фотографирование выполняется в крупном, среднем и мелком съемочном масштабах. Масштабы фотографирования 1 : 10 000 и более относятся к крупным масштабам; масштабы от 1 : 10 000 до 1 : 30 000 — к средним съемочным масштабам; аэросъемка при меньших масштабах — мелкомасштабному фотографированию. Очевидно, по съемочным масштабам можно разграничить только плановую и щелевую аэросъемку, так как при перспективной съемке разномасштабность на дальнем и переднем планах снимка исключает эту возможность. Для устранения разномасштабности принципиально может быть применен панкратический объектив, фокусное расстояние которого плавно изменяется синхронно с изменением дистанции при перспективной (панорамной) съемке.
Применение крупномасштабной аэросъемки очень широко и разнообразно в различных случаях обзорной фотосъемки: при проектировании и изыскании различных сооружений и путей сообщения, для землеустройства и лесоустройства, для планировки городов и населенных пунктов и т. п. Для этого необходимы длиннофокусные объективы, затвор, обеспечивающий достаточно малые выдержки, исключающие появление нерезкости изображения в результате сдвига его за время экспозиции, светосильный объектив для сокращения выдержки. В аэрофотоустановке должны быть устранены вибрации аэрокамеры; аэрофотоаппарат должен иметь устройства, компенсирующие сдвиг изображения при полете носителя, что оссбенно необходимо при движении летных средств с большими скоростями, и т. п.

В каждом аэрофотоаппарате с определенным форматом аэроснимка предусматривается возможность установки ряда объективов — от короткофокусных до длиннофокусных — в зависимости от высоты полета и требуемого масштаба фотографирования.

Не менее важной характеристикой объективов является их светосила. В главе I были получены формулы (I, 143'') и (I, 146), определяющие выдержки при фотографировании неподвижных и движущихся объектов. Применительно к съемке аэроландшафтов заметим следующее.

По некоторым соображениям для определения светочувствительности аэропленки\* здесь выбирается такая экспозиция, при которой получается плотность, превышающая величину плотности вуали на 0,85, причем светочувствительность выражается формулой:

$$S_{0,85} = \frac{10}{H_{D=D_0+0.85}} . \tag{VI.6}$$

Кроме того, вместо коэффициента  $\rho$  в той же формуле (I, 143'') введем средний коэффициент яркости аэроландшафта  $r_{\rm cp}$  как отношение средней яркости ландшафта  $B_{\rm cp}$  к его освещенности:

$$r_{\rm cp} = \frac{B_{\rm cp}}{E} \,. \tag{VI,7}$$

В результате вместо (I, 143'') в данном случае имеем:

$$t_{\mathfrak{sgc}} = \frac{40K_{\Phi}}{r_{\rm cp} EKS_{0,85} \varepsilon^2} .$$
 (VI,8)

Заметим, что средний коэффициент яркости аэроландшафта  $r_{\rm cp}$  может быть задан довольно приближенно: как показывает опыт, еще приемлемый для дешифрирования аэронегатив может быть получен и при освещенностях в три-четыре раза меньших. Решающим фактором при выборе  $t_{\rm экc}$  является величина освещенности E, создаваемая непосредственно лучами солнца, прошедшими атмосферу, и лучами, рассеянными атмосферой.

<sup>\*</sup> Этот критерий светочувствительности стал применяться и для всех других фотоматериалов (за исключением фототехнических) по ГОСТу 10691-63.

В табл. VI, 1 в графе «Освещенность на солнце» дана суммарная освещенность прямым и рассеянным светом; в графе «Освещенность в тени» указаны величины освещенностей, создаваемых рассеянными атмосферой лучами при разных высотах солнца. Из таблицы следует, что в безоблачный день освещенность на солнце значительно превышает освещенность в тени, что приводит к расширению интервала яркостей аэроландшафта в среднем в четыре раза. Абсолютные величины освещенностей на солнце при возрастании высот солнца от 10 до 50° возрастают приблизительно в десять раз. Это обстоятельство учитывается правильным выбором светосилы объектива  $\varepsilon^2$  и времени экспозиции.

В принципе желательно иметь столь же широкий диапазон светосилы объективов, например: от нормальных относительных отверстий 1:7—1:8 до 1:2—1:2,5, что соответствует приблизительно десятикратному соотношению их светосилы. Однако, как увидим ниже, столь светосильные и при этом длиннофокусные аэрофотообъективы создать весьма трудно.

Таблица VI,1

| Высота                     | Освещенность в безоб-<br>лачный день          |                                             | Освещенность кучевых с                         | Освещенность при<br>сплошных слои-                                                     |                                             |
|----------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|
|                            | на солнце                                     | в тени                                      | на солнце                                      | в тени                                                                                 | (пасмурная по-<br>года)                     |
| 10<br>20<br>30<br>40<br>50 | 9 000<br>23 000<br>39 000<br>58 000<br>76 000 | 4 000<br>7 000<br>9 000<br>12 000<br>14 000 | 11 000<br>31 000<br>54 000<br>76 000<br>96 000 | $\begin{array}{c} 6 \ 000 \\ 15 \ 000 \\ 24 \ 000 \\ 30 \ 000 \\ 34 \ 000 \end{array}$ | 3 000<br>6 000<br>9 000<br>12 000<br>15 000 |

Освещенность земной поверхности при различной высоте солнца (в люксах)

В более узких пределах изменяется величина кратности светофильтра  $K_{\phi}$ , входящая в ту же формулу (VI, 8). В нормальный комплект светофильтров при воздушном фотографировании входят три: желтый (ЖС-18), поглощающий коротковолновую часть спектра с длинами волн, меньшими 500—518 нм, темно-оранжевый (СС-14), —меньшими 570—585 нм и светло-красный (КС-14), —меньшими 632—650 нм. Их кратность зависит от типа аэропленки; например, для аэропленки «панхром» тип 10 кратности указанных светофильтров будут равны соответственно 1,8; 2,8 и 4,0, т. е. изменяются приблизительно в два раза.

В зависимости от высоты солнца и высоты фотографирования рекомендуются различные типы светофильтров с учетом характеристик применяемого фотоматериала. Обычно чем больше высота фотографирования, тем более длинноволновый фильтр должен применяться. Для оптиков-разработчиков отсюда следует вывод: аэрофотообъективы должны корригироваться в желто-красной части спектра, а длиннофокусные — в оранжево-красной области спектра.

Несколько в более широких пределах (в четыре-пять раз) изменяются величины средних коэффициентов яркости  $r_{\rm cp}$  для различных типов аэроландшафтов (табл. VI, 2):

| аэроландшафтов пр<br>фотогр | ости для<br>ои планов<br>афирован | пнекоторых<br>юм воздуші<br>ии | TUIIOB<br>10M |
|-----------------------------|-----------------------------------|--------------------------------|---------------|
|                             |                                   |                                |               |

| Тип аэроландшафта                                         | Величины <sup>г</sup> ср |
|-----------------------------------------------------------|--------------------------|
| Зимний аэроландшафт при средних высо-<br>тах солниа (25°) | 0,69                     |
| Зимний аэроландшафт при малых высотах                     | 0,30                     |
| Среднее значение для зимнего аэроланд-                    | 0,50                     |
| Летний аэроландшафт<br>Весенний аэроландшафт              | 0,14<br>0,12             |

Формула (VI, 8) определяет время экспозиции на основе чисто экспонометрических соотношений без учета влияния перемещения аэрофотоаппарата за время экспозиции и соответственного сдвига изображения. В главе I была написана формула (I, 146), определяющая время экспозиции, исходя из максимально допустимого сдвига движущегося изображения, не влияющего на фотографическую разрешающую силу системы объектив — фотослой.

В учебных курсах аэрофотографии приводят предельно допустимые величины сдвигов, связывая их с масштабами съемки: при масштабах 1:10 000 и мельче рекомендуют принимать предельную величину сдвига 0,1 *мм*, при масштабе 1:4000 до 0,17 *мм*, а при масштабе 1:2000 до 0,36 *мм*. Все это в какой-то мере справедливо при дешифрировании аэроснимков с невысоким разрешением и невооруженным глазом и становится неправильным при применении оптико-фотографических систем повышенной разрешающей силы.

 Многими авторами было исследовано влияние сдвига изображения на его оптические качества. На рис. VI, 1 приводим результаты, полученные Ю. Рябушкиным. По оси ординат отложены относительные изменения  $\frac{N'}{N_0}$ , разрешающей силы, а по оси абсцисс — величины произведений  $N'_0\delta'$ . Графики построены для трех значений  $\eta$  к. п. д. затвора: 0,5, 0,75, и 1,0. Из графиков следует, что при всех к. п. д. затвора разрешающая сила практически не изменяется\*, если величина произведения  $N'_0\delta'$  не превышает значения 0,5, что мы и приняли при выводе формулы (I, 146).

Заметим, что на рис. VI, 1 представлены две группы кривых — сплошными и пунктирными линиями, — соответствующие несколько различным исходным зависимостям, принятым при анализе явления;

<sup>\*</sup> Строго говоря, такой подход к оценке допустимого снижения разрешающей силы возможен лишь у оптико-фотографических систем невысокого разрешения (см. примечание к формуле I, 144); необходимо выполнение условия  $N'_0\delta' \ll \frac{1}{4}$ и соответственно допустимая выдержка t (I, 146) будет вдвое меньшей.

однако, как видим, при N'₀δ' < 0,5 практически заметного различия в ходе кривых обеих групп не обнаруживается. Из элементарных соображений можно также получить влияние сдвига изображения решетки на величину коэффициента передачи контраста:

$$T(N') = \frac{\sin \pi N' \,\delta'}{\pi N' \,\delta'} \,. \tag{VI.9}$$

Формула позволяет оценить падение контраста изображения решетки при заданной пространственной частоте N' и различных величинах  $\delta'$  сдвигов.



Рис. VI, 1. Кривые относительного изменения разрешающей способности при сдвиге изображения для трех значений к. п. д. фотозатвора: 1,0, 0,75 и 0,5

Для аэросъемки у нас применяются фотопленки шириной 8, 19 и 32 см.

Рассмотрим отечественные объективы применительно к аэроснимкам малых форматов ( $8 \times 8 cm$ ), средних форматов ( $18 \times 18 \mu 18 \times 24 cm$ ) и больших форматов ( $30 \times 30 cm$ ).

В табл. VI, 3 приведены некоторые параметры объективов, линейное поле изображения которых соответствует формату снимка 8 × 8 см.

Оптические схемы широкоугольных объективов МР-3 и РФ-102 аналогичны схемам, представленным на рис.V,10, *а*. Схемы светосильных широкоугольных объективов «Уран», «Аргон» и «Гоир» приведены на рис. II,31, *а* и на рис. VI, 2. Объективы имеют оптические схемы с нарушенной симметрией, чем достигнуто лучшее исправление аберраций лучей широких наклонных пучков. Принцип их проектирования кратко изложен в главе IV (§ 4).

Так как объективы, приведенные в таблице, применяются в неодинаковых условиях освещенностей, для съемки с разлычных высот и т. п., то используются различные типы фотоматериалов с разными светофильтрами. Вследствие этого оптические качества объективов, в том числе их разрешающая сила, меняются в зависимости от условий фотографирования. Не приводя в таблице величин разрешающих сил отдельных объективов, укажем, что она различна: от 60—40 мм<sup>-1</sup> в центре поля до 50—30 мм<sup>-1</sup> по полю со снижением разрешения до 30— 15 мм<sup>-1</sup> на краю поля. В частности, шестилинзовый анастигмат «Марс-1»

| Объективы дл | ія фо | рмата | снимка | 8×8 | см |
|--------------|-------|-------|--------|-----|----|
|--------------|-------|-------|--------|-----|----|

|                                                                                                                                                    | ιτηΟ                                                                                 | ческие характе                                                                                                  | Параметры оптической                                                                                      |                                                                                         |                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Наимен ование<br>объектива                                                                                                                         | f'. мм                                                                               | ε                                                                                                               | 2 w, °                                                                                                    | сх.<br>s' мм                                                                            | число компо-<br>нентов и линз                                                    |
| МР-3<br>РФ-102<br>«Аргон-1»<br>«Уран-27»<br>«Гоир-3»<br>«Индустар-23»<br>«Уран-25»<br>«Таир-30»<br>«Таир-30»<br>«Таир-16»<br>«Марс-1»<br>«Таир-10» | 35<br>50<br>90<br>100<br>100<br>110<br>200<br>300<br>300<br>300<br>500<br>500<br>750 | 1:6,8<br>1:6,3<br>1:3,5<br>1:2,5<br>1:3<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5<br>1:4,5 | $ \begin{array}{c} 1117 \\ 96 \\ 63 \\ 61 \\ 61 \\ 53 \\ 34 \\ 22 \\ 22 \\ 13 \\ 13 \\ 9 \\ \end{array} $ | $ \begin{array}{c c} 16\\31\\71\\65\\0\\92\\120\\186\\127\\300\\300\\430\\\end{array} $ | 4/6<br>4/6<br>5/7<br>5/7<br>6/8<br>3/4<br>5/7<br>3/4<br>4/4<br>3/4<br>5/6<br>3/4 |

(рис. VI, 2, в) даже на низкоразрешающем фотоматериале панхром тип 10 ( $N^{(c)} \approx 70-80 \ \text{мm}^{-1}$ ) разрешает около 60  $\text{мm}^{-1}$  в центре поля, 50  $\text{мm}^{-1}$  — по полю и около 40  $\text{мm}^{-1}$  — на краю поля.



Рис. VI, 2. Оптические схемы объективов: а- «Аргон»; б- «Гоир»; в - «Марс-1»

Работы по совершенствованию объективов для малоформатной аэросъемки проводятся повсеместно. Из обширной патентной и журнальной литературы интерес представляют работы по созданию светосильных широкоугольных объективов с отверстиями 1:2,5—1:2 и выше, с полями зрения 90° и более. Решение этих задач требует применения сложных десяти-двенадцати линзовых оптических схем, в которых введение асферических преломляющих поверхностей абсолютно необходимо. Известны, например, работы компании «Фейрчайлд» (США) по созданию быстродействующего аэрофотоаппарата с размером кадра 2,5 × 2,5 дюйма (6 × 6 см), со скоростным затвором, обеспечивающим выдержки от  $\frac{1}{1000}$  до  $\frac{1}{4000}$  с при применении светосильных объективов, имеющих фокусные расстояния 75 мм при относительных отверстиях 1 : 1,5 и полях зрения 60°.

Интерес представляют американские светосильные широкоугольные объективы, разработанные д-ром Дж. Бейккером, «Геогон-II» и «Геогон-III», имеющие фокусные расстояния 3'' (около 75 мм) и поля зрения около 92°; относительное отверстие первого объектива 1 : 3,5, второго — 1 : 2,5. Объективы имеют сложную двенадцатилинзовую оптическую схему (см. рис. IV, 13, в) и большие габариты: длина объективов в три раза превышает величину фокусного расстояния. В некоторых вариантах объективов «Геогон» с целью повышения качества оптического изображения преломляющие поверхности, расположенные по обе стороны от апертурной диафрагмы, имеют сложную асферическую форму, выражающуюся уравнением высших порядков. В объективе применены особые марки оптических стекол.

Для форматов снимков  $13 \times 18$ ;  $18 \times 18$  и  $18 \times 24$  *см*, размещающихся на аэропленке шириной 19 *см*, в табл. IV,4 приведены некоторые параметры объективов, линейные поля изображения которых соответственно равны: 222, 254 и 300 *мм*.

Таблица VI,4

|                           | 0      | птические х | Параметры оптической |                                |        |                               |  |
|---------------------------|--------|-------------|----------------------|--------------------------------|--------|-------------------------------|--|
| Наименование<br>объектива |        | 1           |                      | 1                              | схемы  |                               |  |
|                           | f'. мм | e           | 2w,°                 | формат<br>снимка,<br><i>см</i> | s', мм | число компо-<br>нентов и линз |  |
| «Орион 1б»                | 100    | 1:6         | 96                   | 13×18                          | 76     | 4/4                           |  |
| «Индустар-51»             | 210    | 1:4,5       | 56                   | $13 \times 18$                 | 183    |                               |  |
| ΟΨ-200<br>Φ_3             | 400    | 1:2,5       | 30                   | $13 \times 10$                 | 147    | 4/1                           |  |
| «Телемар-17»              | 400    | 1:6.3       | 30                   | $13 \times 18$                 | 164    | 4/4                           |  |
| Γ-10                      | 210    | 1:4         | 62                   | 18×18                          | 174    | 4/6                           |  |
| «Уран-9»                  | 250    | 1:2,5       | 54                   | 18×18                          | 160    | 5/7                           |  |
| «Телегоир-9»              | 1000   | 1:7         | 15                   | 18×18                          | 413    | 4/6                           |  |
| «Индустар-37»             | 300    | 1:4,5       | 53                   | $18 \times 24$                 | 265    | 3/4                           |  |
| «Инд устар-17»            | 500    | 1:5         | 38                   | $18 \times 24$                 | 443    | 3/4                           |  |
| «Уран-12»                 | 500    | 1:2,5       | 38                   | $18 \times 24$                 | 300    | 5/7                           |  |
| «Фотон la»                | 1350   | 1:8         | 13                   | 18×24                          | 1200   | 6/6                           |  |

Объективы для форматов снимков 13×18; 18×18; 18×24 см

Мы поместили в таблице также и старые объективы простейших типов («Индустар»,  $\Phi$ -3), могущие найти применение в случаях, когда не требуется высокого разрешения; поместили также успешно прошедшие испытания временем светосильные анастигматы «Уран» (см. рис. II, 31, *a*) и объективы ОФ-233; последние имеют оптическую схему, близкую к таковой у американских «Аэро-Эктаров» (см. рис. IV, 13, *б*) и тождественное последним качество оптического изображения, достигнутое при более простых оптических стеклах. Здесь же помещены шестилинзовые телеобъективы типа «Телегоир» (рис. VI, 3, *a*), разрешающие на фотоматериалах небольшого разрешения (100 — 110  $mm^{-1}$ ) более 50  $mm^{-1}$  в центре поля и около 40  $mm^{-1}$  — на краю поля, и простые малогабаритные шестилинзовые анастигматы «Фотон» (рис. VI, 3, *б*), разрешающие на тех же фотослоях около 40  $mm^{-1}$  по всему полю; последний объектив имеет малые габариты; его длина — около 20 % величины фокусного расстояния объектива.

Объективы с приблизительно аналогичными оптическими характеристиками имеются и за рубежом.



Рис. VI, 3. Оптические схемы телеобъектива «1елегоир» (а) и объектива «Фотон» (б)

Во многих странах ведутся работы по совершенствованию их оптических качеств и форсированию повышенных оптических характеристик — расширению поля зрения и повышению светосилы. Например, на выставке «Авиация и космос» в Париже в 1965 году демонстрировались объективы фирмы S. F. O. M. с фокусным расстоянием 150 *мм*, относительным отверстием 1 : 5,6 и полем зрения около 90° для формата снимка 17 × 24 см и светосильный объектив f' = 360 мм, 1 : 2 для снимка 24 × 24 см, что соответствует углу поля зрения 50°.

Для формата аэроснимка  $30 \times 30 cm$ , размещаемого на стандартной аэропленке шириной 32 cm, могут быть использованы объективы, некоторые сведения о которых приведены в табл. VI,5.

Таблица VI,5

|                                                                                                                                                                                                    | Оптиче                                                                     | ские характ                                                                                       | Параметры оптической                                                             |                                                                                         |                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Наименование объектива                                                                                                                                                                             | f', мм                                                                     | ε                                                                                                 | 2w,°                                                                             | <b>б'</b> , <i>м</i> м                                                                  | число компо-<br>нентов и линз                                                                  |
| «Орион Ia»<br>«Индустар-52»<br>«Арктик-А»<br>«Уран-24»<br>«Телемар-2»<br>«Уран-16»<br>«Телемар-7м»<br>«Радон-1»*<br>«Ленинград-8»*<br>«Т-Уран-1»*<br>«Ленинград-7»*<br>«Марс-6»*<br>«Телегоир-11»* | 200<br>500<br>500<br>750<br>750<br>750<br>750<br>750<br>750<br>1000<br>100 | 1:6,3<br>1:5<br>1:5<br>1:3<br>1:6,3<br>1:3,5<br>1:7<br>1:5<br>1:6,3<br>1:3,5<br>1:7<br>1:4<br>1:8 | 92<br>46<br>46<br>30<br>30<br>24<br>46<br>30<br>30<br>24<br>24<br>24<br>24<br>20 | 151<br>400<br>425<br>270<br>310<br>480<br>410<br>360<br>310<br>480<br>420<br>650<br>470 | 4/4<br>3/4<br>4/6<br>5/7<br>4/4<br>5/7<br>4/4<br>4/6<br>4/6<br>4/4<br>5/7<br>4/4<br>6/6<br>4/6 |

Объективы для формата снимка 30×30 см

В первой половине таблицы помещены объективы, корригированные в отношении монохроматических и хроматических аберраций. Объективы, помеченные звездочкой, корригированы также и в отношении термооптических аберраций (см. главу II, §,6), т. е. нерасстраивающиеся при изменении температуры. Объектив «Телегоир-11» корригирован с учетом влияния изменения температуры и атмосферного давления. Заметим, что оптические схемы объективов не потребовали усложнения: их температурная нерасстраиваемость была достигнута уже в стадии оптических расчетов рациональным выбором термооптической

константы, примененных оптических стекол — параметра V:

$$V=\frac{\beta^*}{n-1}-\alpha^*.$$

Вместо обычного четырехлинзового объектива «Индустар-52» и оптически более совершенного шестилинзового объектива «Арктик-А» (рис. VI, 4,*a*) разработан также шестилинзовый, но нерасстраивающийся объектив «Радон-1» (рис. VI, 4, *б*).

Создан нерасстраивающийся светосильный объектив «Т-Уран-1», имеющий оптические характеристики, аналогичные харак-



Рис. VI, 4. Оптические схемы объективов: *а* — «Арктик-А»; *б* — «Радон-1»; *в* — «Т-Уран-1»; *г* — «Телемар» — «Ленинград»

теристикам объектива «Уран-16», и оптическую схему, весьма близкую к схемам объективов типа «Уран» (рис. VI, 4, в).

На базе оптической схемы двухкомпонентных телеобъективов «Телемар» созданы серийные нерасстраивающиеся объективы «Ленинград», имеющие аналогичную оптическую схему, но существенно отличные оптические стекла (рис. VI,4, г).

В результате объектив «Ленинград-7» разрешает в центре поля как при температуре 20° С, так и при t = -56°С (температура нижних слоев стратосферы) — около 42  $mm^{-1}$ ; у объектива «Телемар-7» при тех же температурных колебаниях разрешение падает соответственно от 40 до 8  $mm^{-1}$ , так как у первого объектива термооптическая аберрация корригирована, а у объектива «Телемар-7» при указанном интервале изменения температур эта аберрация достигает 1,4 mm.

В главе IV (§ 6) были рассмотрены принципы проектирования анастигматических ортоскопических телесистем. Эти условия привели к функциональной зависимости (IV, 64) основных аберрационных параметров компонентов телеобъектива от оптической силы  $\varphi_1$  его первого компонента. Там же была установлена область рациональных значений параметра  $\varphi_1$ , определяемая неравенством (IV, 69'). Эта локализованная область является близкой к оптимальной не только с точки зрения параксиальной оптики, но и теории монохроматических аберраций. Напишем выражения коэффициента хроматических и термооптических аберраций при обычно применяемой у нас нормировке (II, 22) координат параксиальных вспомогательных лучей и при  $y_2 = 0$  (рис. VI, 5):

$$S_{I, xp} = \varphi_{I} C_{I} - \frac{(1-\varphi_{I})^{2}}{\varphi_{I}} C_{2};$$
 (a)

$$S_{11, xp} = -\frac{C_1}{1 - \varphi_1},$$
 (6) (VI 10)

$$T_{1} = \Delta t \left[ \varphi_{1} V_{1} - \frac{(1 - \varphi_{1})^{2}}{\varphi_{1}} V_{2} + \gamma^{*} \right], \quad (B)$$

$$T_{II} = -\frac{\Delta t}{1 - \varphi_1} (V_1 + \gamma^*). \qquad (\Gamma)$$





Эти выражения совместно с (IV,64) позволяют уже в начальной стадии проектирования телесистемы, в частности на основе выбора значения  $\varphi_1$ , определять основные параметры: *P*, *W*, *C* и *V* — компонентов, поскольку коэффициенты аберраций *S* и *T* обычно имеют значения, близкие к нулю, и их величины уточняются лишь в последующей стадии расчета.

Таким образом, положив  $S_{1,xp} = 0$ ,  $S_{11,xp} = 0$ ,  $T_1 = 0$  и  $T_{11} = 0$ , получим:

$$C_1 = 0; \quad C_2 = 0; \quad V_1 = -\gamma^*; \quad V_2 = -\frac{\varphi_1}{\varphi_1 - 1}\gamma^*.$$
 (V1,11)

Предполагается, что термооптические аберрации исправляются для какой-то определенной величины атмосферного давления, соответствующего некоторой барометрической высоте (наиболее вероятной при аэросъемке); кроме того, предполагается, что температурное изменение линейных размеров механического устройства, связывающего объектив с плоскостью приемника изображений (например, фотографическим слоем), компенсирует изменение расстояния\* от последней преломляющей поверхности объектива до плоскости приемника изображений при повышении или понижении температуры, т. е.  $\Delta a = 0$ в формуле (II, 320).

Решение задачи существенно упрощается, если принять условие исправления только термооптической аберрации положения  $T_1 = 0$ ; в этом случае из (VI, 10,  $\beta$ ) получим:

$$V_{1} = -\frac{\gamma^{*}}{\varphi_{1}} + \left(\frac{(1-\varphi_{1})}{\varphi_{1}}\right)^{2} V_{2}$$
(VI,12)

<sup>\*</sup> С учетом изменения длины корпуса объектива на участке от опорной плоскости до оправы последней линзы.

Так как численные значения параметров V и коэффициентов  $\gamma^*$ обычно являются величинами одинакового порядка, а множитель  $(\frac{1-\varphi_1}{\varphi_1})^2$ составляет доли  $(\frac{1}{6}-\frac{1}{9})$  единицы, то, очевидно, параметр  $V_2$  второго компонента телесистемы может практически иметь любые значения. Иными словами, выбор марок стекол для линз второго компонента может быть произведен в сравнительно широких пределах, но весьма ответственен выбор стекол линз первого компонента, определяющих значение параметра  $V_1$  в соответствии с условием (VI, 12).

В главе II, § 6 был изложен метод определения комбинаций оптических стекол, имеющих необходимые константы n, v и V, обеспечивающие возможность получения основных аберрационных параметров P, W, C и V у двухлинзового несклеенного компонента. Как известно [16], у тонкого двухлинзового компонента монохроматические параметры P и W определяют функцию  $P_0$ :

$$P_0 = P - 0.85 (W - W_0)^2$$
,

где  $W_0 = 0,1 - для комбинаций «крон впереди» и <math>W_0 = 0,2 - для$  комбинаций «флинт впереди».

Для различных возможных комбинаций пар стекол нами составлены таблицы, в которых аргументом служит параметр C, принимающий ряд значений: +0,0025; 0; -0,0025 и -0,0050. Соответственно этим значениям из (II, 350) определены величины V, а  $P_0$  — по методике  $\Gamma$ . Слюсарева [16]. На основе этих таблиц составлены номограммы, по осям координат которых отложены значения V и  $P_0$ , позволяющие по заданным параметрам  $P_o$ , C и V определять пару стекол крон — флинт, имеющих заданные значения этих параметров. Соответствующие таблицы и номограммы составлены для всех возможных комбинаций стекол: «крон впереди» и «флинт впереди».

Оптические стекла отечественного каталога позволяют осуществить комбинации пар стекол с широкими пределами изменения параметра V: от —17·10<sup>-6</sup> до +17·10<sup>-6</sup>. Таким образом, описанным здесь и в главе II методом разделения переменных можно выполнять расчеты нерасстраивающихся телеобъективов и сложных многокомпонентных систем, корригированных в отношении монохроматических, хроматических и термооптических аберраций.

### § 2. ОРТОСКОПИЧЕСКИЕ ОБЪЕКТИВЫ ДЛЯ ТОПОГРАФИЧЕСКОЙ АЭРОСЪЕМКИ

Объективы для топографической съемки должны обладать прежде всего свойством ортоскопичности. За последние годы выполнены большие работы, в результате которых ортоскопичность объективов существенно повысилась. Если несколько лет назад объективы обладали дисторсией, выражающейся сотыми долями миллиметра, то в наилучших современных образцах величина дисторсии исчисляется микрометрами и, во всяком случае, не выходит за пределы сотой доли миллиметра. Однако сохранение этого качества у объективов промышленных выпусков требует высокой технологической культуры производства и индивидуальной комплектации оптики объектива, его сборки с учетом погрешностей изготовления линз, в частности их толщин и последующей его доводки, т. е. получения заданного расчетом распределения дисторсии по полю в результате соответствующих изменений расстояний между линзами (воздушных промежутков).

Высокие ортоскопические качества объектива неотделимо связаны с общим качеством его оптического изображения: хотя дисторсия в геометро-оптическом понимании есть аберрация лишь главного луча, но если изображение точки вследствие наличия других аберраций (в частности, комы и астигматизма) оказывается несовершенным, то, очевидно,



Рис. VI, 6. Частотно-контрастные характеристики широкоугольных объективов

коррекция дисторсии главного луча ни в какой мере не обеспечивает исправления реальной дисторсии, определяемой положением энергетического максимума в распределении освещенности в изображении точки.

Иными словами, к топографическим объективам высоких метрологических качеств при их разработке должно предъявляться требование достижения высокого качества оптического изображения и сохранения этого качества в процессе их промышленного производства.

Повышение требования к оптическим качествам современных топографических объективов вызывает необходимость приме-

нения сложных девяти-одиннадцатилинзовых оптических схем, позволяющих лучше корригировать аберрации лучей широких наклонных пучков и притом не только в меридиональном, но и в сагиттальном сечении, что приводит к повышению контраста изображения.

На рис. VI, 6 приведены графики величин коэффициентов передачи контраста T(N') в центре поля отечественных объективов «Ортогон-4», «Руссар-29», , «Руссар-44» и иностранных образцов «Авиогон» (Швейцария) и «Плеогон» (ФРГ). Как видим, объективы типа «Руссар» уже при малых частотах (20 мм<sup>-1</sup>) имеют величины коэффициентов передачи контраста в два раза меньшие, чем у объективов «Авиогон» и «Ортогон», а при частотах 40 мм<sup>-1</sup> эти величины у объективов «Руссар» оказываются в три раза меньшими. Это объясняется наличием больших и неустранимых аберраций лучей широких наклонных пучков у объективов «Руссар».

Нарис. VI, 7 представлены графики сравнения аберраций объектива «Ортогон-4» (f' = 75 мм; 1:6,8;  $2w = 119^{\circ}$ ) и объектива «Руссар-29» (f' = 70 мм; 1:6,8;  $2w = 122^{\circ}$ ). Аберрации приведены для лучей широких меридиональных и сагиттальных пучков. Как видим, размеры аберрационных фигур рассеяния лучей — существенно различные начиная уже с центра поля; отсюда — различие в величинах T(N'), как это было пояснено в главе III приближенными кривыми на рис. III, 11.

Эксперименты подтверждают эти прогнозы.



Рис. VI, 7. Графики аберраций объектива «Ортогон-4» (сплошные кривые) и объектива «Руссар-29» (пунктирные кривые)

На рис. VI, 8 приведены частотно-контрастные характеристики этих же объективов; как видим, величины контрастов изображения по по-

лю у объектива «Руссар-29» также оказываются в два-три раза меньшими, чем у «Ортогона-4». Вместе с тем удается сохранить повышенную равномерность освещенности изображения: у обоих объективов освещенность по

Рис. VI. 8. Частотно-контрастные характеристики объектново «Ортогон-4» и «Руссар-23» для сагиттального (пунктирные кривые) и меридионального (сплошные кривые) сечений в точках поля: *а* — 0 и 15°; *б* — 30°



полю убывает пропорционально третьей степени косинуса угла поля зрения.

Проводя оценку оптических качеств современных ортоскопических объективов по критерию разрешающей силы, укажем, что она составляет у наилучших иностранных и отечественных образцов около 50 мм<sup>-1</sup> в центре поля со снижением до 30-20 мм<sup>-1</sup> по полю и до 15 мм<sup>-1</sup> вблизи края поля. Оптические характеристики этих объективов следующие: при полях зрения, изменяющихся от 60 до  $120^{\circ}$  относительные отверстия соответственно снижаются от 1:4 до 1:5,6-1:6,8.

В табл. VI, 6 приведены оптические характеристики некоторых иностранных ортоскопических объективов; там же указаны величины дисторсий объективов (по литературным сведениям).



Рис. VI, 9. Частотно-контрастные характеристики объектива «Ламегон» (ГДР) для разных углов поля зрения при относительных отверстиях: а — 1:4,5; б — 1:5,6

Объективы «Авиогон» и «Супер-Авиогон», разработанные д-ром Л. Бертеле, были отмечены Стокгольмским фотограмметрическим конгрессом как большое достижение в области объективостроения; и действительно, эти объективы при достаточно высоком качестве изображения обладают дисторсией около 0,01 мм. Рекламировался в свое время объектив «Топар», разработанный д-ром Рихтером и Кохом (фирма «Цейсс—Аэротопограф»), обладающий, по литературным сведениям, дисторсией в 0,005 мм. На упомянутой выше выставке «Авиация и космос» (Париж, 1965 г.) фирмой S. F. O. М. по группе широкоугольных объективов экспонировался образец с фокусным расстоянием 166 мм, относительным отверстием 1: 5,6 и полем зрения около 90° для формата снимка  $24 \times 24$  см. Интерес представляет разработка немецких оптиков (ГДР, Иена), создавших в 1967 году объектив «Ла-мегон» (f' = 150 мм; 1 : 4,5;  $2w = 92^{\circ}$ ). На рис. VI, 9 приведены его частотно-контрастные характеристики при полном относительном отверстии 1: 4,5 и при отверстии 1: 5,6. Как видим, диафрагмирование объектива лишь незначительно повышает его ЧКХ в центре поля и вблизи него и совершенно не влияет на качество оптического изображения при больших углах поля зрения.

На рис. VI, 10 приведены оптические схемы объективов «Геогон-1», «Авиотар», «Пинатар», «Авиагон», «Топар» и «Ламегон». Объектив «Геогон-II» имеет оптическую схему, представленную на рис. IV, 13, и, в отличие от остальных объективов, корригирован с прижимной плоскопараллельной стеклянной пластинкой, установленной в фокальной плоскости объектива для выравнивания аэропленки. Наличие такого стекла позволяет хорошо выравнивать аэропленку, что особенно необходимо в высокоортоскопических объективах; вместе с тем это позволя-



Рис. VI, 10. Оптические схемы толографических объективов  $a - \langle Feoron-1 \rangle$ ;  $\delta - \langle ABHOTap \rangle$ ;  $\delta - \langle IIИНатар \rangle$ ;  $c - \langle ABHATOH \rangle$ ;  $\partial - \langle Tonap \rangle$ ;  $e - \langle Ja$ мегон  $\rangle$ 

ет вести аэросъемку с любых высот, в частности таких, когда выравнивание аэропленки вакуумной системой становится ненадежным вследствие малого атмосферного давления. Разработанные нами за последние годы отечественные высокоортоскопические объективы «Ортогон» корригированы совместно со стеклянными пластинами, выравнивающими аэропленку. В этом случае коррекция дисторсии в пределах нескольких микрометров (и не более 0,01 *мм*) является задачей исключительно трудной, особенно если поля зрения объективов превышают 100°.

Как уже было указано, достижение столь малой дисторсии у объективов технологически весьма сложно, требует индивидуальной комплектации, доводки и юстировки каждого образца, а также соответствующей контрольно-измерительной аппаратуры. В табл. VI,7 приведены некоторые характеристики отечественных объективов типа «Орион», «Ортогон» и МРО, разработанных автором и его сотрудниками (Е. Гагенторн, Б. Левитиной, Н. Сельчук, М. Персиной и другими). Все эти объективы корригированы с плоскопараллельными стеклянными пластинками, выравнивающими аэропленку. Одновременно их конструктивное решение позволяет размещать в увеличенном воздушном промежутке (обычно весьма малом в других объективах) между половинками объектива ирисовую диафрагму и центральный затвор. В табл. VI, 7 приведены также объективы типа «Руссар», разработанные М. Русиновым и его сотрудниками, и объектив «Родина», рассчитанный В. Родиным; в

| Наимен ование<br>объектива                                                | Фокусное<br>расстоя-<br>ние f',<br>мм | Относи-<br>тельное<br>отверстие<br>ε | Угол<br>поля<br>зрения<br>2w,° | Формат<br>снимка<br>а×b, см                                    | Число<br>компонен-<br>тов и линз | Дистор-<br>сия, мм |
|---------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------|----------------------------------|--------------------|
| «Геогон-11» (США)<br>«Альтар» (Франция)<br>«Супер-Авиагон»<br>(Шробисрия) | 76<br>85<br>88                        | 1:3,5<br>1:5,6<br>1:5,6              | 94<br>92<br>120                | <br>23×23                                                      | 6/12<br>                         | 0,003<br>0,01      |
| (швеицария)<br>«Авиагон» (Швей-<br>цария)                                 | 115                                   | 1:5,6                                | 90                             | 18×18                                                          | 6/10                             | 0,01               |
| «Плеогон» (ФРГ)<br>«Инфрагон» (Швей-                                      | 115<br>115                            | 1:5,6<br>1:5,6                       | 90<br>90                       | 18×18<br>18×18                                                 | _                                |                    |
| «Ламегон» (ГДР)<br>«Планигон» (США)                                       | 150<br>152<br>152                     | 1:4,5<br>1:8                         | 92<br>92                       | $22,8 \times 22,8$<br>$22,8 \times 22,8$<br>$22,8 \times 22,8$ | 5/11                             | 0,006              |
| «Геогон-т» (США)<br>«Плеогон» (ФРГ)<br>«Авиотар» (Швей-                   | 152<br>153<br>170                     | 1:5,6<br>1:5                         | 94<br>80<br>64                 | $18 \times 18$<br>$15 \times 15$                               | 8/10<br>                         | _                  |
| цария)<br>«Авиотар» (Швей-<br>цария)                                      | 210                                   | 1:4                                  | 62                             | 18×18                                                          | 4/9                              | 0,01               |
| «Топар» (ФРГ)<br>«Пинатар» (ГДР)                                          | 210<br>210                            | 1:4<br>1:4                           | 62<br>62                       | 18×18<br>18×18                                                 | 6/8<br>6/10                      | 0,005              |
|                                                                           |                                       |                                      |                                |                                                                |                                  |                    |

Иностранные ортоскопические объективы

этих объективах нельзя применять выравнивающие аэропленку стеклянные пластины.

На рис. II, 31, б приведена оптическая схема объективов «Ортогон-4» (f' = 75 мм; 1 : 6,8) и «Ортогон-5» (f' = 100 мм; 1 : 6,3). На рис.

Таблица VI,7

| Наимен ование<br>объектива                                                                                                                                                          | Фокусное<br>расстоя-<br>ние f', мм                                                | Относи-<br>тельное<br>отверстие<br>є                                                                                                                                                    | Угол <b>по-</b><br>ля зре-<br>ния 2 <i>w</i> ,°                              | Формат<br>снимка<br>а'×b', см                                                                                     | Число<br>компонен-<br>тов<br>и линз                                                 | Дистор-<br>сия, <i>мм</i>                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| «Орион-20»<br>«Орион-26»<br>«Ортогон-7»<br>«Ортогон-10»<br>«Руссар-43»<br>МРО-2<br>«Ортогон-5»<br>«Руссар-496»<br>«Ортогон-4»<br>МРО-1<br>«Руссар-49»<br>«Родина-26»<br>«Ортогон-8» | 200<br>200<br>140<br>140<br>140<br>100<br>100<br>75<br>70<br>70<br>70<br>55<br>55 | 1:6,3<br>1:5,6<br>1:5,6<br>1:5<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:6,8<br>1:5,6 | 65<br>65<br>85<br>85<br>102<br>102<br>102<br>119<br>122<br>122<br>133<br>133 | 18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18<br>18×18 | 4/6<br>4/6<br>7/8<br>6/8<br>5/9<br>4/6<br>4/11<br>7/11<br>5/8<br>5/8<br>6/9<br>6/10 | $\begin{array}{c} 0,04\\ 0,005\\ 0,003\\ 0,007\\ \hline \\ 0,04\\ 0,003\\ \hline \\ 0,01\\ 0,03\\ \hline \\ 0,02\\ \end{array}$ |

Отечественные ортоскопические объективы

VI, 11 дополнительно приведены некоторые схемы отечественных объективов. Из сопоставления оптических характеристик иностранных и отечественных объективов видим, что зарубежные оптики создают системы с полями зрения, не превышающими 90—94°; исключением является объектив «Супер-Авиагон», поле зрения которого достигает 120°. Уже при таких полях зрения освещенность изображения на краю поля недопустимо снижается. Этот спад освещенности оказывается нежела-



Рис. VI, 11. Оптические схемы отечественных объективов: а — «Орион-20»; б — «Ортогон-10»; в — «Руссар-29»; г — «Родина-26»

тельно большим даже в тех конструкциях объективов, в которых достигнуто снижение освещенности изображения пропорционально третьей степени косинуса угла поля зрения. Уже при углах поля зрения 120° и убывании освещенности изображения по закону соз<sup>3</sup>w освещенность на краю составляет 0,125 от освещенности в центре поля; она катастрофически падает при дальнейшем возрастании поля зрения объектива. Вместе с тем отметим, что в известных лучших зарубежных объективах не удалось понизить показатель степени t у косинуса меньше величины 3—2,7.

Дальнейшее расширение поля зрения систем до 130—140° требует достижения еще более равномерного распределения освещенности изображения по полю — пропорционального второй степени косинуса угла поля зрения. Этого эффекта пока не удалось достигнуть при достаточно высоком качестве оптического изображения: аберрации лучей широких наклонных пучков оказываются недопустимо большими главным образом в меридиональном сечении. Спад освещенности изображения по полю еще в большей степени ускоряется при применении выравнивающих аэропленку стеклянных пластин. Все эти факторы указывают на то, что расширять поле зрения высокоортоскопических объективов следует с большой осмотрительностью не в ущерб качеству оптического изображения.

Наилучшие отечественные объективы типа «Ортогон» (см. табл. VI, 7) обладают в пределах полей зрения около 120° распределением освещенности изображения пропорциональным третьей степени косинуса угла поля зрения с учетом влияния прижимной пластины. Приведенный в табл. VI, 7 объектив «Ортогон-8» рассчитан для поля

Приведенный в табл. VI, 7 объектив «Ортогон-8» рассчитан для поля зрения 133°; он содержит асферическую поверхность сложного профиля, изготовить которую с требуемой точностью не удается; к его описанию вернемся в главе IX (§ 2).

## § 3. ОБЪЕКТИВЫ ДЛЯ РЕПРОДУКЦИИ, МИКРОФИЛЬМИРОВАНИЯ И МИКРОЭЛЕКТРОНИКИ

Репродукционные объективы дают изображение плоских предметов (рисунков, карт, чертежей, фотоснимков, текста и т. п.), расположенных на конечном расстоянии.

Под репродукционными объективами, строго говоря, понимают объективы камер фотографической репродукции различных оригиналов: штриховых (однокрасочных карт, схем, чертежей тушью, рисунков пером и др. штрихов на фоне — белом или иного цвета), полутоновых (фотопланов, фотосхем и т. п., имеющих не только черный и белый, но и промежуточные серые тона), многокрасочных штриховых и полутоновых (цветных карт), прозрачных (диапозитивов, рисунков на прозрачной подложке, фотографируемых в проходящем свете).

В условном смысле мы включаем в группу репродукционных также все фотографические объективы, рассчитанные для съемок при конечных расстояниях предметов. К ним относятся объективы для микрофильмирования (для репродуцирования чертежей, текстов книг и журналов на кинопленку в сильно уменьшенном масштабе), объективы для изготовления микроэлектронных схем (методом репродуцирования соответствующих «масок для напыления» с фотонегативов с большим уменьшением), объективы фотоувеличителей и т. п.

Различают репродукцию точную и массовую. При массовой репродукции главное внимание обращается на производительность камеры; при точной репродукции особое значение имеет точность, с которой воспроизводится оригинал; все точно работающие камеры малопроизводительны.

Репродукционные камеры работают при различных увеличениях, например, большие репродукционные камеры допускают изменение масштабов изображений в пределах 2:1—1:5; при наличии набора объективов пределы изменения масштабов могут быть расширены.

К репродукционным объективам обычно предъявляются строгие требования в отношении качества изображения, так как при репродуцировании стремятся обеспечить разрешение N' элементов изображения соответственно разрешению N объекта и линейному увеличению  $\hat{\beta}$  объект ива:

$$N' = \frac{N}{\overline{\beta}}.$$
 (V1, 13)

Достигается высокое качество оптического изображения прежде всего в результате уменьшения поля зрения объектива и его светосилы. Под последней в данном случае понимают величину, определяемую квадратом числовой апертуры объектива в пространстве изображений:

$$A'^{2} = \sin^{2} u'.$$

Элементарные преобразования приводят к следующей зависимости:

$$A' = \sin u' = \frac{\varepsilon}{2(1-\overline{\beta})}, \qquad (VI, 14)$$

где є — отношение диаметра входного зрачка  $D_{\text{вх-зр}}$  к фокусному расстоянию f' объектива:

$$\varepsilon = \frac{D_{\mathsf{BX}, \mathsf{3P}}}{f'} \cdot$$

В ряде случаев точного репродуцирования особенно важно строгое исправление дисторсии, величина которой не должна превышать сотых долей миллиметра в пределах поля изображения, а также хорошее исправление хроматической разности увеличения. Если репродукционный объектив работает при различных увеличениях, то, как показывает теория, необходимыми и достаточными условиями, чтобы дисторсия была исправлена при любом положении предмета, являются:

1) равенство нулю аберраций главных лучей в зрачках у обеих половинок объектива:

$$\Delta x = 0 \quad \text{i} \quad \Delta x' = 0; \tag{VI, 15}$$

2) отступления от закона тангенсов у обеих половинок объектива должны быть равны между собой:

$$\frac{\Delta \frac{\operatorname{tg} w'}{\operatorname{tg} \overline{w}}}{\frac{w'_{0}}{\overline{w}_{0}}} = \frac{\Delta \frac{\operatorname{tg} w}{g \overline{w}}}{\frac{w_{0}}{\overline{w}_{0}}}, \qquad (V1, 16)$$

где

$$\Delta \ \frac{\mathrm{tg} \, w'}{\mathrm{tg} \, \overline{w}} = \frac{\mathrm{tg} \, w'}{\mathrm{tg} \, \overline{w}} - \frac{w_0}{\overline{w}_0} ; \quad \Delta \ \frac{\mathrm{tg} \, w}{\mathrm{tg} \, \overline{w}} = \frac{\mathrm{tg} \, w}{\mathrm{tg} \, \overline{w}} - \frac{w_0}{\overline{w}_0} ;$$

*w* и *w*<sub>0</sub> — углы с оптической осью главного и второго параксиального лучей в пространстве диафрагмы; *w* и *w*<sub>0</sub> — соответственные углы в

пространстве предметов; w' и w<sub>0</sub>' — то же в пространстве изображений. Условия стабильной коррекции хроматической разности увеличений при изменении положения предмета также сводятся к исправлению хроматической аберрации в зрачках для обеих половинок объектива и к равенству хроматических разностей увеличений для тех же половинок оптической системы:

$$\overline{\beta}_{\lambda_{2}}^{'} - \overline{\beta}_{\lambda_{1}}^{'} = \overline{\beta}_{\lambda_{2}} - \overline{\beta}_{\lambda_{1}}, \qquad (VI, 17)$$

где  $\lambda_2$  и  $\lambda_1$  — длины волн, для которых ахроматизован объектив.

Выполнение уловий (VI, 15) — (VI, 17) при одновременной коррекции всех остальных аберраций не всегда возможно, вследствие чего диапазон увеличений, при которых обеспечиваются достаточно высокие оптические качества, подчас оказывается ограниченным.



Рис. VI, 12. Оптические схемы репродукционных симметричных объективов: *а* — «Апохромат-Коллинеар»; *б* — «Ортопротар»; *в* — «Артар»; *г* — «Планар»; *д* — ПМ-1

Задача существенно упрощается при репродуцировании в натуральную величину ( $\overline{\beta} = -1$ ) или, во всяком случае, с увеличениями, мало отличащимися от единицы. В этих случаях применение симметричных оптических схем объективов автоматически обеспечивает коррекцию комы, дисторсии и хроматической разности увеличений. Корригируется лишь половинка системы в отношении сферической аберрации астигматизма, кривизны, хроматической аберрации положения и по возможности исправляется сферическая и хроматическая аберрации в зрачках Из классических схем симметричных объективов, вполне пригодных для целей репродукции, могут быть названы «Апохромат-Коллинеар» (рис. VI, 12, а), имеющий относительное отверстие 1:7 и поле зрения 60° и «Ортопротар» (рис. VI, 12, б) с относительным отверстием 1:8 и полем зрения 60°. Оба объектива состоят из двух трехлинзовых склеенных компонентов строго симметричной конструкции. Позднее появились симметричные репродукционные четырехлинзовые объективы «Артар» фирмы Герц (рис. VI, 12, в) и шестилинзовые «Планары» Цейсса (рис. VI, 12, г).

Широкое применение как у нас, так и за границей получили простые несимметричные репродукционные объективы типа «Индустар» в частности применяющиеся в полиграфической промышленности. Впервые для этих целей были разработаны «Тессары» Цейсса с относительным отверстием 1:9. В обеих отрицательных линзах этого объектива были применены особые стекла, так называемые курцфлинты, вследствие чего вторичный спектр был уменьшен на 15% по сравнению с его нормальным значением при использовании обычных марок оптических стекол. Конечно, сколько-нибудь существенного и практически ощутимого значения это не имеет, и разработанные объективы «Апотессары», якобы имеющие апохроматические свойства, были названы так с рекламной целью.

У нас на протяжении многих лет выпускается набор фоторепродукционных объективов «Индустар-11М» с относительными отверстиями 1 : 9 и фокусными расстояниями 300, 450, 600, 750, 900 и 1200 *мм*. Наибольшая резкость изображения по всему полю достигается при диафрагмах от 1 : 22 до 1 : 32. При съемке в масштабе 1 : 1 угол поля зрения этих объективов составляет около 40°. При съемках с уменьшением поля резких изображений соответственно уменьшаются. В табл. VI, 8 приведены приблизительные значения линейных по-

В табл. VI, 8 приведены приблизительные значения линейных полей изображений объективов «Индустар-11М» различных фокусных расстояний при полных отверстиях 1:9; диафрагмирование объективов до 1:16—1:22 несколько расширяет поля резких изображений приблизительно на 10—20%.

Таблица VI,8

| Фокусное     | Линейное поле изображения (в <i>мм</i> ) при съемке |      |      |     |      |  |  |
|--------------|-----------------------------------------------------|------|------|-----|------|--|--|
| расстояние   | в масштабах                                         |      |      |     |      |  |  |
| объектива мм | 1:3                                                 | 1:2  | 1:3  | 1:5 | 1:10 |  |  |
| 300          | 500                                                 | 350  | 300  | 260 | 240  |  |  |
| 450          | 700                                                 | 490  | 420  | 370 | 330  |  |  |
| 600          | 900                                                 | 650  | 550  | 500 | 400  |  |  |
| 750          | 1100                                                | 800  | 650  | 550 | 500  |  |  |
| 900          | 1300                                                | 950  | 750  | 650 | 600  |  |  |
| 1200         | 1700                                                | 1200 | 1000 | 850 | 700  |  |  |

### Линейные размеры изображений (в *мм*) объективов «Индустар-11М» при съемке в разных масштабах и при полном отверстии 1:9

В результате повышения требований полиграфической промышленности, а также для проведения различных научно-технических репродукционных работ был создан несколько более совершенный комплект объективов (табл VI, 9).

объективов (табл VI, 9). Разрешающая сила объективов указана при полной диафрагме; наибольшая резкость по полю достигается при относительных отверстиях от 1 : 22 до 1 : 32. Величины линейных полей изображений при съемках в различных масштабах остаются такими же, как и у «Индустара-11М» (табл. VI, 8); эти величины возрастают приблизительно на те же 10—20% при диафрагмировании объективов до относительных отверстий 1 : 22. На рис. VI, 12, д приведена оптическая схема объектива ПМ-1; РФ и О-2 имеют соответственно схемы «Планара» и «Артара».

| Наименование объективов | Фокусное<br>расстоя-<br>ние f' | Относи-<br>тельное<br>отверстие | Угол<br>поля<br>зрения | Число<br>компо-<br>нентов | Фотограф<br>разрешаю | ическая<br>щая сила |
|-------------------------|--------------------------------|---------------------------------|------------------------|---------------------------|----------------------|---------------------|
|                         | мм                             | £                               | 2ω,°                   | и линз                    | в центре<br>поля     | на краю<br>поля     |
| РФ-3                    | 300                            | 1:10                            | 43                     | 4/6                       | 35                   | 18                  |
| ΡΦ-4                    | 360                            | 1:10                            | 43                     | 4/6                       | 35                   | 17                  |
| РФ- <b>5</b>            | 450                            | 1:10                            | 43                     | 4/6                       | 35                   | 15                  |
| O-2                     | 600                            | 1:10                            | 40                     | 4/4                       | 30                   | 13                  |
| O-2                     | 750                            | 1:10                            | 40                     | 4/4                       | 30                   | 13                  |
| ПМ-1                    | 900                            | 1:15                            | 38                     | 4/6                       | 25                   | 14                  |
| ПМ-1                    | 1200                           | 1:15                            | 38                     | 4/6                       | 25                   | 14                  |

Новые серийные репродукционные объективы

Сложные задачи начали решаться за последние годы в связи с широким распространением установок для микрофильмирования (микрофотодублирования) чертежей, текстов книг и журналов, а также фотографирования чертежей и документов, выполненных на прозрачных материалах в проходящем свете. Такие репродукционные установки (РУСТ) находят все более широкое применение в проектных организациях, конструкторских бюро, библиотеках, музеях, архивах и т. п.

Наличие репродукционных (РУСТ) и увеличительных установок (УУ) позволяет архивы громадного количества чертежей и калек в короткий срок превратить в удобно хранимые и занимающие очень мало места пленочные негативы-микрофильмы, а из последних получать фотокальки для размножения чертежей требуемых форматов. К сожалению, ассортимент подобных устройств и оптика к ним ограничены. Назовем шестилинзовый объектив «Орион-18Р», разработанный автором и его сотрудниками около 25 лет назад. Объектив имеет относительное отверстие 1 : 6,3 и поле зрения 55°. Для более равномерного разрешения по полю он применяется в РУСТах и увеличительных установках (УУ) при относительном отверстии 1 : 11. При фокусном расстоянии 100 мм он позволяет микрофильмировать на пленки шириной 35 мм (формат кадра 32 × 45,5 мм) и 70 мм (формат 64 × 91 мм), разрешая в центре 60 мм<sup>-1</sup> и по полю 70-мм пленки 40 мм<sup>-1</sup>.

Объектив работает с уменьшениями от —0,3 до —0,075, позволяя фотографировать оригиналы размерами 420 × 594 *мм* на 35-*мм* пленку и 841 × 1189 *мм* — на 70-*мм* пленку. Оптическая схема объектива была приведена на рис. VI, 11, *а*.

За последние годы в связи со стремлением к дальнейшему сокращению габаритов хранимых микрофильмов, а также вследствие развития микроэлектроники встали задачи создания предельно высокоразрешающих репродукционных объективов, по качеству изображения приближающихся к дифракционному.

Разрешающая сила идеального репродукционного объектива может быть представлена формулой:

$$N_0^{(0)} = \frac{\varepsilon}{1,22\lambda(1-\overline{\beta})}, \qquad (V1, 18)$$

где є — относительное отверстие объектива;  $\overline{\beta}$  — линейное увеличение;  $\lambda$  — длина волны света, применяемого для фотографирования.

Например, для зеленой ртутной линии е ( $\lambda = 546,1$  нм = 0,0005461 мм) получим:

$$N_0^{(0)} = \frac{1500}{1 - \overline{\beta}} \circ MM^{-1}.$$
 (V1, 19)

Таблица VI.10

В табл. VI, 10 приведены величины разрешающей силы идеального репродукционного объектива при различных относительных отверстиях  $\varepsilon$  и увеличениях  $\overline{3}$ .

| Разрешающая сила идеального объектива (в мм <sup>-1</sup> ) |                          |                          |                          |                           |  |  |  |
|-------------------------------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--|--|--|
| ε<br>ε                                                      | _1                       | - <u>1</u> 5             | <u> </u>                 | - <u>1</u><br>- <u>30</u> |  |  |  |
| 1:2<br>1:2,8<br>1:4<br>1:5,6                                | 375<br>268<br>188<br>134 | 625<br>446<br>312<br>223 | 682<br>488<br>341<br>244 | 728<br>520<br>364<br>260  |  |  |  |

Эти величины разрешающей силы могут быть получены, если волновые аберрации объектива не превышают  $\frac{1}{4}\lambda$ . Как известно, этому условию удовлетворяют объективы микроскопов; однако они имеют очень малые поля зрения и, следовательно, их применение потребовало бы многократного экспонирования, что чрезвычайно усложнило бы процесс микрофильмирования Следовательно, необходимо создание особо высокоразрешающей фотографической оптики с достаточно большим полем зрения.

Известностью пользуется японский объектив «Ультра-Микро-Никкор» фирмы «Нипон— Когаки», разработанный профессором Токийского университета д-ром Кодна. Этот объектиь при семилинзовой схеме имеет фокусное расстояние 105 см, относительное отверстие 1 : 2,8 и угол поля зрения 11°. По литературным сведениям, он визуально разрешает в монохроматическом зеленом свете ( $\lambda = 546, 1 \, нm$ ) и при увеличении  $\overline{\beta} = -\frac{1}{30}$  около 475 мм<sup>-1</sup> в центре поля (при относительном отверстии 1 : 3,06) с плавным снижением до 300 мм<sup>-1</sup> вблизи края поля.

В табл. VI, 11 приведены оптические характеристики высокоразрешающих объективов, разработанных на основе применения шестилинзовой схемы «Эра» (см. рис. IV, 11, *г*) и схемы «Гелиос»; расчеты их выполнили Е. Григорьева, И Дриацкая и С. Фролова.

### Таблица VI.11

| Объективы дл | я микро | рильмиј | рования |
|--------------|---------|---------|---------|
|--------------|---------|---------|---------|

| Наимен ование<br>объектива | Фокусное<br>расстояние<br>f', мм | тель-<br>верстие | Угол поля<br>зрения 2w° | ное<br>ение                    | <sup>В</sup> изуальн<br>шающ | ая разре<br>ая сила | Фотографическая<br>разрешающая сила,<br>мм <sup>-1</sup> |                 |
|----------------------------|----------------------------------|------------------|-------------------------|--------------------------------|------------------------------|---------------------|----------------------------------------------------------|-----------------|
|                            |                                  | Относи<br>ное от |                         | Линейн<br>увелич<br><u>ј</u>   | в центре<br>поля             | на краю<br>поля     | в центре<br>поля                                         | на краю<br>поля |
| «Эра-5»                    | 25                               | 1:3,5            | 26                      | $-\frac{1}{60}$                | 450                          | 420                 | 360                                                      | 280             |
| «Гели <b>ос-</b> 91»       | 40                               | 1:4,5            | 19                      | $-\frac{1}{10}$                | 330                          | 300                 | 285                                                      | 255             |
| «Эра-7»                    | 105                              | 1:2,8            | 11                      | <u>1</u><br>30                 | 480                          | 420                 | 440                                                      | 400             |
| «Эра-12»                   | 125                              | 1:4              | 16                      | $\left  -\frac{1}{40} \right $ | 350                          | 300                 | 330                                                      | 260             |
| «Эра-15»                   | 125                              | 1:4,5            | 21                      | $\left -\frac{1}{50}\right $   | 320                          | 300                 | 280                                                      | 260             |
| «Эра-14»                   | 135                              | 1:2,8            | 12                      | $\left  -\frac{1}{50} \right $ | 500                          | 450                 | 440                                                      | 400             |
| «Эра-13»                   | 150                              | 1:4,5            | 17                      | $\left  -\frac{1}{30} \right $ | 320                          | 300                 | 280                                                      | 260             |
| «Маяк-1»                   | 100                              | 1:2,8            | 21                      | $\frac{1}{50}$                 | 480                          | 420                 | 440                                                      | 400             |

Испытания всех объективов проводились на фотопластинках «Kodak HR», разрешающих 1800—2000 мм<sup>-1</sup>. Объективы «Эра-5» и «Гелиос-91» испытывались на «Микрат-ВР» без светофильтра с источником освещения — электрической лампой накаливания. Объектив «Эра-7» испытывался так же на фотоматериале «Микрат-ВР» со светофильтром



Рис. VI, 13. Фотографическая разрешающая сила объективов для микрофильмирования «Эра-5», «Эра-7» и «Гелиос-91» на фотоматериале «Микрат-ВР» ЖС-18 с источником освещения — импульсной лампой вспышкой и разрешил 440 мм<sup>-1</sup> в центре и 400 мм<sup>-1</sup> на краю поля.

На рис. VI, 13 приведены графики фотографической разрешающей силы этих объективов.

Одновременно был испытан японский объектив «Микро-Никкор» (образец № 182516) ( $f' = 105 \text{ мм}; 1: 2,8; 2w = 11^{\circ}$ ) при увеличении  $\overline{\beta} = -\frac{1}{30}$  на фотоматериале «Микрат-ВР». Он разрешил лишь 230  $\text{ мм}^{-1}$  в центре поля и около 150  $\text{ мм}^{-1}$  на краю. Столь малое разрешение мы приписываем дефектам сборки испытанного образ-

ца. Интерес представляет объектив «Маяк-1», обладающий по сравнению с японским объективом «Микро-Никкор» расширенным вдвое полем зрения; расчет объектива выполнен А. Монастырским.

Сопоставляя данные визуальной разрешающей силы объективов табл. VI, 11 с величинами разрешающей силы идеального объектива (табл. VI, 10) при соответствующем увеличении и отверстии, приходим к выводу, что отечественные объективы находятся на высоком современном техническом уровне. Более того, расчеты показывают, что при правильном выборе оптической схемы столь же хороших результатов—близких к предельным (теоретическим) — можно добиться и при более высоких относительных отверстиях объективов — 1 : 2 — 1 : 1,5 с соответствующим повышенным их разрешением до 700—1000 мм<sup>-1</sup>, но с меньшим полем зрения\*.

Таблица V1,12

| Наимонование                                                                                                | r yBe-<br>eMOFO<br>M                                                                   | н ое<br>яние                               | тель-<br>верстие                                        | оля<br>2 <i>ю</i> , •                  | компо-<br>и линз                              | Фотографическая<br>разрешающая сила<br>мм <sup>-1</sup> |                                 |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------|--|
| объектива                                                                                                   | Форма <sup>,</sup><br>личива<br>кадра<br>аХb, м                                        | Фокусі<br>рассто<br>f', мм                 | Относи<br>ное от                                        | Угол п<br>зрения                       | Число<br>нентов                               | в центре<br>поля                                        | на краю<br>поля                 |  |
| «Индустар-26М»<br>«Индустар-50У»<br>«Вега-11У»<br>«Индустар-58У»<br>«Вега-6У»<br>«Индустар-23»<br>«Вега-5У» | $24 \times 3624 \times 3624 \times 3660 \times 6060 \times 6060 \times 9060 \times 90$ | 52<br>52,4<br>54<br>75<br>75<br>110<br>105 | 1:2,8<br>1:3,5<br>1:2,8<br>1:3,5<br>1:4<br>1:4,5<br>1:4 | 45<br>45<br>43<br>56<br>56<br>52<br>54 | 3/4<br>3/4<br>4/5<br>3/4<br>4/5<br>3/4<br>4/5 | 30<br>45<br>45<br>36<br><br>40<br>                      | 19     20     25     19      13 |  |

Объективы для любительских фотоувеличителей

Приводим сведения о массовых объективах фотоувеличителей. В них часто применяется оптика фотографических объективов, корригированных для «бесконечности». В табл. VI, 12 приведены некоторые сведения о серийно выпускающихся объективах.

Стремление к снижению стоимости фотоувеличителя побуждает промышленность унифицировать оптику объективов фотоаппаратов, выпуская ее для фотоувеличителей лишь в соответствующих оправах.

# § 4. ОБЪЕКТИВЫ-АНАСТИГМАТЫ ДЛЯ УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ СПЕКТРА

Объективы-апланаты для ультрафиолетовой области существуют уже давно. Сложна разработка объективов-анастигматов, прозрачных в ультрафиолетовой области спектра, поскольку все пригодные для этого оптические среды (кварц, флюорит и др.) имеют малые величины показателей преломления, что принципиально затрудняет коррекцию кривизны поверхности изображения при большом относительном отверстии анастигмата. Зарубежными фирмами (в частности, фирмой

<sup>\*</sup> Успешные работы этого направления выполнены А. Грамматиным и его сотрудниками.

«К. Цейсс»), а также у нас были разработаны простые анастигматы типа «Тессар» («Индустар») из оптических стекол повышенной прозрачности в близком ультрафиолете. Однако эти объективы обладали невысокими отверстиями (1:6,3—1:4,5) и работали в области спектра не короче длин волн 350—340 *нм*.

Для продвижения в более коротковолновую область спектра — до 260—250 нм — создавали триплеты, в положительных линзах которых применялся кварц, а в отрицательных линзах — каменная соль, защищаемая вследствие своей большой гигроскопичности с обеих сторон пластинами из того же кварца. Получение искусственного флюорита достаточно больших размеров и хорошей прозрачности (по крайней мере, до 250 нм) позволило использовать его в положительных линзах ( $n_D = 1,43385; v = 95,1$ ) в комбинации с плавленым кварцем ( $n_D = 1,45860; v = 68,0$ ), играющим роль флинта. За последние годы Д. Волосовым, Н. Хмельниковой и Т. Шама-

За последние годы Д. Волосовым, Н. Хмельниковой и Т. Шаманиной были разработаны светосильные линзовые анастигматы «Уфар» для ультрафиолетовой области спектра от 230 до 410 *нм* и длиннофокусные зеркально-линзовые объективы «Зуфар» для той же спектральной области. Эти объективы могут быть установлены в обычных пленочных фотоаппаратах типа «Зоркий», «Ленинград» с форматом изображения  $24 \times 36 \ mm$ . Объективы «Уфар» в спектральной зоне  $\lambda = 250 \ mm$  обладают светопропусканием не ниже 50%, и, следовательно, фактически работают в еще более коротковолновой области — приблизительно до 230 *нм*.

В табл. VI, 13 приведены некоторые сведения об этих объективах.

Таблица VI,13

| Наименование<br>объектива | Фокусное<br>расстояние<br>f', мм | Относитель-<br>ное отверстие<br>с | Угол поля<br>зрения 2 <i>w</i> ,°       | Число ком-<br>понентов и<br>линз | Фотографи<br>решающая | Материал        |                       |
|---------------------------|----------------------------------|-----------------------------------|-----------------------------------------|----------------------------------|-----------------------|-----------------|-----------------------|
|                           |                                  |                                   |                                         |                                  | в центре<br>поля      | на краю<br>поля | линз                  |
| «Уфар-4»                  | 52,4                             | 1, 2, 8                           | 45                                      | 5/8                              | 85                    | 15              | Флюорит;<br>плавленый |
| «Уфар-1»<br>«Зуфар-2»     | 100<br>350                       | 1:4<br>1:4                        | $ \begin{array}{c} 24\\ 6 \end{array} $ | 5/7<br>Зеркально-                | 63<br>57              | 15<br>47        | тоже<br>» »           |
| «Зуфар-1»                 | 500                              | 1:4                               | 4                                       | линзовыи<br>То же                | 50                    | 44              | » »                   |

Объективы-анастигматы для ультрафиолетовой области спектра (230—410 н.м)

На рис. VI, 14 представлены оптические схемы объективов. Разрешающая сила линзовых объективов довольно быстро снижается (см. табл. VI, 13) от центра поля к краям изображения. Объясняется это невозможностью полного исправления кривизны поля при малых величинах показателей преломления оптических сред.

Описанные объективы представляют интерес для криминалисти-

ческих исследований, фотографирования искровых разрядов и различных процессов в ультрафиолетовой области спектра.

Зеркально-линзовые анастигматы «Зуфар» являются апохроматами в широкой области спектра — от 230 до 700 *нм* — и могут найти при-



Рис. VI, 14. Оптические схемы линзовых объективов для ультрафиолетовой области: a - «Уфар-1»; 6 - «Уфар-4»; <math>e - 3еркально-линзовые «Зуфар»

менение при фотографировании удаленных объектов без светофильтров, например при съемке поверхности Луны и безатмосферных планет.

## § 5. ОСОБО СВЕТОСИЛЬНЫЕ АНАСТИГМАТЫ ДЛЯ ФЛЮОРОГРАФИИ И ДЛЯ РАБОТЫ СОВМЕСТНО С ЭЛЕКТРОННО-ЛУЧЕВЫМИ ТРУБКАМИ

Для фотографирования малоярких изображений с флюоресцирующих экранов рентгеновских установок (флюорографирования) или киносъемки движущихся изображений с экранов электронно-лучевых трубок (ЭЛТ) локаторных и осциллографических установок, изображений с экранов электронно-оптических преобразователей (ЭОП) и т. п., а также для проецирования изображений с просвечиваемых фотонегативов на те же ЭЛТ, необходимы особо светосильные и высококачественные объективы, рассчитанные для конечных расстояний предметов. Их высокая светосила необходима для сокращения времени экспозиции при флюорографии, при фотографировании движущихся изображений на экране ЭЛТ и уменьшения «смаза» изображения в плоскости приемника и т.п.

В зависимости от размеров фотографируемых объектов (рентгеновских экранов, фотонегативов, экранов ЭЛТ) и размеров приемников изображений выбирается увеличение  $\overline{\beta}$ ; спектральные характеристики объектов и приемников изображений определяют характер хроматической коррекции объектива. Например, спектральное излучение экранов рентгеновских установок оказывается вблизи зеленой линии e ( $\lambda =$ = 546,1 *нм*), спектральные характеристики передающих телевизионных трубок имеют максимум чувствительности вблизи  $\lambda = 470$  *нм* у трубок типа «Кокс» (см. рис. VIII, 1) и вблизи линии  $e(\lambda = 546,1$  *нм*) у трубок типа «Колба». Соответственно эти длины волн принимаются в качестве основных при коррекции монохроматических аберраций объективов, если источник освещения при этом имеет белый цвет E(равноинтенсивное излучение).

# Таблица VI,14

Объективы для работы совместно с электронно-лучевыми трубками

| ающая<br>мм <sup>-1</sup> | ыз краю<br>поля                                    | 27         | 25              | 28         | 30         | 15         | 12         | 28           | 200                          |
|---------------------------|----------------------------------------------------|------------|-----------------|------------|------------|------------|------------|--------------|------------------------------|
| Разреш<br>сила,           | эдтнэд а<br>RROП                                   | 40         | 63              | 40         | 52         | 37         | 34         | 52           | 430                          |
|                           | Фото-<br>матери-<br>ал                             | т. 10      | т. 20           | т. 15      | τ. 17      | M3-2       | т. 17      | т. 17        | Визу-<br>ально               |
|                           | Светофильтр                                        | Dea cBeTO- | фильтра<br>3С-8 | CC5+XC4    | C3C9       | C3C18      | C3C19      | C3C19        | Без свето-<br>фильтра        |
| EE                        | Основная длии<br>волны, им                         | D(589,3)   | e(546,1)        | 460        | Ъ          | Н          | F          | 450          | ũ                            |
| -bentem                   | область ахро<br>Область ахро<br>ин или             | G'(434,1)  | G'C             | G'—C       | G' —e      | G'e        | 440-520    | h(404,7)-500 | 3                            |
| жж<br>19 До<br>1100-      | то эмнастолние от<br>кости предмет<br>изображения, | 512        | 483             | 380        | 278        | I          | 914        | 647          | 608                          |
| вотнэ                     | Число компон<br>и линз                             | 5/8        | 8/10            | 8/10       | 6/8        | 6/8        | 6/8        | 6/2          | Зеркаль-<br>но-лин-<br>зовый |
| <b>ки</b> нэ.             | Поле изображ<br>21', жж                            | 30         | 30              | 40         | 50         | 104        | 170        | 98           | 27                           |
| -эћии                     | ние <u>в</u><br>Линейное уве                       | -0,2       | 0,167           |            | -          | 6,0        | ī          | 0,85         | 0,2                          |
| e e                       | тэмдэqп эгоП<br>№, мм                              | 150        | 180             | 40         | 50         | 115        | 170        | 115          | 136                          |
|                           | квяополи<br>А баутаэль                             | 0,28       | I               | 0, 20      | 0,125      | 0,12       | 0,10       | 0,10         | 0,50                         |
|                           | Относительное<br>з энтэдэвто                       | 1:1,5      | 1:0,75          | 1:1,25     | 1:2        | 1:2,2      | 1:2,5      | 1:2,7        | 1:0,83                       |
| 9NHROT2                   | Фокусное расс                                      | 75         | 60              | 161        | 80         | 197        | 258        | 110          | 117                          |
|                           | Наименование<br>объектива                          | «Р-Гелиос» | «Электрон-1»    | «Селена-1» | «Аврора-1» | «Аврора-2» | «Abpopa-4» | «Кадр-б»     | OB-136                       |

Если же источник освещения типа A, т. е. имеет цветовую температуру 2854 К, соответствующую излучению вольфрамовой лампы накаливания, трехцветные коэффициенты которой x = 0,44757, y = 0,40745и z = 0,14498, то максимумы актиничного потока  $A_{\lambda} = S_{\lambda} I_{\lambda}$  оказываются смещенными в желто-красную область спектра и приходятся вблизи  $\lambda = 620$  нм у телевизионных трубок типа «Колба» (см. рис. VIII, 1) и вблизи  $\lambda = 570$  нм у трубок «Кокс».

Максимумы спектральной чувствительности фотокатодов передающих телевизионных трубок ЛИ-17 и ЛИ-7 приходятся соответственно на длины волн e ( $\lambda = 546, 1 \ \text{нm}$ ) и 460 нm (см. рис. VIII, 2); для первой трубки необходима ахроматизация в области от h (404,7 нm) до F (486,1 нm), а для второй трубки — в области

приблизительно от h до 500 *нм*. Конечно, переход от белого источника освещения E к какому-либо хроматическому освещению приведет к изменению спектральных величин актиничных потоков  $A_{\lambda}$  и, следовательно, потребует другой ахроматизации объектива. Не меньшее значение имеет качество оптического изображения объектива, применяемого с тем или иным приемником.

На рис. VI, 15 приведены результаты исследований Е. Семеновым частотноконтрастных характеристик всех звеньев электронно-оптического преобразователя ПИМ-3 в центре поля, а также ЧКХ объ-

ектива, проецирующего изображение на фотокатод ЭОП и микрообъектива микроскопа, предназначенного для наблюдения изображений на экране ЭОП. Как видим, влияние головного объектива огромно. За последние годы Д. Волосовым, Е. Гагенторн, Ш. Печатниковой, М. Персиной, В. Смирновой и другими была разработана группа объективов указанного назначения с различными оптическими характеристиками (табл. VI,14). Из группы объективов, предназначенных для фотографирования изображений с экранов ЭЛТ с пяти-семикратным уменьшением на 35-мм кинопленку интерес представляет объектива «Электрон-1». На рис. VI, 16 приведена оптическая схема объектива и графики его раз-



Рис. VI, 16. Оптическая схема объектива «Электрон-1» и графики его разрешающей силы на кинопленке тип 20: *а* — со светофильтром 3С-8 и *б* — без светофильтра



Рис. VI, 15. Частотно-контрастные характеристики звеньев системы объектив – ЭОП – зеркальнолинзового объектива ОБ-114; 2 – кислородно-цезиевого фотокатода; 3 – элекгронной электростатической линзы; 4 – катодолюминесцентного экрана; 5 – микрообъектива

решающей силы на кинопленке тип 20 ( $N_{0,3}^{(c)} = 155 \text{ мм}^{-1}$ ), определенной с зеленым светофильтром ЗС-8 и без такового. Приблизительно с таким же увеличением работает объектив «Р-Гелиос», имеющий простую оптическую схему (рис. VI, 17, *a*). По группе объективов, изображающих с однократным увеличением, отметим, высокоапертурный анастигмат



Рис. VI. 17. Оптические схемы светосильных репродукционных объективов для работы совместно с ЭЛТ: а — «Р-Гелиос»; б — «Селена»; в — «Аврора»; е — ОБ-136

«Селена» (рис. VI, 17, 6). При числовой апертуре A' = 0,2 его увеличение  $\overline{\beta} = -1$ , что соответствует относительному отверстию 1 : 1,25; при этом разрешение в пределах всего поля остается достаточно равномерным (рис. VI, 18).

Оптические схемы объективов типа «Аврора» и «Кадр» отличаются тем, что в последнем объективедополнительно применена прикадровая



Рис VI, 18. Графики разрешающей силы, определенной при условиях фотографирования, указанных в табл. VI, 14 для объективов: а — «Селена-1»; 6 — «Аврора-1»; в— «Р-Гелиос»

отрицательная плоско-вогнутая линза, облегчающая задачу коррекции кривизны поверхности изображения.

Большие работы за последние годы были проведены во многих странах по созданию флюорографической аппаратуры: фирмой «Оделька»—в Голландии, «Филлипс» — в Бельгии, «К. Цейсс» — в ГДР идр. В частности, для ширококадровой флюорографии были разработаны особо светосильные линзовые и зеркально-линзовые системы с плоской и сферической поверхностями изображений; в последнем случае фотопленка, прижимаемая специальным устройством, искривляется при фотографировании.

Голландским оптиком А. Бауэрсом были разработаны различные варианты зеркально-линзовых объективов, применяемых в флюорографической аппаратуре фирмы «Оделька». Особенно интересны системы, в которых сферическая аберрация вогнутого сферического зеркала приближенно корригируется концентрическим стеклянным мениском (рис. VI, 19, *a*). Более тщательная (тонкая) коррекция выполняется конической пластинкой, расположенной в общем центре кривизны зеркала и мениска. При этом в системе не нарушается симметричная структура лучей широких наклонных пучков, а тем самым обеспечива-



Рис. VI, 19. Оптические схемы особо светосильных систем для флюорографии а — А Бауэрса, б — фирмы «Канов»; в — Г. Цёльнера; г — Д. Волосова — В. Бабинцева

ется хорошая коррекция аберрации комы. Поверхность изображения имеет выпуклую сферическую форму, радиус которой равен фокусному расстоянию системы.

Интересна зеркально-линзовая система, разработанная японской фирмой «Канон» для ширококадровой флюорографии с форматом снимка 64 × 64 мм. Система имеет большое относительное отверстие (1 : : 0,63) и фокусное расстояние 186 мм. Все ее поверхности — сферической формы (рис. VI, 19, б). Сферическая аберрация и кома вогнутого зеркала корригируются двумя линзами-менисками; кривизна поля и астигматизм — сложным компонентом, расположенным вблизи плоскости изображения. Система может обеспечить большой угол поля зрения — до 24°

Фирма «Цейсс» (ГДР) разработала для флюорографии линзовые объективы. Их автор — д-р Г. Цёльнер — считает, что преимущества линзовых систем неоспоримы: зеркально-линзовые системы простой схемы обладают кривизной поверхности изображения, большим и принципиально неустранимым виньетированием по полю и светорассеянием, снижающим и без того низкий контраст изображаемой на флюоресцирующем экране картины. Мы не столь категоричны в выводах, хотя линзовая система действительно обладает некоторыми преимуществами. Для сопоставления и сравнительной оценки возможных вариантов решений автором и его сотрудниками были разработаны для ширококадровой флюорографии как линзовые анастигматы типа «Электрон» (расчеты М. Персиной и Р. Фахретдиновой), так и зеркальнолинзовые системы «Антарес» (расчеты В. Бабинцева).

Объектив «Электрон-З» имеет девятилинзовую оптическую схему, фокусное расстояние 100 мм и относительное отверстие 1 : 0,75. Объектив изображает экран формата 390 × 390 мм с уменьшением  $\overline{\beta}$  = = -0,159; размеры изображения 63 × 63 мм; общая длина системы, т.е. расстояние от плоскости экрана до изображения, — 960 мм. Объектив корригирован для спектральной линии  $e(\lambda = 546, 1 \text{ нм})$  в пределах углового поля 33°.

Д-ром Г. Цёльнером и его сотрудниками был разработан для тех же целей восьмилинзовый объектив (рис. VI, 19, *в*) с относительным отверстием 1 : 0,73 и полем зрения около 33°. При фокусном расстоянии 100 *мм* и увеличении  $\beta = -0,159$  он изображает экран 390 × 390 *мм* на фотопленку 63×63 *мм*. И наша линзовая система и система Г. Цёльнера имеют плоскую поверхность изображения.

Исследования оптических свойств зеркально-линзовой системы А. Бауэрса (рис. VI, 19, *a*) показали ее преимущества — как оптические, так и технологические — по сравнению с известной системой Б. Шмидта. В системе А. Бауэрса в значительно большей степени сохраняется симметричная структура широких наклонных пучков относительно главного луча, проходящего через общий центр кривизны оптических поверхностей системы.

В системе Б. Шмидта хорошо корригирована лишь сферическая аберрация осевого пучка при наличии остаточных аберраций лучей широких наклонных пучков. Однако по сравнению с системой Б. Шмидта, зеркально-линзовый объектив А. Бауэрса имеет приблизительно в 1,5 раза большую длину. Около 15 лет назад автором и В. Бабинцевым была разработана оптическая схема (рис. VI, 19, г) зеркально-линзовой системы «Антарес», сочетающая свойства малых габаритов системы Б. Шмидта и высокие коррекционные (оптические) качества схемы А. Бауэрса. Длина нашей системы приблизительно равна ее удвоенному фокусному расстоянию; коррекционные возможности при этом весьма благоприятны- такие же, как в системе А. Бауэрса. Остающаяся неисправленной кривизна поверхности изображения имеет выпуклую сферическую форму, что приводит к необходимости фотографирования на искривленной поверхности фотопленки. При плоской поверхности рентгеновского экрана фотопленке должна быть придана форма сферы, а при цилиндрической поверхности рентгеновского экрана — форма тора, что технически более легко осуществимо.

Один из вариантов объектива «Антарес-3» имеет фокусное расстояние 81 *мм* и относительное отверстие 1 : 0,75. При увеличении  $\overline{\beta}$  = = — 0,16 он изображает экран 400×400 *мм* на фотопленку 64× 64 *мм*. Расстояние предмета от первой поверхности (конической пластинки) объектива 947 *мм*; длина объектива, т. е. расстояние от первой поверхности до вершины вогнутого зеркала, равна 407 *мм* при диаметре зеркала 450 мм. Объектив разрешает около 35 мм<sup>-1</sup> в центре поля и около 25 мм<sup>-1</sup> — по полю. Как было указано выше, система с объективом «Электрон-3» (f' = 100 мм) имеет общую длину 960 мм, т. е. линзовая система имеет меньшие габариты, чем зеркально-линзовая.

За последние годы несколькими фирмами («Филлипс», «Сименс» и др.) были созданы флюорографические установки, в которых применены электронно-оптические преобразователи для усиления яркости рентгеновских изображений. Подобные усилители яркости позволяют значительно сократить время экспозиции при флюорографировании, а также фиксировать объекты весьма малой яркости. Применение киносъемочной камеры, телевизионной камеры, а также оптического визирного устройства позволяет проводить как визуальное наблюдение, так и киносъемку объекта, а при желании — передачу изображения по телевизионному каналу. Применяющиеся для этих целей объективы имеют сложную многолинзовую схему, обеспечивающую возможность достижения больших относительных отверстий (1:0,8—1:0,7) и полей зрения до 25—30°. Подобные оптические системы и установки разработаны и у нас.

### глава VII

# ПРОЕКЦИОННЫЕ СИСТЕМЫ ШИРОКОГО ПРИМЕНЕНИЯ

Среди проекционных объективов различного назначения наиболь-шее распространение получили объективы для проекции нормальных и широкоэкранных 35-мм фильмов, а также кинофильмов других фор-матов — уз копленочных 16-мм, любительских 8-мм и широкоформат-ных 70-мм. Достаточно широк промышленный выпуск объективов для эпископической и диаскопической проекции диапозитивов разных форматов.

# § 1. ОБЪЕКТИВЫ ДЛЯ ПРОЕКЦИИ НОРМАЛЬНЫХ И ШИРОКОЭКРАННЫХ 35-мм ФИЛЬМОВ

Качество кинопоказа систематически совершенствовалось во всех технических звеньях — начиная от киносъемочной камеры, негативной пленки, копировального аппарата, позитивной пленки и кончая кинопроекционным аппаратом и его светооптической системой. Лишь проекционный объектив на протяжении многих десялишь проекционный объектив на протяжении многих деся-тилетий оставался простым апланатом главным образом типа Петцваля или вариацией этой конструкции, в котором могли быть исправлены сферическая аберрация, хроматизм, кома и астигматизм наклонных пучков. Кривизна поверхности изображения и аберрации широких наклонных пучков в сагиттальном сечении оставались неисправлен-ными, что приводило к резкому снижению разрешающей силы объектива по полю.

Совершенствование всех других элементов, влияющих на качество кинопоказа, может оказаться малоэффективным, если одновременно кинопоказа, может оказаться малоэффективным, если одновременно не создавать достаточно совершенных проекционных анастигматичес-ких систем. Требования к разрешающей силе и контрасту оптического изображения проекционных объективов даже в случаях обычной кино-проекции отнюдь не малые; эти требования возрастают в случаях ши-рокоэкранной, а тем более широкоформатной кинопроекции. Проекционный объектив должен обеспечивать:

полную передачу оптических качеств проецируемой картины — сохранение контраста изображений и разрешаемости всех деталей кар-

тины в диапазоне тех пространственных частот, которые оказываются разрешимыми в процессе производства кинофильма, на каждом этапе которого происходит неизбежное снижение контрастности изображения: киносъемочным объективом, негативной фотопленкой, оптикой кинокопировального аппарата и, наконец, позитивной пленкой;

2) распределение освещенности изображений на экране соответственно освещенности в плоскости проецируемой картины; иными словами, объектив должен обладать минимальным виньетированием;

3) сохранение геометрического подобия проецируемой картины ее экранному изображению, что требует исправления дисторсии с точностью не ниже 1—2%.

Для выполнения первого условия нужна тщательная коррекция всех аберраций объектива. Оптическая схема системы при этом неизбежно оказывается сложной — многолинзовой. Только в этом случае возможна, в частности, хорошая коррекция астигматизма и кривизны поверхности изображения.

Основными характеристиками оптических качеств проекционного объектива являются его разрешающая сила и частотно-контрастная характеристика, определяемая для рабочего диапазона пространственных частот.

Современные светосильные кинопроекционные анастигматы обычно визуально разрешают около 100 мм<sup>-1</sup> в центре поля и около 80 мм<sup>-1</sup> на краю поля. Кинопроекционные апланаты с неисправленной кривизной поверхности изображения обычно имеют на краю поля приблизительно в два раза меньшую величину разрешающей силы. Оценка разрешающей силы производится визуально — путем наблюдения увеличенного изображения миры, создаваемого объективом и рассматриваемого через лупу или в микроскоп, а еще лучше — на экране, изображение на котором образуется испытуемым объективом.

Контраст изображения объектива и его ортоскопические качества проверяются также визуально — путем наблюдения проецируемого на экран тестобъекта, например штрихов прямолинейной сетки, имеющей форму квадратиков. Степень резкости изображений различно ориентированных штрихов в пределах всего поля, отсутствие искривления крайних линий и их окраски, отсутствие размытости этих штрихов являются критерием качества, однако критерием субъективным.

Автором и М. Ольвовской предложен объективный метод оценки оптических устройств кинопроекционных объективов. На простой установке измеряется распределение освещенности в изображениях полуплоскости в меридиональном и сагиттальном сечениях, причем установка не содержит никаких оптических элементов, кроме испытуемого объектива, который изображает полуплоскость с достаточно большим увеличением. Распределение освещенности в изображении полуплоскости измеряется путем перемещения щели вместе с ФЭУ поперек полученного изображения. Графоаналитическим способом определяется частотно-контрастная характеристика для центра и края изображения. Для оценки хроматической коррекции объектива измерения выполняются как в белом свете, так и с цветными светофильтрами.

Экспериментальные исследования подтвердили наличие корреляци-

онной зависимости между частотно-контрастной характеристикой объектива и визуальной (субъективной) оценкой качества оптического изображения полуплоскости на экране. Оценка оптических свойств объектива производится в зависимости от величин площадей под кривыми частотно-контрастных характеристик, ограниченных диапазоном пространственных частот от 0 до 40 *мм*<sup>-1</sup>.

Испытание кинопроекционного объектива при более высоких частотах не имеет смысла в связи со снижением контрастности объекта кинопроекции на каждом этапе многоступенчатого процесса производства фильма. При одинаковых оценках оптических свойств объектива в белом, красном и синем свете изображение края полуплоскости на экране не имеет видимой цветной каймы по контуру. Экспериментальные исследования установили следующее соответствие между субъективной оценкой качества изображения объективом полуплоскости по пятибалльной системе и величинами площадей *S мм*<sup>-1</sup> под кривыми частотно-контрастных характеристик в интервале частот от 0 до 40 *мм*<sup>-1</sup>.

| S, mm <sup>-1</sup>    | >16 | 16—14,5 | 14,5—12 | 12—10,5 | 10,5—9,5 | 9,5—8,5 | <8,5 |
|------------------------|-----|---------|---------|---------|----------|---------|------|
| Субъективная<br>оценка | 5   | 4+      | 4       | 3+      | 3        | 3—      | 2    |

Такая градация применима как к цветным, так и черно-белым тестобъектам. Для оценки визуального восприятия конкретных типич-



Рис. VII, 1. Частотно-контрастные характеристики отдельных звеньев производства кинофильма

ных изображений (портрет, пейзаж и пр.) были введены соответствующие учитывающие оценочные функции, весовые коэффициенты для разных частот, имеющих различные значения в процессе зрительного восприятия. И в этом случае было установлено, что введение весовых коэффициентов пространственных частот для изображений конкретных типичных объектов не изменяет корреляционной зависимости между субъективными и объективными оценками качества изображения.

Еще раз отметим, что ввиду ограниченной контрастности объекта кинопроекции (фильмокопии) исследование кинопроекционного объектива на частотах более 40 *мм*<sup>-1</sup> лишено смысла.

На рис. VII, 1 для пояснения сказанного приведены частотноконтрастные характеристики типичного киносъемочного объектива в центре поля, частотно-контрастные характеристики негативной и позитивной пленок, копировальной оптики и, наконец, фильмокопии как результат перемножения ординат ЧКХ всех звеньев. Таким образом, проекционный объектив должен проецировать с достаточно высоким коэффициентом передачи контраста T(N') интервал частот фильмокопии от 0 до 40 мм<sup>-1</sup>. Следовательно, разрешающая сила объектива должна быть приблизительно в три раза большей, т.е. составлять около 100 мм<sup>-1</sup>. К этому же результату можно прийти, исходя из несколько других соображений.

Требуемая разрешающая сила объектива  $N_{0}^{(0)}$  определяется условиями проекции — увеличением  $\overline{\beta}$  и расстоянием L от зрителя до киноэкрана. Угловой предел разрешения изображения на киноэкране равен:

$$\varphi = \frac{\overline{\beta}}{N_0^{(0)}L} \cdot$$
 (VII, 1)

Если ψ — угловой предел разрешения глаза наблюдателя, то объектив должен обеспечивать условие φ < ψ, отсюда:

$$N_0^{(^{\circ})} \ge \frac{\overline{\beta}}{\psi L_{\text{MHH}}},$$
 (VII, 2)

где  $L_{\text{мин}}$  — нанменьшее расстояние от экрана до ближайшего ряда зрителей. При достаточной яркости изображения и высоком контрасте деталей этого изображения угловой предел разрешения глаза можно принять равным одной угловой минуте, т. е.  $\psi = 0,00029 \ pad$ . По существующим нормам кинопроекции  $L_{\text{мин}} = 1,5 \ a'$ , где a' — ширина киноэкрана;  $\overline{\beta} = \frac{a'}{a}$ , где a — ширина кадрового окна; отсюда:

$$N_0^{(^{\circ})} \ge \frac{1}{1,5a\psi}$$
 (VII, 3)

Для нормального 35-мм фильма a = 20,9 мм; это дает  $N_0^{(\circ)} = 110 \text{ мм}^{-1}$ . Заметим, что вследствие движения изображаемых объектов, недостаточной устойчивости изображений кинокадров и т. п. величина  $N_0^{(\circ)}$  может быть несколько меньшей.

Выполнение второго из перечисленных выше условий сводится к устранению виньетирования лучей наклонных пучков. Задача оказывается тем труднее, чем светосильнее система. У современных проекционных анастигматов с относительным отверстием 1:2-1:1,8 виньетирование на краю поля обычно не превышает 10-20%; у более светосильных систем (1:1,5-1:1,4) величина последнего может достигать 30%, а у систем с повышенным углом поля зрения  $(30-40^\circ)$  — и того больше.

Третье условие требует сохранения увеличения системы в пределах всего поля. Глаз наблюдателя обычно не замечает искажений изображений вследствие дисторсии, если величина последней не превышает 4—5%. Так как у съемочных объективов дисторсия может достигать 3% и более, следует ограничиться для кинопроекционных анастигматов указанной выше величиной 1—2%.

Современные объективы, как правило, просветляются не только для повышения яркости изображения, но и для уменьшения рассеяния света оптическими поверхностями и повышения контраста изображения. В объективах, предназначенных для проекции цветных фильмов,
необходимо многослойное, в частности трехслойное или двухслойное, ахроматическое химическое\* просветление, обеспечивающее сохранение колориметрических характеристик проходящего светового потока и, следовательно, не искажающее цветопередачу. Иногда применение особо тяжелых флинтов, обладающих повышенным поглощением в коротковолновой области спектра, приводит к заметному изменению цветности проходящего света (на несколько цветовых порогов), который приобретает заметную желтизну, корригируемую соответствующим выбором типа просветления.

Современный уровень объективостроения позволяет создавать проекционные объективы любой светосилы. Однако при этом глубина изображения существенно уменьшается и объектив реагирует на малейшие продольные перемещения проецируемого фильма. Поэтому наиболее светосильные кинопроекционные объективы имеют отверстия не выше 1 : 1,8—1 : 1,6 при проекции нормальных 35-мм фильмов и 1 : 1,4—1 : 1,2 — при проекции 16-мм фильмов.

Отечественные серийные объективы для проекции нормального 35мм фильма по своим оптическим схемам подразделяются на апланаты и анастигматы.

Объективы-апланаты (см. рис. IV, 9, а) состоят из двух ахроматических пар линз, причем склеенными могут быть обе пары линз или только одна пара из них. Эти двухкомпонентные системы находят применение в качестве простых и дешевых кинопроекционных объективов. Обладая хорошим исправлением элементарных аберраций — сферической аберрации, хроматизма и комы, — они имеют принципиально неустранимую кривизну поверхности изображения. Соответственно угол поля зрения апланатов невелик и даже при пониженном качестве изображения на краях экрана не превышает 15-20°. В настоящее время апланаты этого типа продолжают выпускаться под марками П-4 и П-5 для кинопроекции 35-мм фильмов при фокусных расстояниях от 90 до 180 мм и относительных отверстиях 1:2 (см. табл. VII, 1) и под маркой П-6 — для тех же фокусных расстояний, но при относительных отверстиях 1:1,6. У этих объективов один компонент состоит из двух несклеенных линз. Все они визуально разрешают около 90 мм-і в центре экрана с равномерным снижением до 40-35 мм<sup>-1</sup> на краю.

Ту же оптическую схему имеют апланаты РО-108 и несколько отличную схему апланаты РО-106, РО-107 и КО, у которых оба компонента — двухлинзовые склеенные.

Более совершенным качеством изображения в пределах всего поля обладают объективы-анастигматы, имеющие шестилинзовую оптическую схему «Гелиос» (см. рис. IV, 9, в). Все объективы, приведенные в разделе Б табл. VII, 1, имеют эту оптическую схему. Они визуально разрешают около 100 мм<sup>-1</sup> в центре поля с плавным снижением разрешения до 65—55 мм<sup>-1</sup> на краю.

По этой же шестилинзовой схеме нами были разработаны анастигматы для панорамной кинопроекции 35-мм фильмов при размерах кадрового окна 27,5 × 24,5 мм — объективы ОКП-76 и ОПК-97; они име-

<sup>\*</sup> Еще лучше — физическое, многослойное.

ют фокусные расстояния соответстгенно 76 и 97 *мм* и относительные отверстия 1:2. Для согласования масштабов изображения при одновременной проекции кинопанорамы тремя объективами предусмотрена возможность изменения их фокусного расстояния на  $\pm 1,5$  *мм*, что достигается перемещением первой линзы объектива на  $\pm 2,5$  *мм*. Объективы обладают малым виньетированием, не выше 20% на краю поля.

Впереди объективов при широкоэкранной кинопроекции анаморфированных фильмов устанавливается анаморфотная проекционная насадка (НАП), состоящая из цилиндрических линз с параллельными образующими цилиндрических поверхностей. На рис. VII, 2 приведена оптическая схема системы анаморфотная насадка — сферический объ-

ектив в меридиональном (горизонтальном) сечении. Такой сложный объектив-анаморфот должен проецировать на экран изображение с различными увеличениями по высоте и ширине. Соответственно фокусные расстояния объектива должны быть различны в горизонтальном  $f_r'$  и вертикальном  $f_{\rm B}'$  сечениях. Как было показано в главе V, с помощью анаморфотной оптической системы при киносъемке происходит «сжатие» изображения только в го-



Рис. VII, 2. Схема анаморфотной насадки НАП2-2 в меридиональном сечении

ризонтальном направлении обычно в два раза. При кинопроекции происходит обратное явление: анаморфотная проекционная система «растягивает» изображение по горизонту, в результате чего восстанавливается геометрическое подобие между предметом и его изображением на экране.

Анаморфотная система рассчитана на использование обычной фотографической фонограммы (без стереофонического звукового сопровождения), обеспечивает соотношение размеров изображения на киноэкране 2,35 : 1 при использовании 35-мм пленки с размерами позитивного кадра 22× 18,67 мм и соответственно кадрового окна 21,2 × 18,1 мм.

Таким образом, при кинопроекции анаморфированного кадра проекционным анаморфотом линейное увеличение в горизонтальном сечении β<sub>r</sub>, должно быть в два раза бо́льшим, чем увеличение в вертикальном сечении β<sub>в</sub> и, следовательно:

$$A = \frac{\beta_{\rm r}}{\beta_{\rm B}} = \frac{f_{\rm B}}{f_{\rm r}'} = 2; \qquad (VII, 4)$$

отсюда

$$\beta_{\rm r} = 2\beta_{\rm B}$$
 и  $f_{\rm r}^{'} = rac{1}{2} f_{\rm B}^{'}$  .

Соответственно углы поля зрения определяются из соотношений:

$$\operatorname{tg} w_{\mathfrak{p}} = \frac{l_{\mathfrak{p}}'}{f_{\mathfrak{p}}'}; \quad \operatorname{tg} w_{\mathfrak{p}} = \frac{l_{\mathfrak{p}}'}{f_{\mathfrak{p}}'}, \quad (V11, 4')$$

| Спад освещенности<br>от центра к краю<br>поля, %                 |                                     | 22         |             |             | 22         | 15          |             |         |                  | 15          | 22      | 20      | 16      |  |
|------------------------------------------------------------------|-------------------------------------|------------|-------------|-------------|------------|-------------|-------------|---------|------------------|-------------|---------|---------|---------|--|
| Разрешающая сила<br>в центре и на краю<br>поля, мм <sup>-1</sup> |                                     | 90/35      |             |             | 90/35      | 80/45       |             | 90/40   | 90/40            | 80/45       | 90/40   | I       | 75/45   |  |
| Коэффициент про-<br>пускания, %                                  |                                     | 88         |             |             | 06         |             |             | 85      |                  |             | 83      | 85      | 85      |  |
| Задний отрезок,<br><i>мм</i>                                     | ,7×15,2 <i>mm</i> )                 | 454956     | 61—66—70    | 76—81—90    | 43—48—54   | 58—63—68    | 73—80—87    | 42,3    | 47,6-53,1-       | 63, 3-68, 4 | 46,6    | 53,2    | 62,1    |  |
| Длина объектива<br>Σď, мм                                        | (кадровое окно 20                   | 78—88 —95  | 100-110-118 | 128—135—150 | 85—90—98   | 108         | 132—140—158 | 85      | 95-102, 2-117, 5 | 120—128,5   | 17      | 145     | 177     |  |
| Диаметр<br>оправы,<br><i>км</i>                                  | на фильмов                          | 62,5       | 82,5        | 104         | 62,5       | 82,5        | 104         | 62,5    | 82,5             | 104         | 52,5    | 52,5    | 52,5    |  |
| Относитель-<br>ное отверстие<br>е                                | и обычных 35                        | 1:2        |             |             | 1:2        |             |             | 1: 1, 6 |                  |             | 1:2     | 1:2     | 1:2,2   |  |
| Фокусное растояние<br>f', мм                                     | <ol> <li>Для кинопроекци</li> </ol> | 90-100-110 | 120—130—140 | 150—165—180 | 90—100—110 | 120—130—140 | 150         | 06      | 100—110—120      | 130—140     | 93      | 122     | 143     |  |
| Тип объектива                                                    | P.                                  | Апланат    |             |             | Апланат    |             |             | Апланат |                  |             | Апланат | Апланат | Апланат |  |
| Шифр или<br>марка<br>объектива                                   |                                     | П-4        |             |             | П-5        |             |             | П-6     |                  |             | PO-108  | PO-106  | PO-107  |  |

Таблица VII,1

Характеристики отечественных кинопроекционных объективов для 35-м.м фильмов

| I                |                      | 28         | 28         | 28         | 24         | 21         | 20         | I             |             | 27         | 30         | 26         | 18         | 27         |  | - |    |
|------------------|----------------------|------------|------------|------------|------------|------------|------------|---------------|-------------|------------|------------|------------|------------|------------|--|---|----|
|                  | (WW                  | 100/50     | 100/50     | 100/55     | 100/55     | 100/55     | 100/55     | 1             |             | 100/80     | 100/55     | 100/50     | 100/55     | 100/64     |  |   |    |
| 6                | ×15,2                | 81         | 81         | 81         | 82         | 80         | 80         | 1             |             | 85         | 86         | 85         | 86         | 86         |  |   |    |
| 1                | 21,1×18,1 и 20,7     | 54,5       | 57,2       | 60,6       | 66,5       | 73,9       | 80,1       | 53—60—66      | 748087      | 44,6       | 55,6       | 50,1       | 65,6       | 61,8       |  |   |    |
| I                | в (кадровое окно     | 82         | 78         | 93         | 98         | 113,5      | 120        | I             |             | 78,5       | 85         | 87         | 26         | 105,6      |  |   |    |
| 62,5             | 35- <i>мм</i> фильмо | 62,5       | 62,5       | 62,5       | 62,5       | 82,5       | 82,5       | 62,5          | 82,5        | 62,5       | 62,5       | 82,5       | 82,5       | 82,5       |  |   |    |
| 1:1,8            | и обычных            | 1:2        | 1:2        | 1:2        | 1:2        | 1:2        | 1:2        | 1:2           |             | 1:1,8      | 1:1,8      | 1:1,8      | 1:1,8      | 1:1,8      |  |   |    |
| 90<br>120<br>140 | ии широкоэкранных    | 80         | 85         | 06         | 100        | 110        | 120        | 80—90—100     | 100-120-130 | 80         | 85         | 89         | 100        | 110        |  |   |    |
| Апланат          | ия кинопроекц        | Анастигмат    |             | Анастигмат | Анастигмат | Анастигмат | Анастигмат | Анастигмат |  |   |    |
| KO               | Б. Дл                | PO-506     | PO-505     | PO-500     | PO-501     | PO-502     | PO-503     | <b>XK-</b> 32 |             | ОКП4-80    | ОКП2-85    | ОКП5-90    | ОКП1-100   | ОКП4-110   |  | 4 | 71 |

где  $l_{\mathbf{r}}'$  и  $l_{\mathbf{s}}'$  — размеры половины кинокадра по горизонтали и вертикали; конечно, эти формулы приближенные, так как не учитывают дисторсии систем.

Для широкоэкранной кинопроекции 35-мм фильмов наша промышленность выпускает высококачественные объективы-анастигматы (см. раздел Б, табл. VII, 1) и анаморфотные насадки 35НАП2-2 и 35НАП2-3. Эти насадки двухкомпонентные: каждый компонент состоит из двух склеенных цилиндрических линз. Оптическая сила первого компонента (со стороны киноэкрана) отрицательная; второго — положитель-



Рис. VII, 3. Схема призменной анаморфотной насадки

ная. Фокусировка изображения на киноэкране вначале производится перемещением всего объектива-анаморфота, в результате чего добиваются резкого изображения горизонтальных линий, а затем — перемещением первого (отрицательного) компонента анаморфотной насадки, в результате чего добиваются резкого изображения вертикальных линий. Максимальное поле зрения насадок НАП составляет по ширине кадра 33°, а по высоте кадра — 13°.

Ранее применявшаяся насадка НАП1-1 была разработана в ЦКБК С. Гершгориным. Она обеспечивала хорошее качество изображения с объективами фокусных расстояний от 80 до 130 мм при относительных отверстиях 1 : 2. Насадка имела большие габариты и массу: длина насадки достигала 185 мм при световом отверстии первой линзы 85 × × 92 мм и максимальном диаметре выходного зрачка (совмещаемого со входным зрачком проекционного объектива), равном 65 мм.

В 1961 году в ЛИКИ была разработана (Д. Волосовым и Ш. Печатниковой) малогабаритная анаморфотная насадка, выпускающаяся с того времени серийно в различных вариантах под марками 35НАП2-2, 35НАП2-3 и др.; имеет столь же совершенное качество оптического изображения при значительно меньших габаритах: длина насадки 142 мм при световом отверстии первой линзы 68 × 88 мм. Она предназначена для работы с объективами фокусных расстояний от 80 до 130 мм при относительных отверстиях 1:2 и с объективами от 80 до 110 мм при относительных отверстиях 1:1,8. В частности, вариант насадки НАП 2-3 применяется с объективами ОКП4-80, ОКП5-90 и ОКП4-110, имеющими относительные отверстия 1 : 1,8 (см. табл. VII, 1).

Для передвижных и стационарных киноустановок КН-11 выпускается та же анаморфотная насадка под маркой 35НАП4-1 с объективом PO-108 (f' = 93 мм; 1 : 2).

Насадки типа НАП2 имеют высокий коэффициент светопропускания (87%) при малом светорассеянии (около 3%). Величина анаморфотного фактора *А* изменяется по полю весьма незначительно — не более чем на 2% (от 1,93 до 1,96).

В заключение заметим, что анаморфотные насадки с малым полем зрения могут быть построены не только из цилиндрических линз, но и из цилиндрических (вогнутого и выпуклого) зеркал, из преломляющих ахроматических призм, а также отражательных призм с цилиндрическими гранями. На рис. VII, 3 приведена оптическая схема призменной анаморфотной насадки, применяемой в чехословацком кинопроекторе «Меоптон IV-С». На рисунке слева расположен центрированный (сферический) проекционный объектив.

## § 2 ОБЪЕКТИВЫ ДЛЯ КИНОПРОЕКЦИИ УЗКОПЛЕНОЧНЫХ 16-мм ФИЛЬМОВ

Узкопленочная 16-*мм* кинопроекция (кадровое окно 9,45 × 7,05 *мм*) находит значительное распространение как в виде сталионарных так и передвижных установок. По отечественному ГОСТу 3840—61 для этих установок предусмотрены проекционные объективы с фокусными расстояниями от 20 до 80 *мм* (с интервалами приблизительно через 5 *мм*) и относительными отверстиями от 1 : 1 до 1 : 1,5. Основными объективами этого набора являются объективы с фокусными расстояниями 35; 50 и 65 *мм*. Оптические схемы применяемых для этих целей объективов подразделяются на простые, обычно четырехлинзовые, апланаты и более сложные, обычно шестилинзовые, анастигматы. Первые из них имеют описанную выше двухкомпонентную схему. Эти апланаты имеют относительные отверстия до 1 : 1,5 — у систем со сравнительно большим фокусным расстоянием и, следовательно, малым углом поля зрения и отверстия меньше, чем это рекомендовано ГОСТом, — до 1 : 1,65 — у апланатов более короткофокусных (см. табл. VII,2).

Около 25 лет назад Д. Волосовым, М. Персиной и А. Шахнович были разработаны особо светосильные шестилинзовые анастигматы (рис. VII, 4) для кинопроектора «Украина» с лампой К-22. В целях создания определенных удобств при эксплуатации проектора (при зарядке фильма и т. п.) было поставлено дополнительное требование — достаточно большого заднего фокального отрезка. В разработанных объективах величина заднего отрезка достигает 50% фокусного расстояния. Два объектива (РО-110 и РО-109) имеют отверстия 1 : 1,2 и фокусные расстояния 35 и 50 *мм*. Объектив РО-111 имеет отверстие 1 : 1,4 и фокусное расстояние 65 *мм*. Около 25 лет они выпускаются серийно. Заметим, что по новому ГОСТу предусмотрено расстояние от заднего торца оправы объектива до плоскости фильма лишь не менее 10 мм. Такая возможность уменьшения заднего фокального отрезка позволит создать оптически более совершенные анастигматы.



Рис. VII, 4. Схема особо светосильных проекционных анастигматов PO-109, PO-110 и PO-111



Рис. VII, 5. Объектив «Варио-Ликар-Л» с переменным фокусным расстоянием / =35-65 мм

Таблица VII,2

Отечественные объективы для проекции 16-мм фильмов

| Марка<br>объектива                                                                                                     | Тип<br>объектива                                                                                                  | Фокусное<br>расстояние<br>f', мм                | Отн оситель-<br>ное отверстие<br>в                                                       | Диаметр,<br>оправы, <i>мм</i> | Длина объек-<br>тива 2d, мм                                                       | Задний отре-<br>зок, <i>мм</i>                            | Коэффициент<br>пропускания,<br>%                   | Разрешающая<br>сила в центре<br>и на краю<br>поля, мм <sup>-1</sup>     | Освещенность<br>на краю<br>поля, % |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|
| РО-102<br>РО-101<br>РО-104<br>РО-110<br>ОКП1-35<br>РО-109<br>ОКП3-50<br>РО-111<br>«Варио-Ли-<br>кар-П»<br>(160ПФП-1-1) | Апланат<br>Апланат<br>Апланат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат | 35<br>50<br>65<br>35<br>50<br>50<br>65<br>35—65 | 1:1,65<br>1:1,65<br>1:1,5<br>1:1,2<br>1:1,2<br>1:1,2<br>1:1,2<br>1:1,2<br>1:1,4<br>1:1,4 | 34<br>34<br>38<br>            | $ \begin{array}{c} 63\\ 63\\ 102,5\\ 52\\ -\\ 78\\ 70\\ 108\\ 170\\ \end{array} $ | 16,7<br>20,3<br>30,4<br>17,7<br>26,2<br>4,6<br>34,3<br>32 | 80<br>85<br>83<br>67<br>68<br>78<br>72<br>76<br>70 | 100/40<br>100/40<br>90/50<br>90/50<br>90/45<br>90/45<br>90/50<br>100/50 | 32<br>18<br>                       |

Во Франции фирмой «Бертьё» разработан шестилинзовый анастигмат с тем же относительным отверстием 1 : 1,2, но имеющий при фокусном расстоянии 50 *мм* задний отрезок 4 *мм*, вместо 26,2 *мм* у объектива PO-109 (f' = 50 мм). Эта оптическая схема применена в проекционном объективе ОКПЗ-50 (f' = 50; 1 : 1,2), краткие сведения о котором приведены в табл. VII,2. Все эти анастигматы визуально разрешают около 90 *мм*<sup>-1</sup> в центре поля с плавным снижением разрешения до 50 *мм*<sup>-1</sup> на краю поля.

В 1967 году Д. Волосовым и Н. Лебедевой был разработан в ЛИКИ сравнительно простой девятилинзовый объектив «Варио-Ликар-П», изготовленный под шифром 16ОПФП-1-1, фокусное расстояние которого непрерывно изменяется от 35 до 65 мм при относительном отверстии 1:1,4. Объектив обладает хорошей коррекцией всех аберраций — более совершенной, чем объективы РО-110, РО-109 и РО-111 при соответствующих фокусных расстояниях 35, 50 и 65 *мм*. Оптико-кинематическая схема системы проста: изменение фокусного расстояния достигается путем перемещения лишь второго компонента. Объектив имеет

 $G_{i}=-4^{\circ}50'15'' G_{i}=-7^{\circ}25'03'' G_{i}=-9^{\circ}21'16'' G_{i}=-4^{\circ}50'15'' G_{i}=-7^{\circ}25'03'' G_{i}=-9^{\circ}21'16''$ G=0 102(tgs-tgs20)102(tgs-tgs20)102(tgs-tgs20) 102tgs 10 2 tq 8' 10²ta**c'** *⊾10 <sup>2</sup>tqδ′* а a1 a. 4*1*1 4ſ 4*1*1 ЦŊ ЦЛ 40 40 30 30 30 -30 30 30 20 20 20 2.0 20 20 20 10 10 111 11 11 10 8G' **8**6' 8G' **Δ**y' **∆**y' ∆y' бy 0.05-0,05 -0.05 0,05 0,05-0,05 0,05-0,05 0.05 -0.05 0,05-0,05 0,05-0,05 -10 -10 -10 -10 -10 -10 -10 -20 -20 -20 -20 -20 -20 -20 -30 -30 -30 -30 -30 -30 -30 α' a**'** a' a' п a a' f'=35,068,  $S_0 = 32,149$ 

 $f'=65,297; S'_{0}=31.788$ 

 $G_{r}=-2^{\circ}11^{\prime}52^{\prime\prime}$   $G_{r}=-3^{\circ}20^{\prime}20^{\prime\prime}$   $G_{r}=-4^{\circ}49^{\prime}38^{\prime\prime}$   $G_{r}=-2^{\circ}11^{\prime}52^{\prime\prime}$   $G_{r}=-3^{\circ}20^{\prime}20^{\prime\prime}$   $G_{r}=4^{\circ}49^{\prime}38^{\prime\prime}$ G,=0 10 2 tas' 102(tg6/tg62)102(tg6-tg62)102(tg6-tg62) 102 tg6 *10* <sup>2</sup>tgδ′ *\$10 <sup>2</sup>tqδ′* a π īn α a 40 41 ЦЛ 40 41 40 .40 30 30 30 30 30 30 30 20 20 20 20 20 20 20 10 10 10 10 10 10 10 8G' **8**6' 8G' Sy' ∆y' ∆y′ Δy' -0,05 0.05-0,05 0,05-0,05 0,05-0,05 0,05-0,05 0,05-0,05 0,05-0,05 0,05 -10 -10 -10 -10 -10 -10 -10 -20 -20 -20 -20--20 -20 -20 -30 -30 -30 -30 -30 -30 -31 10 α -40 -40 0 41 -41 n -41 7 -41

Рис. VII, 6. Аберрации панкратического проекционного объектива «Варио-Ликар-П» при фокусных расстояниях: a - f'=35 мм; b - f'=65 мм

сравнительно малые габариты: при общей длине 170 мм диаметр его первой линзы 70 мм. На рис. VII, 5 представлено положение компонента II при f' = 35 мм; при f' = 65 мм компонент II приближается вплотную к компоненту III; при этом задний фокальный отрезок изменяется весьма незначительно и равен около 32 мм. На рис. VII, 6 приведены аберрации широких меридиональных и сагиттальных пучков этого объектива при двух крайних значениях его фокусных расстояний — 35 и 65 мм. Аберрации, как видим, корригированы весьма совершенно.

## § 3. ОБЪЕКТИВЫ ДЛЯ КИНОПРОЕКЦИИ ШИРОКОФОРМАТНЫХ 70-мм ФИЛЬМОВ

Полезный световой поток кинопроекторов для широкоформатных 70-мм фильмов достигает 30 000—40 000 лм, а иногда и более. Последнее определяет большую плотность светового потока, проходящего через проекционный объектив. Действительно, фокусные расстояния и относительные отверстия проекционных объективов для широкоформатной кинопроекции имеют приблизительно те же значения, что и при проекции обычных 35-мм фильмов. Следовательно, полезные световые потоки возрастают пропорционально площадям кадровых окон — приблизительно в три раза. Возникают опасения образования больших температурных градиентов в линзах, опасность растрескивания стекол линз и т. п. Это побудило нас при проектировании оптических схем первых вариантов проекционных объективов избрать такие решения, при которых диаметры линз существенно превышают те величины, которые получаются у обычных объективов данного фокусного расстояния и относительного отверстия.

Как известно, диаметры линз обычных объективов приблизительно равны диаметру входного зрачка. В предложенных нами оптических схемах диаметры всех линз в 1,5-2 раза больше, а следовательно, плотности световых потоков в линзах уменьшаются приблизительно в три раза. Оптическую схему такого объектива мы образовали путем установки впереди сложного длиннофокусного светосильного компонента с фокусным расстоянием около 180-200 мм и относительным отверстием 1:1,8-1:2 афокальной насадки приблизительно двукратного уменьшения, что привело к эквивалентному фокусному расстоянию проекционного объектива 90 — 100 мм при том же относительном отверстии 1:1,8-1:2. Спроектированная по такой схеме система имеет линзы большого диаметра (около 100 мм) и длину более 300 мм.

Трудность решаемой задачи заключалась в достижении достаточно совершенной коррекции аберраций при расширенных полях зрения (30—40°) и минимальном виньетировании лучей широких наклонных пучков. Разработанные автором и Э. Конторович проекционные анастигматы ОКП2 и ОКП3 (табл. VII, 3) при виньетировании, не превышающем 20% на краю поля, разрешают около 100  $mm^{-1}$  в центре с плавным снижением разрешения до 60—55  $mm^{-1}$  на краю поля. На рис. VII, 7 представлена оптическая схема системы, образованной из основного пятилинзового объектива и двухкомпонентной афокальной насадки

В 1966 году в ЛИКИ были разработаны малогабаритные шестилинзовые анастигматы типа «Эра» (см. рис. IV, 11, г), имеющие нормальные габариты обычных объективов и также предназначенные для проекции 70-мм фильмов. Объективы «Ликар-П-1» (f' = 90 мм, 1 : 2), «Ликар-П-2» (f' = 100 мм, 1 : 2) имеют оптические характеристики и качество оптического изображения , аналогичные объективам, приведенным в табл. VII, 3.

Таблица VI1,3

| Марка<br>объектива                                                           | Тип<br>объектива                                                                               | Фокусное рас-<br>стояние f', им           | Относительное<br>отверстие в                             | Диаметр оправы,<br><i>мм</i>                       | Длина объек-<br>тива Σ <i>d</i> , <i>мм</i>    | Задний отре-<br>зок, <i>мм</i>                       | Коэффициент<br>пропускания, %          | Разрешающая<br>сила в центре<br>и на краю поля,<br>мм <sup>-1</sup> | Освещенность на<br>краю поля, %                                                                          |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ОКП2-70<br>ОКП2-75<br>ОКП2-80<br>ОКП3-90<br>ОКП2-100<br>ОКП2-110<br>ОКП2-120 | Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат<br>Анастигмат | 70<br>75<br>80<br>91<br>100<br>110<br>120 | 1:1,8<br>1:2<br>1:2<br>1:1,8<br>1:2<br>1:2<br>1:2<br>1:2 | 104<br>82,5<br>82,5<br>104<br>82,5<br>82,5<br>82,5 | 344<br>354<br>373,5<br>386<br>454<br>90<br>112 | 52,2<br>54,8<br>59,4<br>73,1<br>82,0<br>69,1<br>78,8 | 74<br>73<br>70<br>75<br>72<br>75<br>85 | 90/50<br>100/55<br>100/60<br>90/55<br>100/65<br>80/50<br>90/55      | $   \begin{array}{r}     30 \\     28 \\     27 \\     28 \\     26 \\     \overline{30}   \end{array} $ |

Объективы для кинопроекции широкоформатных 70-мм фильмов

Эти объективы могут применяться в широкоформатных кинопроекторах пониженной световой мощности. В 1968 году была изготовлена первая партия объективов под шифрами ОКП-90-1 и ОКП8-100-1.







Рис. VII, 8. Схема малогабаритных десятилинзовых анастигматов для проекции 70-мм фильмов

Одновременно нами были выполнены разработки также десятилинзовых систем (рис. VII, 8), но значительно меньших габаритов и масс В частности, разработан объектив «Ликар-П-6» (ОКП8-70-1) с f' == 70 мм; 1:2, имеющий длину 212 мм и массу 3,5 кг, вместо длины 344 мм и массы 6,8 кг у серийного объектива ОКП2-70. В других вариантах проекционных объективов: «Ликар-П-7» (ОКП8-80-1) с f' = 80 мм(OKП8-100-1) c f' = 100 *мм*, «Ликар-П-9» 1:2,И удалось сохранить также высокие оптические качества. Последний из этих объективов разработан нами для сверхширокоформатного кинотеатра Советского павильона «ЭКСПО-70» в Японии для проекции двойного 70-мм кадра. В заключение упомянем о разработанных ЛИКИ, НИКФИ и ЦКБК проекционных вариоанаморфотах различных оптических схем, предназначенных для проекции анаморфированных фильмов 21.3 ×

 $\times$  18,1 *мм*, полученных из 35-*мм* кинопленке с разными переменными коэффициентами анаморфирования — от 0,5 до 2 крат. Эта система позволяет осуществить вариоскопический кинематограф, у которого в зависимости от изображаемых сюжетов будет синхронно изменяться конфигурация киноизображений на экране с переменным соотношением его сторон: от квадратного до вытянутого по вертикали или по горизонтали с соотношением, плавно изменяющимся соответственно содержанию изображаемого сюжета, что запрограммировано в процессе съемки кинофильмов (или при печати вариоскопических фильмокопий) с различными величинами коэффициентов анаморфирования.

## § 4. ОБЪЕКТИВЫ ДЛЯ ПРОЕКЦИИ ЛЮБИТЕЛЬСКИХ 8-мм КИНОФИЛЬМОВ И ФОРМАТА «СУПЕР-8»

Для проекции 8-мм кинофильмов с форматом проекционного кадра 4,5 × 3,3 мм и фильмов формата «Супер-8» (проекционный кадр 5,36 × 4,01 мм) обычно применяются особо светосильные объективы с относительными отверстиями 1 : 1,4—1 : 1,2. Они должны иметь фокусные расстояния, приблизительно в два раза большие фокусных расстояний штатных съемочных объективов — около 20 мм. Из формулы (VII,3) определяется требуемая разрешающая сила объектива. Для проекционного кадра «Супер-8», положив для невысоких уровней яркости экрана  $\psi = 3-4' \approx 0,001 \ pad$ , получим  $N_0^{(\circ)} \ge 100 \ mm^{-1}$ . Этим требованиям отвечает разработанный Д. Волосовым и М. Персиной светосильный анастигмат «Экран-1», в котором применена оригинальная шестилинзовая оптическая схема (см. рис. VII,4). При фокусном расстоянии 18 мм и относительном отверстии 1 : 1,2 объектив разрешает около 120 мм<sup>-1</sup> в центре поля с плавным снижением разрешения до 70 мм<sup>-1</sup> на краю.

Весьма удобен для любительских кинопроекторов объектив с переменным фокусным расстоянием. У нас и за рубежом разработаны проекционные анастигматы с относительными отверстиями 1 : 1,4 и выше при фокусных расстояниях, изменяющихся от 15 до 25 *мм*, что и дает возможность изменять проекционные расстояния в достаточно широких пределах.

К числу неудачных разработок следует отнести выпущенный к проектору «Квант» панкратический объектив ПФ-1 (f' = 15-25 мм) больших габаритов. Он состоит из десяти линз, имеет длину 91 мм при диаметре первой линзы 37 мм. Этим обстоятельством воспользовались японские оптики, оснастив экспортируемые в Англию наши кинопроекторы «Луч-2» малогабаритным простым шестилинзовым объективом «Луч-3ум» (f' = 15-25 мм), имеющим длину около 64 мм при диаметре наибольшей первой линзы 27 мм. Однако при этом была сознательно допущена рекламная мера: объектив маркируется относительным отверстием 1 : 1,4, в то время как фактическое его отверстие, как показали контрольные измерения, не превышает 1 : 1,66.

Более удачное решение получено в ЛИКИ (Д. Волосовым и Н. Лебебедевой), где для увеличенного формата «Супер-8» разработан и передан промышленности панкратический восьмилинзовый объектив «Варио-Ликар-П» (f' = 18 - 30 мм), с относительным отверстием 1 : 1,2, что обеспечивает светосилу, в два раза большую, чем у японского объектива; его общая длина 60 мм при диаметре первой линзы 30 мм. Этот объектив является результатом упрощения описанной выше схемы «Варио-Ликар-П», его образцы изготовлены под шифром ПФ-6.

## § 5. ОБЪЕКТИВЫ ДЛЯ ЭПИ- И ДИАПРОЕКЦИИ

Для проекции на экран прозрачных (диапозитивов) и непрозрачных (рисунков, чертежей), плоских объектов применяются различные объективы, как специально для этих целей разработанные, так и выпускающиеся серийно для комплектации других приборов, но используемые также и в проекционных установках.

Наиболее широкое распространение получил анастигмат «Триплет». Он применяется как в массовых малоформатных диапроекторах (кадропроекторах) 24 × 36 *мм*, так и в эпидиаскопах с большими форматами проецируемых кадров.

В отечественных кадропроекторах «Свет» с полезным потоком 150 лм и «Горизонт» с потоком 350 лм применяются триплеты с фокусными расстояниями 78 мм и относительными отверстиями 1:2,8. В кадропроекторах тех же форматов «Этюд» с полезным потоком 85 лм и «Протон» с потоком 350 лм применяются гриплеты тех же отверстий 1:2,8, но несколько меньших фокусных расстояний (75мм); причем в последнем кадропроекторе предусмотрены также сменные триплеты с фокусными расстояниями 100 и 150 мм и относительными отверстиями соответственно 1:2,8 и 1:3.

Школьной эпидиаскоп  $100 \times 100$  *мм* комплектуется двумя объективами: триплетом для эпископической проекции f' = 442 *мм*; 1:5 и объективом — перископ f' = 206 *мм*; 1:5 для диаскопической проекции.

Переносной настольный эпидиаскоп ЭПД-452, рассчитанный на малые аудитории (до 30 чел.), при расстояниях от прибора до экрана  $3-6 \ m$  комплектуется триплетом  $f' = 365 \ mm$  (см. табл. VII,4) для эпископической проекции непрозрачных объектов с увеличениями от 7 до 15 крат. Этот же объектив сохранен в более поздней модели ЭПД-455.

Несколько более сложным (четырехлинзовым) анастигматом «Индустар-51» комплектуется эпидиаскоп ЭПД-452 и усовершенствованная модель ЭПД-455 для проекции диапозитивов до 9—12 см с увеличениями от 13 до 27 крат. Этот же объектив применен в переносном настольном приборе ЭДИ-454 для проекции на экран записей при чтении лекций, а также в более поздней модели ЭДИ-459, в которых используется 19-см прозрачная пленка с форматом кадра 17 × 14 см, проецируемая с увеличениями от 9 до 20 крат.

Четырехлинзовый анастигмат «Сатурн-2» обеспечивает несколько лучшее качество изображения, чем объектив триплет f' = 494 мм, которым также комплектуется эпидиаскоп ЭПД-451 взамен объектива «Уран-12».

Шестилинзовый объектив типа «Гелиос» (f' = 92 мм; 1:2) применяется в кадропроекторе ЛЭТИ-60, обеспечивая с лампой К-22 при формате кадра  $24 \times 36 \text{ мм}$  полезный световой поток 500 лм.

Объектив того же типа «Гелиос», выпускающийся под маркой Ж-26 (см. табл. VII,4), применяется в кинопроекторе СКП-34 для проецирования нормального 35-*мм* кадра на мозаику телевизионной трубки 9 × 12 *см* с увеличением 5,75 крат.

Шестилинзовый высокоразрешающий ортоскопический анастигмат «Орион-18» позволяет проецировать с любыми увеличениями — от 1 : 1 и более. Имеет хорошо исправленную дисторсию, что делает возможным его применение в проекционных установках, где необходимо строгое соблюдение масштаба проецируемых объектов. Визуальная разрешающая способность объектива в центре поля близка к теоретически предельной — около 200 мм<sup>-1</sup> и плавно снижается по полю до 130 мм<sup>-1</sup>.

Семилинзовый высококачественный анастигмат «Уран-12» (см. табл. VII, 4) установлен в эпидиаскопе ЭПД-451 для эпископической проекции кадров 20 × 20 см с увеличениями от 10 до 18 карт. ЭПД-451 — большой эпидиаскоп, рассчитанный на обслуживание аудиторий до 100 человек и больше (при применении экранов направленного отражения) при расстояниях от прибора до экрана 5—10 м.

Таблица VII,4

| Название (марка) | е фо-<br>асстоя-<br>м               | льное<br>с в           | я зре-<br>°) или<br>проеци-<br>кадра                                    | ина<br>аΣd, мм       | Положе<br>фокусов, | ние<br>мм        | Свет<br>диам<br>лин э | овые<br>метры<br>, <i>мм</i> |
|------------------|-------------------------------------|------------------------|-------------------------------------------------------------------------|----------------------|--------------------|------------------|-----------------------|------------------------------|
| объектива        | Расчетное<br>кусное ра<br>ние f', м | Относите.<br>отверстие | Yron пол<br>ния $(2 w)$ ,<br>pa3Mebbi<br>pyeMoro<br>$(a \times b)$ , cM | Общая дл<br>объектив | <sup>s</sup> F     | s' <sub>F'</sub> | первой<br>линзы       | пос-<br>ледней<br>линзы      |
| `                | 0.07 0                              |                        | 15.15                                                                   | 1.01 -               | 000 1              | 015 0            | 100.0                 |                              |
| «Триплет»        | 365,0                               | 1:3,7                  | $15 \times 15$                                                          | 121,5                |                    | 315,0            | 100,0                 | 90,0                         |
| «Индустар-51»    | 210,2                               | 1:4,5                  | 9×12                                                                    | 48,1                 | -191,0             | 183,5            | 46,7                  | 41,6                         |
| «Уран-12»        | 496,0                               | 1:2,5                  | $20 \times 20$                                                          | 293,0                | 343,0              | 302,2            | 196,0                 | 146,0                        |
| «Уран-9»         | 255,0                               | 1:2,5                  | 9×12                                                                    | 169.5                | -146.9             | 165,6            | 133,6                 | 121,4                        |
| «Триплет»        | 494.0                               | 1:3.5                  | $20 \times 20$                                                          | 169.4                |                    | 422.4            | 141.1                 | 133.1                        |
| «Carvpн-2»       | 501.0                               | 1:3.5                  | 18×18                                                                   | 268.1                | -234.0             | 367.8            | 143.0                 | 160.5                        |
| PO-116           | 149.4                               | 1:3.5                  | $9 \times 12$                                                           | 72.5                 | -119.3             | 104.1            | 57.6                  | 55.5                         |
| PO-117           | 199 6                               | 1:3.5                  | $9 \times 12$                                                           | 96.9                 | -159 4             | 140.2            | 65.4                  | 61.1                         |
| <b>W-</b> 26     | 180                                 | 1.2 5                  | $1.52 \times 2.09$                                                      | 132 4                | - 80'5             | 106 8            | 83 5                  | 70.0                         |
| /                |                                     |                        | $(\beta = -5,75)$                                                       |                      |                    | ,.               | ,.                    | ,.                           |
| «Орион-18»       | 100                                 | 1:6,3                  | ¨ 8×8 ´                                                                 | 46,0                 | -70,2              | 73,4             | 31,2                  | 32,0                         |

Объективы для эпи- и диапроекции

В этой же установке ЭПД-451 используется анастигмат «Уран-9» для проекции диапозитивов 9  $\times$  12 см при увеличениях от 20 до 35 крат.

Анастигматы РО-116 и РО-117 семилинзовой оптической схемы предназначены для диарирпроекции диапозитивов формата 9 × 12 см на рирэкран размером до 3—4 м. Объективы обладают хорошим качеством изображения в пределах всего поля.

## глава чін ОБЪЕКТИВЫ ДЛЯ ТЕЛЕВИДЕНИЯ

Оптические характеристики и свойства объективов, проецирующих изображения на светочувствительные поверхности различных приемников, определяются рядом факторов, а с энергетической точки зрения — двумя: спектральными и яркостными характеристиками изображаемых объектов (самосветящихся или освещаемых) и спектральной чувствительностью приемников изображений. Большую группу представляют объективы, проецирующие изображения на фотокатод телевизионных передающих трубок.

Известно много типов телевизионных трубок как зарубежных, так и отечественных общего и специального назначения, различающихся по ряду параметров и прежде всего по интересующей нас в данном случае спектральной чувствительности.

На рис. VIII, 1 приведены спектральные характеристики отечественных трубок «Кокс» и «Колба», максимумы спектральной чувстви-

тельности которых приходятся соответственно на длины волн  $\lambda = 470$  нм и е ( $\lambda = 546, 1$  нм). Фотокатоды других трубок (например, ЛИ-7 и ЛИ-17) имеют максимумы чувствительности в несколько более



Рис. VIII, 1 Спектральные характеристики телевизионных трубок «Кокс» и «Колба» и актиничные потоки при источнике А



Рис. VIII. 2. Относительная спектральная чувствительность фотокатодов телевизионных передающих трубок ЛИ-7, ЛИ-17, ЛИ-23 и ЛИ-13

коротковолновой области — вблизи 440—450 нм (рис. VIII, 2), а трубка ЛИ-13 — в длинноволновой области — вблизи спектральной линии  $\lambda = 730$  нм. На рис. VIII, 1 приведены также относительные величины актиничных потоков для трубок «Кокс» и «Колба» при источнике освещения А. Соответственно должна выполняться хроматическая коррекция разрабатываемых для них объективов.

## § 1. ОБЪЕКТИВЫ ТЕЛЕВИЗИОННЫХ ПЕРЕДАЮЩИХ КАМЕР

Качество телевизионного изображения определяется многими факторами: четкостью, линейностью строчной и кадровой разверток, геометрическими и градационными искажениями, шумами и др. Оптическая часть телевизионной системы влияет главным образом на четкость телевизионной картины. Оценка четкости изображения, по-видимому, наиболее полно проводится описанными в главе III методами Фурьеанализа, позволяющими раздельно получить частотно-контрастные характеристики всего телевизионного канала: объектива, передающей телевизионной трубки, видеоусилителя, кинескопа и т. п. Результаты подобных оценок позволяют устанавливать требования к качеству объективов, участвующих в формировании телевизионного изображения.

Напомним, что частотно-контрастные характеристики объективов в белом или каком-либо другом сложном свете зависят также от спектральной чувствительности приемника, вследствие чего можно в качестве такового использовать непосредственно ту телевизионную передающую трубку, с которой объектив сопряжен в телевизионной системе. Применение какого-либо другого приемника требует коррекции его спектральной чувствительности соответственно чувствительности фотокатода передающей трубки.

Необходимо проецировать изображения штрихов миры на фотокатод телевизионной трубки, используемой в качестве приемника, с достаточно большим увеличением — таким. чтобы частотно-контрастная характеристика телевизионного тракта не влияла на измеряемый коэффициент передачи контраста испытуемого объектива. Изображения высокочастотных штрихов миры на фотокатоде трубки должны быть приблизительно в десять раз шире, чем ширина строки трубки, что достигается, например, применением микроскопа в качестве проекционной системы, проецирующей изображения штрихов миры испытуемым объективом в плоскость фотокатода телевизионной трубки.

Исследования показали, что хорошим объективом, практичееки не снижающим четкости телевизионного изображения, формируемого телевизионным трактом, является объектив, обеспечивающий на граничных телевизионных частотах  $N_{\rm rp}'$  величину коэффициента передачи контраста не менее 0,75 как в центре, так и на краю растра:

$$N'_{\rm rp} = \frac{n\,(1-q)}{2h},$$
 (VIII, 1)

где n — число строк разложения; h — высота рабочей поверхности фотокатода в *мм*; q — относительное время обратного хода развертки.

Удовлетворительный объектив имеет величины коэффициента передачи контраста не менее 0,5 в пределах всего растра. Объективы, у которых величины этих коэффициентов на граничных частотах менее 0,5, следует считать неудовлетворительными. К телевизионным системам также должно быть предъявлено требование, чтобы величина их результирующего коэффициента передачи контраста (без объектива) была не менее 0,2 — для предельных частот тракта и не менее 0,1 — для всей телевизионной системы в целом. Конечно, указанные здесь величины являются весьма ориентировочными, принимаемыми нами для

оценки качества описываемых ниже объективов. Для суждения о качестве одного из основных звеньев телевизионного канала — передающей трубки — приводим величины коэффициентов передачи контрастов в центре растра для трубок типа суперортикон ЛИ-13 и ЛИ-17 (размеры маски фотокатода 32 × 24 мм) и трубки типа видикон ЛИ-23 с размерами маски 12,7 × 9,5 мм (рис. VIII, 3).

Эти исследования следует продолжить и для трубок других телевизионных систем, в частности широковещательных. Однако уже из этих материалов следует, что для принятого у нас стандарта 625 строк разложения при высоте рабочей поверхности фотокатода



Рис. VIII, 3. Частотно-контрастные характеристики передающых телевизионных трубок в центре растра: суперортиконы ЛИ-13, ЛИ-17 и видикон ЛИ-23

24 мм для передающей трубки широкого вещания (например, типа «Кокс») имеем около 12 оптических линий на миллиметр; при этом принято, что около 7% строк не используются для передачи изображения и предназначаются для возвращения развертывающего пятна в исходное положение, т. е.  $q \approx 0,07$ . Даже при этих частотах наиболее узким звеном, определяющим ЧКХ всей системы, является передающая телевизионная трубка, коэффициент передачи контраста которой оказывается не выше 0,15-0,2 при предельных частотах. При этом мы, естественно, считаем, что по мере уменьшения пространственных частот изображений величина коэффициента передачи контраста возрастает; по крайней мере, объектив представляет собой хороший фильтр главным образом низких пространственных частот, пропускающий высокие частоты при пониженных контрастах

Как следует из формулы (III, 90):

$$d = \frac{2}{\pi N'} \sqrt{2.5(1-T)},$$

при частотах  $N' = 12 \ mm^{-1}$  и коэффициентах передачи контраста T порядка 0,7—0,8 размеры d' аберрационных фигур рассеяния лучей (см. рис. III, 11) не должны превышать 0,04—0,05 mm — условие, которое должно быть выполнено при разработке телевизионных объективов и которое не всегда удается при расчете широкоугольных светосильных объективов, в частности с переменным фокусным расстоянием.

Работы этого направления выполнялись у нас в 1965—1967 годах. В результате был создан новый комплект объективов для отечественных телевизионных студий, в частности для Общесоюзного телецентра (ОТЦ) в Останкине (Москва). Разработано 13 типов объективов — от короткофокусного широкоугольного («Мир-10-Т» с f' = 27 мм; 1 : 3,5) до длиннофокусного («Таир-52-Т» с f' = 1000 мм; 1 : 8), предусматри-



Рис. VIII, 4. Оптическая схема панкратического объектива «Алькор-6» (f'=80-800 мм)



Рис. VIII, 5. Схема телевизионного панкратического объектива «Варио-Гоир-1Т» (f'=40-400 мм)

вающих возможность ведения как студийных, так и внестудийных телевизионных передач. Объективы созданы на основе описанных выше наших оригинальных оптических схем типа «Мир» (см. рис. V, 9), «Эра» (см. рис. IV, 11, *г*) и «Таир» (см. рис. V, 12).

Для внестудийных передач разработан объектив «Алькор-6» с переменным фокусным расстоянием (рис. VIII,4), изменяющимся от 80 до 800 *мм* в двух переключающихся диапазонах непрерывного изменения фокусных расстояний: от 80 до 400 *мм* — при относительном отверстии 1 : 4 и от 160 до 800 *мм* — при 1 : 8. Как для студийных, так и внестудийных передач разработан объектив «Варио-Гоир-1Т» с фокусным расстоянием, непрерывно изменяющимся от 40 до 400 *мм* при постоянном относительном отверстии 1 : 4.

Объектив содержит оптические преломляющие поверхности лишь сферической формы (рис. VIII, 5), в отличие от известного английского объектива «Варотал-5» фирмы «Тейлор—Гобсон», имеющего аналогичные оптические характеристики и габариты, в котором применена асферическая поверхность сложной формы.

Для оценки оптических качеств объективов была применена методика частотно-контрастных характеристик. При принятом в СССР стандарте в 625 телевизионных строк разложения, весь как показали исследования Э. Соколовского и М. Хухриной, весь комплект объективов с постоянными фокусными расстояниями в центральной части поля обладает высокими коэффициентами передачи контраста — порядка 0,8 — 0,85, — которые по полю плавно снижаются до 0,45—0,55 у широкоугольных объективов и до 0,6—0,7 — у длиннофокусных систем.

В табл. VIII, 1 приведены их некоторые характеристики; все объективы рассчитаны для формата фотокатода 24 × 32 мм. Величины коэффициентов передачи контраста плав-

но снижаются от центра к краю поля; они зависят от актиничных потоков:

$$A_{\lambda} = \varphi_{\lambda} S_{\lambda} = \frac{dP_{\lambda}}{d\lambda} S_{\lambda}$$
. (VIII, 2)

Например, группу студийных объективов, к которым отнесем объективы с фокусными расстояниями 27—210 мм, естественно испытывать при источнике освещения *A*; группу внестудийных более длиннофокусных объективов (300 мм и более) — рациональнее испытывать



Рис. VIII, 6. Актиничные потоки: a — источника A и трубки «Кокс»;  $\delta$  — источника A, фотоумножителя ФЭУ-27 и светофильтра C3C-17 (2 *мм*)

с источником дневного света. На рис. VIII, 1 приведена кривая актиничного потока  $A_{\lambda}$  для трубки «Кокс» и источника A, с которыми исследовались ЧКХ студийных объективов, приведенных в табл. VIII, 1. Заметим, что весьма близкое распределение актиничного потока имеет источник A в сочетании с сине-зеленым светофильтром СЗС-17 (толщиной 2 *мм*) и фотоумножителем ФЭУ-27. На рис. VIII, 6 приведены эти кривые актиничных потоков.

Сопоставляя величины коэффициентов передачи контраста для различных объективов с введенными выше градациями качества по величинам этих коэффициентов, видим, что у объектива «Мир-1-Т» эта величина по краю поля снижается до 0,35; этот объектив желательно усовершенствовать.

Из группы короткофокусных объективов высоким контрастом, в пределах всего поля обладают объективы «Мир-10-Т» и «Гелиос-95А-Т». При разработке последнего особое внимание было уделено коррекции аберраций по полю в целях повышения ЧКХ объектива. На рис. VIII, 7 приведены результаты расчета величин коэффициентов передачи контраста для основного цвета e ( $\lambda = 546, 1 \, \text{нм}$ ) в центре поля (a) и для угла поля зрения 10° (b), что соответствует радиусу поля изображения  $l' = 8,5 \, \text{мм}$ . Фактически измеренные величины T у тщательно изготовленных образцов объектива оказались лишь на 0,05 меньшими приведенных на рисунке расчетных данных в пределах частот до 40  $\text{мm}^{-1}$ .

Созданный комплект объективов находится на современном техническом уровне.

Широкое применение за последние годы получили панкратические анастигматы, разработанные как для трубок видикон, так и для трубок ортикон и суперортикон. Особых успехов в этой области достигли фир-



Рис. VIII, 7. Расчетные ЧКХ объектива «Гелиос-95А-Т»: а — в центре поля; б для угла поля зрения 10° (пунктиром указано меридиональное направление штрихов миры, сплошной линией - сагиттальное направление)

он. Особых успехов в этой области достигли фирмы «Анженье» (Франция), «Тейлор—Гобсон» (Англия), «Канон» (Япония и др.)

Примером удачно созданной системы с механической компенсацией и широкими пределами изменения фокусного расстояния является французский телевизионный панкратический объектив «Анженье-Зум 10 × 35В» для трубки ортикон (24 × 32 мм), у которого фокусное расстояние непрерывно изменяется от 35 до 350 мм при номинальном (рекламируемом) относительном отверстии 1:3,8. Длина объектива 370 мм при диаметре наибольшей первой линзы 150 мм, большом заднем фокальном отрезке (90 мм) и массе 9,1 кг. Объектив был подвергнут экспериментальному исследованию. Фактически он имеет приблизительно лишь девятикратные пределы изменения фокусного расстояния (от 35 до 325 *мм*) при отверстии 1 : 4 на участке коротких фокусных расстояний, снижающемся до 1:4,2 при бо́льших фокусных расстояниях. Оптикокинематическая схема трехкомпонентного варифокусного расстояния близка к схеме, атора представленной на рис. V, 38, и отличается от последней знаком оптической силы третьего компонента, у «Анженье-Зум» положительный.

Таблица VIII,1

|                                                                                                                                                                                                            | рас-<br>мм                                                                                                | ное                                                            | зрения                                                                      | 10Нен-                                                                    | нт<br>19, %                                                          | Коэфф<br>переда<br>траст<br>N'=1                             | оициент<br>чи кон-<br>а при<br>3 <i>мм</i> <sup>-1</sup>                                                                  | Масса                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Название объектива                                                                                                                                                                                         | Фокусное  <br>стояние f'                                                                                  | Относитель<br>отверстие ∈                                      | Угол поля<br>2 w,°                                                          | Число комі<br>тов и линз                                                  | Коэффициен<br>пропускани                                             | в цен-<br>тре<br>поля<br>( <i>l</i> '==0)                    | на<br>краю<br>( <i>l'=</i> 17<br><i>мм</i> )                                                                              | тива,<br>г                                             |
| «Мир-10-Т»<br>«Мир-1-Т»<br>«Гелиос-95А-Т»<br>«Эра-4-Т»<br>«Эра-2-Т»<br>«Таир-51-Т»<br>«Таир-51-Т»<br>«Таир-45-Т»<br>«Таир-44-Т»<br>«Таир-44-Т»<br>«Таир-44-Т»<br>«Таир-46-Т»<br>«Таир-50-Т»<br>«Таир-52-Т» | $\begin{array}{c} 27\\ 37\\ 50\\ 85\\ 100\\ 135\\ 180\\ 210\\ 300\\ 400\\ 500\\ 750\\ 1000\\ \end{array}$ | 1:3,51:2,81:21:1,51:21:31:2,81:3,51:4,51:4,51:4,51:5,61:6,31:8 | 71<br>58<br>44<br>27<br>23<br>17<br>13<br>10<br>7,5<br>6<br>5<br>3<br>2°20' | 7/8<br>5/6<br>5/6<br>5/6<br>3/4<br>3/4<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3 | 75<br>75<br>80<br>80<br>80<br>75<br>75<br>80<br>75<br>70<br>75<br>65 | 0,85<br>0,85<br>0,85<br>0,80<br>0,80<br>0,80<br>0,80<br>0,80 | $\begin{array}{c} 0,55\\ 0,35\\ 0,65\\ 0,53\\ 0,53\\ 0,64\\ 0,70\\ 0,60\\ 0,60\\ 0,65\\ 0,65\\ 0,60\\ 0,60\\ \end{array}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Комплект отечественных телевизионных объективов

Первый (неподвижный) компонент вариатора служит для дистанционной фокусировки объектива; перемещающиеся второй и третий компоненты нелинейно связаны друг с другом, что дает возможность наряду с изменением фокусного расстояния получать изображения в неподвижной плоскости после третьего компонента. Расположенный позади вариатора четвертый неподвижный компонент (корректор) компенсирует остаточные аберрации вариатора. Такая оптико-кинематическая схема имеет элементарно простое решение в параксиальной области. А именно, при заданных фокусных расстояниях (или оптичес-ких силах) компонентов вариатора:

$$\varphi_1 = \frac{1}{f_1'}, \quad \varphi_2 = \frac{1}{f_2'}, \quad \varphi_3 = \frac{1}{f_3'};$$

задавая ряд значений d<sub>1</sub> первому промежутку между главными плоскостями первого и второго компонентов, определяем второй промежуток d, из условия неподвижности положения изображения после третьего компонента:

$$d_{2} = s'_{2} + f'_{3} - \frac{1}{2} (A + 2f'_{3}) \pm \sqrt{\frac{1}{4} (A + 2f'_{3})^{2} - f'_{3}}^{2}, (VIII, 3)$$

где

$$s'_{2} = \frac{1 - \varphi_{1}d_{1}}{\varphi_{1} + \varphi_{2} - \varphi_{1}\varphi_{2}d}; \quad A = L_{3} - (d_{1} + s'_{2}); \quad (VIII, 4)$$

 $s'_2$  — расстояние параксиального изображения от задней главной точки второго компонента;  $L_3$  — расстояние от задней главной точки первого неподвижного компонента до изображения после третьего компонента — величина постоянная для данной системы. Из двух знаков перед радикалом в формуле (VIII, 3) берется тот, при котором величина  $d_2$  имеет наименьшее значение. Третий промежуток  $d_3$  — расстояние между главными точками третьего и четвертого компонентов — определяется из условия:

$$d_3 = L - d_1 - d_2, \qquad (VIII, 5)$$

где L — расстояние от задней главной точки первого компонента до передней главной точки четвертого компонента (корректора) — также величина постоянная. Таким образом, величины  $d_1, d_2, d_3$  определяют расстояние между главными плоскостями компонентов.

Объектив «Анженье-Зум 10 × 35В» содержит 19 линз: семь линз первого компонента, три линзы второго компонента, четыре линзы третьего компонента и пять линз корректора. Объектив снабжен тремя удлинителями фокусных расстояний, устанавливаемыми позади объектива и имеющими линейное увеличения  $\overline{\beta} = 1,6$ ; 2,6 и 4 крат. Соот-ветственно увеличиваются абсолютные значения изменяющихся фокус-ных расстояний, но при этом уменьшаются относительные отверстия: f' = 56-560 мм при отверстии 1 : 6,3; f' = 90-900 мм при отверстии 1 : 10 и f' = 140-1400 мм при отверстии 1 : 16 (см. табл. VIII, 2). Один объектив с тремя удлинителями дает возможность вести и сту-

дийные и внестудийные передачи при пониженных требованиях к последним, так как, конечно, качество оптического изображения остается при этом невысоким. Исследования фотографической разрешающей силы объектива для основных фокусных расстояний 35, 200 и 325 мм показали, что если в центре поля ее величина не снижается ниже  $35 \text{ мм}^{-1}$ , то уже для поля изображения l' = 17 мм разрешение падает до 6—8 мм<sup>-1</sup> для фокусного расстояния 35 мм, до 12 мм<sup>-1</sup> — при f' == 200 мм и до 20—18 мм<sup>-1</sup> — при f' = 325 мм.

Интерес представляют результаты исследований ЧКХ объектива, выполненные для пространственной частоты 12  $mm^{-1}$  изображения синусоидальной решетки при актиничном потоке на уровне 0,5 от максимального значения в пределах спектра 500—700 *нм*. При указанной частоте величины коэффициента передачи контраста составляют в центре поля около 0,78 для фокусного расстояния 35 *мм* со снижением до 0,55 и до 0,58 соответственно для фокусных расстояний 200 и 325 *мм*. Для точек поля l' = 12 *мм* величины коэффициентов снижаются приблизительно до 0,28 при фокусном расстоянии 35 *мм* и до 0,42 и 0,35 соответственно для фокусных расстоянии 35 *мм*. Для более удаленных точек поля изображения l' = 17 *мм* величины коэффициентов передачи контраста катастрофически снижаются до 0,10—0,05 для фокусного расстояния 35 *мм* и до 0,14 и 0,20 — соответственно для фокусных расстояний 200 и 325 *мм*. Эти цифры мы привели для последующего сопоставления с другими объективами того же назначения.

Не меньшую известность получил английский телевизионный объектив «Варотал-5», являющийся одним из лучших вариантов объективов, разработанных фирмой «Тейлор—Гобсон», специализировавшейся последние годы в области создания телевизионной оптики.

Объектив рассчитан на трубку ортикон ( $24 \times 32$  *мм*). Его оптическая схема состоит из трехкомпонентного вариатора и сложного корректора; оптико-кинематическая схема вариатора представлена на рис. V, 38. Объектив имеет десятикратное изменение фокусного расстояния — от 40 до 400 *мм* — при максимальном относительном отверстии 1 : 4 (см. табл. VIII, 2) и снабжен тремя приставками — удлинителями фокусных расстояний. Объектив имеет удобное для оператора ручное и электроприводное управление, а также широкие пределы дистанционной наводки — до ближайшей дистанции 1,8 *м*.

Одна из преломляющих поверхностей сложного шестилинзового корректора объектива «Варотал-5» (на рис. VIII, 9, *а* эта поверхность помечена пунктиром) имеет асферическую форму с малыми отступлениями от сферы, но сложного профиля, описываемого уравнением высокого порядка, приведенным к фокусному расстоянию  $f'_{\rm мин} = 1$ :

$$x = -4,077 + \sqrt{16,62193 - y^2} - 0,02459203y^4 + 0.08899172y^6 - 0.02440590y^8 - 0.00744245y^{10}, \quad (VIII, 6)$$

Введение асферики позволило существенно улучшить коррекцию сферической аберрации, в частности при крайних значениях фокусных расстояний. Коррекцию аберраций системы на участке малых фокусных расстояний рационально проводить, используя коррекционные па-

## Таблица VIII,2

# Объективы с широким интервалом изменения фокусных расстояний для телевизионных трубок ортикон

| отрезок, мм<br>Ке са,                                   | 5 9,1                                  | 1                      |                        |                        | <br>                           |                              |                        |                        |                |
|---------------------------------------------------------|----------------------------------------|------------------------|------------------------|------------------------|--------------------------------|------------------------------|------------------------|------------------------|----------------|
| -оф йинда£<br>Кальный                                   | 89,                                    |                        |                        |                        | 113                            | 1                            |                        |                        | 68             |
| Диаметр пер-<br>вого компо-<br>нента, мм                | 150                                    |                        |                        |                        | 142                            |                              |                        |                        | 140            |
| Длина<br>систе-<br>мы, <i>мм</i>                        | 513                                    | ļ                      |                        |                        | 407                            | I                            |                        |                        | 403            |
| Число<br>линз                                           | 19                                     | 1                      |                        |                        | 16<br>(одна ас-<br>ферическая) | <br> <br>                    |                        |                        | 18             |
| Относительное<br>отверстие<br>s                         | 1:3,8<br>(1:4,2)                       | 1:6,3                  | 1:10                   | 1:16                   | l:4                            | 9:1                          | 1:8                    | 1:12                   | 1:4            |
| Угол поля<br>зрения<br>2 w.°                            | 62°—7°                                 | 41°4°20′               | 23°—2°30′              | 16°—1°50′              | 54°6°                          | 36°4°                        | 28°—3°                 | 19°—2°                 | 54°—6°         |
| Крат-<br>ность<br>т                                     | 10                                     | 10                     | 10                     | 10                     | 10                             | 10                           | 10                     | 10                     | 10             |
| Предел<br>изменений<br>фокусных<br>расстояний<br>f', мм | 35—350                                 | 56—560                 | 00606                  | 140—1400               | 40400                          | 60600                        | 80800                  | 1201200                | 40400          |
| Страна,<br>фирма                                        | Франция,<br>«Анженье»                  |                        |                        |                        | Англия,<br>«Тейлор-<br>Гобсон» |                              |                        |                        | ссср,<br>ГОИ   |
| Название<br>объектива                                   | «Анженье-Зум<br>10×35В»<br>удлинители: | $\overline{\beta}=1,6$ | $\overline{\beta}=2,6$ | $\overline{\beta}=4,0$ | «BaporaJI-5»                   | удлинители:<br><u></u> ∃=1.5 | $\overline{\beta}=2,0$ | $\overline{\beta}=3,0$ | «Варио-Гоир-IТ |

| VIII,2         |
|----------------|
| ma6 <b>1</b> . |
| П родолжение   |

| Macca<br>K2                                                        | 14,5                   | 18,0                                         | 15,3                                 | 9,2                                 | 15,6                        |
|--------------------------------------------------------------------|------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|-----------------------------|
| оф йннд б<br>Каннался<br>мм ноеэото                                |                        | 212                                          | 1                                    |                                     | I                           |
| 19л qтэмьнД<br>вого компо-<br>мм бтнэн                             | 174                    | 178                                          | I                                    | I                                   | 170                         |
| Длин а<br>систе<br>мы мм                                           | 722                    | 720                                          | 650                                  | 529                                 | <u>7</u> 50                 |
| Числ <b>о</b><br>лин з                                             | I                      | 1                                            | 13<br>(одна асфе-<br>рическая)       | 15                                  | 20                          |
| Относительное<br>отверстие<br>ŝ                                    | 1:6,4                  | 1:4<br>(63,5—546)<br>1:4—1:7,5<br>(546—1016) | 1:4<br>(100—500)<br>1:8<br>200—1000) | 1:4<br>(80—400)<br>1:8<br>(160—800) | 1: 4(46-460)1: 7, 5(46-920) |
| Угол поля<br>зрения<br>2 со, °                                     | 28°—2°30′              | 29°—1,8°                                     | 22°—2°20′                            | 28° — 3°                            | 56° — 3°                    |
| Крат-<br>ность<br><i>т</i>                                         | 12                     | 16                                           | 10                                   | 10                                  | 50                          |
| Предел<br>изменений<br>фокусных<br>расстояний<br>f <sup>7</sup> мл | 68—800                 | 63,5—1016                                    | 100—1000                             | 80—800                              | 46—920                      |
| Страна<br>фирма                                                    | Франция,<br>«Анженье»  | Англия,<br>«Гейлор—<br>Гобсон»               | Англия,<br>« Тейлор—<br>Гобсон»      | cccp,<br>ron                        | ссср<br>ГОИ                 |
| Название<br>объектива                                              | «Анженье Зум<br>12×68» | «Baporan-14»                                 | «Baporaл-3»                          | «Алькор-б»                          | «Вар иогамма-2»             |

раметры последнего компонента системы — корректора, а исправление аберраций на участке больших фокусных расстояний целесообразно проводить, используя параметры первых компонентов системы, так как при больших фокусных расстояниях первые компоненты системы работают при больших относительных отверстиях и их коррекционные параметры являются наиболее активными; при этом аберрации при малых фокусных расстояниях почти не изменяются.

Удачна в объективе «Варотал-5» внутренняя фокусировка на конечные расстояния объектов, достигаемая тем, что первый компонент



Рис. VIII, 8 Характеристики оптических свойств объектива «Варотал-5»: а — разрешающей силы; б — коэффициентов передачи контраста; в — освещенности изображений по полю

объектива разделен на две части: отрицательную склеенную линзу, остающуюся неподвижной, и положительную двухлинзовую комбинацию, перемещение которой и осуществляет дистанционную наводку объектива. Такое решение помимо оптического обладает механико-эксплуатационными преимуществами: сокращает длину объектива, дает возможность его герметизации, что предохраняет от загрязнения и порчи внутреннюю механическую конструкцию системы.

Качество оптического изображения, в частности коэффициент передачи контраста объектива «Варотал-5», несколько выше, чем у объектива «Анженье-Зум 10 × 35В». Результаты измерений фотографической разрешающей силы объектива представлены на рис. VIII, 8, *a*; измерения проводились при полном относительном отверстии 1 : 4 для фокусных расстояний 40, 200 и 400 *мм* и для максимального отверстия 1 : 12 при фокусном расстоянии 1200 *мм*, которое получаем при применении удлинителя с увеличением  $\overline{\beta} = 3$  (см. табл. VIII, 2). На рис. VIII, 8, *б* приведены также кривые коэффициентов передачи контраста для частоты  $N' = 12 \ \text{мm}^{-1}$ . Как видим, по полю величины *T* не ниже значений 0,4—0,3 и только для максимального фокусного расстояния 1200 *мм* снижаются до 0,2.

Объектив изготовляется из оптических стекол повышенной прозрачности, в частности в синей области\*, а преломляющие поверхности просветлены в широкой области спектра, что обеспечивает высокий

<sup>\*</sup> Что делает возможным его применение не только для черно-белого, но и для цветного телевидения.

интегральный коэффициент пропускания в белом свете около 80% при равномерном распределении величин спектральных коэффициентов пропускания  $\tau$ : несколько более 85% — для красных лучей, около 80% — для зеленых и несколько менее 70% — для сине-голубых лучей. Достаточно равномерна освещенность изображений по полю при различных фокусных расстояниях (см. рис. VIII, 8, e): на самом краю поля (l' = 20 мм) для больших фокусных расстояний относительные величины освещенностей изображения оказываются не меньшими 0,5—0,6 и лишь на участке малых фокусных расстояний (f' = 40—60 мм) они уменьшаются до 0,4—0,3.



Рис. VIII, 9. Оптические схемы корректоров (а, б, в) и приставок-удлинителей (г) к объективам типа «Варотал»

На основе этой весьма удачной оптической схемы фирмой «Тейлор— Гобсон» разработан ряд других объективов для телевизионных трубок ортикон и для малоформатных типа видикон (табл. VIII, 3), в частности объективы «Варотал-7» и «Варотал-6». Все они имеют одинаковые трехкомпонентные вариаторы и отличаются конструкцией заднего компонента — корректора. Таким образом, один и тот же вариатор, снабженный сменными корректорами довольно сложной оптической схемы и простыми двухлинзовыми ахроматическими отрицательными удлинителями, дает возможность получить варианты телевизионных объективов разных оптических характеристик — сравнительно светосильных короткофокусных для студийных съемок и длиннофокусных для внестудийных телепередач.

На рис. VIII, 9 представлены схемы корректоров к объективам «Варотал-5» (*a*), «Варотал-7» (*б*) и «Варотал-6» (*в*); пунктиром указаны примененные в них асферические поверхности. На рис. VIII, 9, *г* приведены схемы приставок-удлинителей к объективу «Варотал-5». Например, из объектива с относительным отверстием  $\varepsilon_1$  и пределами изменений фокусных расстояний от  $(f'_{\text{мин}})_1$  до  $(f'_{\text{макс}})_4$  в результате смены корректора можно получить объектив с новыми значениями крайних фокусных расстояний  $(f'_{\text{макс}})_2$  и соответственно новым значением относительного отверстия  $\varepsilon_2$ :

$$\varepsilon_{2} = \varepsilon_{1} \frac{\left( f_{\text{MaKC}}^{\prime} \right)_{1}}{\left( f_{\text{MaKC}}^{\prime} \right)_{2}}.$$
 (VIII,7)

В частности, из объектива «Варотал-5» ( $f'_1 = 40-400 \text{ мм}$ ;  $\varepsilon_1 = = 1:4$ ) получен объектив «Варотал-7» (табл. VIII, 3) с  $f'_2 = 16-160 \text{ мм}$  и относительным отверстием

$$\epsilon_2 = (1:4) \frac{400}{160} = 1:1,6.$$

Сопоставляя общие длины систем (включающие величины задних фокальных отрезков) «Варотал-5» и «Анженье-Зум 10 × 35В», видим (см. табл. VIII, 2), что в первом случае длина самого объектива около 294 мм, а во втором случае она достигает 423 мм, в то время как качество первого объектива превосходит качество второго. Оптико-механическая схема трехкомпонентного вариатора объективов «Варотал» близка к схеме, представленной на рис. V, 38; у вариаторов объективов «Анженье», как было указано выше, схема отличается тем, что третий компонент имеет положительную оптическую силу. Однако принципиальная общность обеих схем заключается в том, что при минимальных фокусных расстояниях к первому (положительному) компоненту вплотную подходит второй (отрицательный) компонент большой оптической силы, образуя сложный отрицательный компонент, дающий возможность расширить поле зрения системы при величине дисторсии, остающейся в допустимых пределах.

Следующая отличительная особенность оптико-кинематических схем объективов «Варотал» и «Анженье» заключается в том, что при больших фокусных расстояниях и при малых длинах системы вариатора оптически сильные второй и третий компоненты располагаются на больших расстояниях от первого (положительного) компонента, что приводит к уменьшению высот падения лучей осевого пучка на эти компоненты, а следовательно, и к уменьшению относительных отверстий, при которых они работают, что обеспечивает возможность хорошей коррекции аберраций. Описанные объективы имеют ряд преимуществ по сравнению с другими известными системами (немецкими, японскими) как по своим оптическим характеристикам, так и по эксплуатационным и технологическим параметрам (малые габариты, сравнительная простота оптической конструкции и т. п.).

В табл. VIII, 3 приведены модификации систем «Варотал» и «Анженье-Зум», выполненные по описанному выше принципу применительно к телевизионным трубкам с меньшими форматами фотокатодов; соответственно уменьшены величины фокусных расстояний при одновременно повышенных относительных отверстиях. По сравнению с объективами «Анженье-Зум» объективы «Варотал» для трубок видикон отличаются бо́льшими габаритами, но и более высокой светосилой. С этой точки зрения удачным является объектив «Варио-Гоир-3Т», сочетающий малые габариты при сравнительно высоких оптических характеристиках; оптическая схема объектива приведена на рис. VIII, 10. Общая длина системы 230 *мм* при заднем фокальном отрезке 45 *мм*, т. е. длина объектива 185 *мм*. (Расчет М. Г. Шпякина.)

Анализ лучших современных панкратических объективов показал, что между их оптическими характеристиками: кратностью изменения фокусных расстояний m, относительным отверстием  $\varepsilon$ —и габаритами, в частности длиной системы  $L_c$ , существует приближенная взаимозависимость:

$$\frac{f'_{\text{макс}} \varepsilon}{L_{\text{c}} - 1, 2 \frac{f'_{\text{макс}}}{\sqrt{m}}} = C, \qquad (\text{VIII,8})$$

## Таблица VIII,3

## Объективы с переменным фокусным расстоянием для малоформатных телевизионных грубок (видихон и др.)

| Название объектива                 | Страна, фирма                            | Предел<br>изменения<br>фокусного<br>расстояния<br>f', мм | Крат-<br>ность<br>и | Угол пол.,<br>зрения, 2 <i>w</i> ,° | Относитель-<br>ное отвер-<br>стие s | Размер<br>изображени<br>2 // мм | Длина<br>Системы им | Диаметр пер-<br>вого компо-<br>нента мм | Задний фо<br>кальный<br>отрезок, мм | Macca,<br>K2 |
|------------------------------------|------------------------------------------|----------------------------------------------------------|---------------------|-------------------------------------|-------------------------------------|---------------------------------|---------------------|-----------------------------------------|-------------------------------------|--------------|
| «Анженье 10×15 С»                  | Франция, «Анженье»                       | 15—150                                                   | 10                  | 54°—6°                              | 1:1,9                               | 15,8                            | 280                 | 110                                     | 36                                  | 2,4          |
| «Анженье 10×15В»                   | Франция, «Анженье»                       | 15—150                                                   | 10                  | 54°6°                               | 1:2,8                               | 15,8                            | 209                 | 64                                      | 36                                  | 1,0          |
| удлинители:                        |                                          |                                                          |                     |                                     |                                     |                                 |                     |                                         |                                     |              |
| $\overline{\beta}=1,6$             |                                          | 25250                                                    | 10                  | 34°3°40'                            | 1:4,5                               |                                 |                     |                                         |                                     |              |
| $\overline{\beta}=2,0$             |                                          | 30300                                                    | 10                  | 27°-3'                              | 1:5,6                               |                                 |                     |                                         |                                     |              |
| «Варотал-7»                        | Англия, «Тейлор—<br>Гобсон»              | 16160                                                    | 10                  | <b>50°</b> 5°30 <sup>.</sup>        | 1:1.6                               | 15.9                            | 356                 | 142                                     | 29.5                                |              |
| «Baporaл-8»                        | Англия, «Тейлор—<br>Гобсон»              | 20200                                                    | 10                  | 50°5°30′                            | 1:2                                 | 21,4                            | 405                 | 142                                     | 48,5                                |              |
| «Bapora <i>л</i> -6»<br>«Mereop-7» | Англия, «Тейлор—<br>Гобсон»<br>СССР, ГОИ | 28—280<br>25—100                                         | 10                  | 50°—5°30′<br>36°—9°                 | 1:2,8<br>1:1,9                      | 27,5<br>15,8                    | 418<br>235          | 142<br>110                              | 78                                  | 2,2          |
| «Канон-Зум TV-16»                  | Япония, «Канон»                          | 25-100                                                   | 4                   | 36°—9°                              | 1:1,8                               | 15,8                            | I                   | 1                                       | 1                                   | ļ            |
| ес-100<br>«Варио-Гоир-ЗТ»          | чранция, «сом<br>Бертье»<br>СССР, ГОИ    | 25—100<br>15—150                                         | 4<br>10             | 36° —9°<br>54° —6°                  | 1:2,4<br>1:2,4                      | 15,8<br>15,8                    | 232<br>230          | <u>-</u>                                | 45                                  | 2,5          |
| «Анженье-Зум<br>20 × 15В»          | франция, «Анженье»                       | 15300                                                    | 20                  | 55°—6°                              | 1:4,5                               | 15,8                            | 268                 | 100                                     | 1                                   | 2,0          |
| «Варио-Гоир-12Т»                   | CCCP, TOM                                | 12-180                                                   | 15                  | 72°5°                               | 1:3,5                               | 15,8                            | 230                 | 95                                      | 1                                   | 2,2          |

где  $f'_{\text{макс}}$  — максимальное значение фокусного расстояния системы; C — некоторая константа, величина которой в известной мере характеризует добротность системы: у наилучших объективов с форсированными оптическими характеристиками величина этой константы оказывается достаточно определенной. Например, как показал анализ, проведенный М. Шпякиным для различных групп объективов, телевизионные системы «Варотал-5» и «Варио-Гоир-1Т» (f' = 40-400 мм; 1:4), объективы «Анженье  $10 \times 40$ » (f' = 40-400 мM; 1:6;  $L_c =$  = 342 мM), «Варотал-7» (f' = 16-160 мM; 1:1,6), «Варио-Гоир-3Т» (f' = 15-150 мM; 1:2,4), «Анженье-Зум  $20 \times 15B$ » (f' = 15-300 мM1:4,5) и другие наилучшие телевизионные объективы для разных форматов изображений имеют значения величины C = 0,4.



Рис. VIII, 10. Оптическая схема панкратического объектива «Варио-Гоир-3Т» (f'=15-150 мм)

Конечно, не следует считать, что величина C устанавливает пределы возможного, в частности удачное применение асферических поверхностей может привести к дальнейшему повышению оптических характеристик, к сокращению длины  $L_c$  системы, а следовательно, к возрастанию численного значения коэффициента добротности C без понижения качества коррекции аберраций системы.

Выражение (VIII, 8) позволяет в первом приближении руководствоваться выбором оптических характеристик и габаритов объектива: если соотношение этих параметров приводит к пониженным численным значениям *C*, то разработка объектива с такими параметрами особых затруднений не вызовет; при больших численных значениях коэффициента *C* возможна система только пониженного качества изображения.

Пока еще преждевременно отдавать предпочтение одной из принципиальных кинематических схем — с механической или оптической компенсацией сдвига плоскости изображения.

Примером удачного «соперничества» двух весьма интересных объективов с разными оптико-кинематическими схемами — оптической и механической схемами компенсации — являются объективы для внестудийных съемок — «Варотал-З» (Англия, «Тейлор — Гобсон») и «Алькор-6» (СССР, ГОИ), некоторые характеристики которых приведены в табл. VIII, 2. Первый из названных объективов имеет механическую, второй — оптическую компенсацию сдвига плоскости изображения. Хотя объектив «Алькор-6» имеет на две линзы больше, чем «Варотал-З», однако последний содержит в корректоре асферическую поверхность сложного профиля (рис. VIII, 11) и, следовательно, в оптико-технологическом отношении не является более простым объективом, чем «Алькор-6».

Оба объектива были исследованы в отношении их оптических качеств. Были измерены величины коэффициентов передачи контраста при изображении синусоидальной миры с частотой 12 мм<sup>-1</sup>.

Для всех фокусных расстояний первого диапазона величины коэффициентов передачи контраста объектива «Алькор-6» (при f' = 80 - 400 мм; 1 : 4) оказываются в пределах значений 0,7—0,8 в центре поля; у объектива «Варотал-3» в первом диапазоне изменения фокусных рас-



Рис. VIII, 11. Схема панкратического телевизионного объектива «Варотал-3»

стояний (при f' = 100-500 мм; 1:4) величины этих коэффициентов снижаются до значений 0,5—0,6. Для фокусных расстояний второго диапазона, т. е. при f' = 160-800 мм у объектива «Алькор-6» и при f' = 200-1000 мм у объектива «Варотал-3», коэффициенты передачи контраста при полных относительных отверстиях объективов 1:8 приблизительно одинаковы.

Светопропускание объектива «Алькор-6» при трехслойном его просветлении составляет 66% и равно таковому у объектива «Варотал-3». Распределение освещенности по полю несколько более равномерное у объектива «Алькор-6» и лишь на краю изображения (l' = 20 мм) освещенности выравниваются у обоих объективов — около 60% от освещенности изображения в центре поля.

Конечно, принцип оптической компенсации встречает трудности при применении в системах с широким диапазоном изменения фокусных расстояний, но приводит к неплохим решениям в системах малой (m = 2-3) и средней (m = 4-6) кратностях. Примером может служить (см. табл. VIII, 3) система «Метеор-7», разработанная по оптической схеме, приведенной на рис. V, 37 для формата фотокатода трубки видикон. По сравнению с японским объективом «Канон-Зум TV-16» (f' = 25-100 мм; 1:1,8), построенным на принципе механической компенсации, объектив «Метеор-7» имеет несколько повышенное качество оптического изображения. Величины коэффициентов передачи контраста изображения синусоидальной миры для пространственной частоты 30  $\text{мm}^{-1}$  составляют для объектива «Метеор-7» в центре поля для фокусных расстояний 25, 50 и 100 мм соответственные величины 0,8, 0,33 и 0,38; вблизи края поля изображения (l' = 6,7 мм) эти коэффициенты для тех же фокусных расстояний соответственно равны 0,3, 0,17 и 0,33. У объектива «Канон-Зум» величины коэффициентов передачи контраста в центре поля для фокусных расстояний 25, 50 и 100 мм равны соответственно 0,35, 0,35 и 0,60; вблизи края изображения (l' = 6,7 мм) эти коэффициенты для тех же фокусных расстояний соответственно равны 0,25, 0,20 и 0,25 при передаче тех же частот 30 мм<sup>-1</sup>. Эти измерения выполнены с источником света A, светофильтром C3C-15 (3 мм) и приемником ФЭУ-27, т. е. обеспечен актиничный поток на уровне 0,5 максимума в пределах области спектра приблизительно 500—700 нм.

Созданный нами за последние годы комплект телевизионных объективов находится на современном техническом уровне\*. Этот набор объективов должен систематически пополняться и совершенствоваться. Перспективным является создание систем с большой кратностью изменения фокусных расстояний при условии, если габариты систем будут невелики, а качество изображения приближаться к таковому у объективов постоянного фокусного расстояния. Примером первых разработок этого направления являются объективы «Варио-Гоир-1Т» и «Анженье-Зум 10 × 35В» (см. табл. VIII, 2). Менее удачна разработка японской системы фирмы «Канон» «Канон CTZ-LF-IV», имеющая четыре дискретных диапазона изменения фокусных расстояний: f' = 55-370 мм, 1: 4-1: 5; f' = 80-540 мм, 1: 5,6-1: 7,3; f' = 150-1000 мм, 1: 11-1: 14; f' = 300-2000 мм, 1: 22-1: 28. Крайне неудобно, если в пределах каждого диапазона изменения фокусного расстояния изменяется относительное отверстие, а следовательно, и яркость изображения.

## § 2. ОБЪЕКТИВЫ ДЛЯ ПРОЕКЦИИ ИЗОБРАЖЕНИЙ С КИНЕСКОПОВ НА БОЛЬШИЕ ЭКРАНЫ

Трубки (кинескопы) в телевизионных приемниках имеют экраны размером до 70—80 см. Яркость изображения на экране, равная 100— 250 асб, вполне достаточна для наблюдения изображений в условиях нормально освещенного помещения. Однако форматы изображений, которые могут быть получены непосредственно на экранах электроннолучевых трубок, ограничиваются практически целесообразными и технологически возможными размерами самих трубок.

За последние годы было предложено и реализовано несколько способов получения телевизионных изображений больших форматов. Мы рассмотрим здесь лишь путь использования особо светосильных проекционных объективов в сочетании с приемными телевизионными трубками малых диаметров экрана, но большой яркости, проецирующих изображение с экрана трубки на большой экран. Такие системы могут применяться не только для групповых просмотров телевизионных

<sup>\*</sup> Для цветного телевидения ГОИ разработаны в 1975—1977 гг. для трубок плюмбикон объективы «Вариогамма-ЦТ», f' = 18-540 мм, 1:2-1:6; «Сокол», f' = 27-540 мм, 1:2-1:4 и «Радуга», f' = 21-210 мм, 1:2,2. Их расчеты выполнены М. Шпякиным, Р. Карлсбрун и В. Соколовой.

изображений в клубах и телетеатрах, но и в специальных телевизионных проекционных просмотровых установках для контроля и наблюдения изображений, передаваемых по телевизионным каналам и воспринимаемых одновременно большой группой наблюдателей.

Проекционные системы используют в театральных телевизионных приемниках, где размеры изображения на экранах достигают  $6 \times 4,5 m$ и более. Для проекции применяют особо светосильные системы с диаметрами зрачков 500—600 мм и проекционные кинескопы, работающие при напряжениях до 80 кВ с диаметрами экранов до 180 мм и размерами растра, в пределах которого получается достаточно хорошее качество воспроизведения картины приблизительно 9,5 × 13 см. Яркость экрана трубки достигает 300 000 асб. При масштабе проекции около 50 крат яркость изображения на экране составляет около 100 асб, что



Рис. VIII, 12. Схема телепроекционной системы на большой экран

соответствует нормам, установленным для больших кинотеатров. Схема подобной телепроекционной установки приведена на рис. VIII, 12. Проекционное расстояние превышает 18 м. Экранам кинескопов придается кривизна с радиусом, приблизительно равным половине радиуса r кривизны вогнутого сферического зеркала, используемого в проекционной установке. Тем самым кривизна изображения K на экране кинескопа совпадает с естественной кривизной изображения, присущей любому зеркалу и равной

$$K = \frac{2}{r} = \frac{1}{f},$$

где *f* — фокусное расстояние зеркала.

В изображенной схеме приведена корректирующая линза-компенсатор Б. Шмидта, расположенная в центре кривизны сферического зеркала, благодаря чему линза почти не вносит аберрации комы, корригируя сферическую аберрацию зеркала при весьма большом геометрическом относительном отверстии, достигающем величины 1:0,6; это без учета экранирования отраженных от зеркала пучков лучей трубкой кинескопа.

Одна из поверхностей линзы Шмидта имеет сложный профиль

(см. рис. IV, 16, *a*); уравнение меридионального сечения такой поверхности содержит члены ряда высоких степеней.

Как было указано выше (см. главу IV), линза Шмидта, идеально исправляя сферическую аберрацию, не полностью корригирует аберрации лучей широких наклонных пучков, что в результате приводит к снижению качества изображения по мере удаления от оси системы: компенсатор Шмидта обеспечивает сравнительно хорошее качество коррекции в пределах поля  $2\omega \approx 10-15^\circ$ .

Неплохие результаты, но при сравнитель но небольших относительных отверстиях — до 1:0,9 — могут быть получены применением упрощенной схемы Бауэрса (рис. VIII, 13), состоящей из сферического зеркала и концентрического мениска, не полностью корригирующего сферическую аберрацию зеркала. Вследствие симметрии хода лучей широких наклонных пучков в системе автоматически обеспечивается



Рис. VIII, 13. Зеркально-линзовые схемы: *а* — объектива А. Бауэрса; б — объектива «Антарес» Д. Волосова — В. Бабинцева

коррекция комы в пределах всего поля. Некоторый остаточный хроматизм, вносимый мениском, несколько снижает качество изображения.

Существенно лучшие результаты для достаточно больших относительных отверстий — до 1: 0,7 — дает усложненная система Бауэрса (см. рис. IV, 16,  $\delta$ ), в которой применена коническая линза. Единственным оптическим параметром, влияющим на строение пучка лучей, падающих на конический компенсатор, является угол  $\alpha$  при вершине последнего. В меридиональном сечении влияние компенсатора эквивалентно обычному клину.

Угол а конической линзы влияет на положение точек пересечения лучей с поверхностью зеркала, а следовательно, и на «тонкую» коррекцию структуры широкого пучка: коническая линза, расположенная в общем центре кривизны поверхностей, корригирует остаточную сферическую аберрацию зеркала (недоисправленную концентрическим мениском), не внося при этом существенной асимметрии в структуре широких наклонных пучков в пределах поля до 25—30°. Недостатком этой системы являются ее габариты: длина системы приблизительно в 1,5 раза больше длины системы Шмидта.

Этот недостаток устраняется в системе Д. Волосова — В. Бабинцева (см. рис. VI, 16, в), в которой концентрический мениск расположен между конической линзой и зеркалом, что в 1,5 раза сокращает габариты объектива, не снижая его оптических характеристик.

Для специальных телепроекционных установок, когда необходимо высокое качество оптического изображения при большой светосиле, нами разработаны объективы этой оптической схемы, выпущенные под маркой «Антарес», с ахроматической конической линзой (рис. VIII, 13, б), обеспечивающие высокое качество изображения в широкой области спектра.

Как видели выше, объективы не требуют тщательной ахроматизации (см. рис. VI, 19, *г*) при их применении в узкой спектральной области, например во флюорографических установках. Технология изготовления конических компенсаторов значительно проще, чем коррекционных пластин Шмидта, при существенно повышенных оптических качествах, достигаемых в системах с коническими линзами. Нами был разработан для высококачественной телепроекционной установки объектив «Антарес-4» (f' = 200 m; 1: 0,7) с полем зрения 34°. При проекции на экран диаметром 3 m с увеличением в 25 раз он разрешает на кинескопе около 30  $mm^{-1}$  в центре поля с плавным снижением до 25—20  $mm^{-1}$  по полю. Система Шмидта, разработанная для тех же оптических характеристик и условий проекции, разрешила по полю значительно меньше — около 3—5  $mm^{-1}$  вблизи края поля — при низком контрасте.

Конические компенсаторы сравнительно просто изготовляются как из силикатных, так и из органических стекол диаметрами до 500 мм; углы при вершинах конуса у разных вариантов систем обычно составляют 178—179°, т. е. образующие конуса составляют с плоской поверхностью линзы углы 0,5—1°.

### глава іх

## ПЕРСПЕКТИВЫ РАЗВИТИЯ ОБЪЕКТИВОСТРОЕНИЯ НА ОСНОВЕ ПРИМЕНЕНИЯ НОВЫХ ТЕХНИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ

Основными и наиболее трудно разрешимыми оптическими проблемами в области создания более совершенных объективов различного назначения являются не столько проблемы, связанные с дальнейшим повышением их оптических характеристик (относительных отверстий, полей зрения), сколько сохранение при этом высокой разрешающей силы и контраста оптического изображения. Одновременно решаются задачи достижения оптимальных эксплуатационных параметров — достаточно малых габаритов и весов. Только успешное решение этого комплекса взаимосвязанных задач позволит отечественному объективостроению, и прежде всего крупносерийному, и впредь сохранить достойное место, в частности и на внешних рынках. Для этого имеются все предпосылки: наша система производства принципиально позволяет организовать разработку и промышленный выпуск объективов на технологически и конструктивно более совершенном уровне при невысокой продажной цене изделий.

Из изложенного в предшествующих главах следует, что дальнейший существенный прогресс объективостроения, могущий привести к качественно отличным результатам, возможен лишь на основе применения новых технических и технологических средств, и прежде всего на основе действенного (рационального) применения новых оптических материалов — оптических стекол и кристаллов повышенной прозрачности и с особыми дисперсионными свойствами и высокоточных асферических оптических поверхностей. Не меньшее значение при разработке сложных многопараметровых объективов с постоянными и особенно с переменными оптическими характеристиками будут иметь автоматизированные методы поиска оптимальных решений и способы автоматической коррекции аберраций на основе применения электронных цифровых вычислительных машин (ЭВМ).

## § 1. О РАЦИОНАЛЬНОСТИ ПРИМЕНЕНИЯ НОВЫХ ОПТИЧЕСКИХ СРЕД В ОБЪЕКТИВАХ

С 1940—1942 годов в американской литературе начали появляться сообщения о новых работах в области стекловарения и связанных с последними разработках прикладной оптики.

Это была информация об оптических стеклах новых марок, оптические постоянные которых существенно отличаются от ранее известных стекол. Имели прежде всего в виду сверхтяжелые кроны, содержащие окислы элементов редких земель — лантан, тантал и др. Хотя патентные заявки на рецептуру подобных стекол начали появляться еще в конце 30-х годов, промышленные плавки лантановых стекол были произведены в США фирмой «Истмен-Кодак», по-видимому, в 1941 году.

Несмотря на высокую стоимость этих стекол, во много раз превышающую стоимость обычных тяжелых кронов, интерес к ним со стороны оптиков-разработчиков проявился повсеместно: рациональное их применение в оптических, в частности фотографических системах, как увидим ниже, приводит к дальнейшему совершенствованию последних.

Велось изучение классических и разработка новых схем фотографических и проекционных анастигматов с применением стекол.

Новые возможности, открывающиеся перед прикладной оптикой в результате освоения стекла с существенно отличными оптическими постоянными, не сразу очевидны: исследование этих возможностей подчас требует проведения большой теоретической и вычислительной работы, прежде чем новое стекло найдет практическое применение и войдет в нормальный каталог оптических стекол.

Под новыми стеклами, появившимися в 40-х годах, прежде всего имеются в виду особотяжелые кроны, у которых показатели преломления  $n_D$  имеют численные значения приблизительно в пределах от 1,69 до 1,76, а показатели средних дисперсий (числа Аббе) — соответственно от 56 до 48. Были созданы особые флинты, у которых  $n_D$  имеют значения в пределах от 1,7 до 1,88 при показателях средних дисперсий в пределах величин от 48 до 41.

Наиболее разнообразный сортамент стекол был в те годы разработан в США Национальным бюро стандартов (NBS), фирмами «Истмен-Кодак» (ЕК), «Корнинг» (Corning) и «Говард» (Нау).

На рис. IX, 1 приведена диаграмма оптичесих постоянных (n, v) различных марок стекол — отечественных и американских — по состоянию на начало 50-х годов. На диаграмме нанесен также один из первых отечественных сверхтяжелых кронов — СТК1  $(n_D = 1,7170; v = 47,0)$ . Обращаем внимание на положение особых флинтов «Истмен-Кодак» — ЕК-448 и ЕК-450.

Не останавливаясь на последующих этапах развития сортамента оптических стекол, укажем лишь, что за последнее десятилетие были созданы еще более интересные стекла, в частности ториевые сверхтяжелые кроны, у которых величины  $n_D$  достигают значений от 1,76 до 1,82 при показателях дисперсий соответственно от 53 до 47. Были усовершенствованы особые флинты с величинами  $n_D \approx 1,84$ ——1,88 при значениях соответственно 43—41. Современный сортамент промыш-



Рис. IX, 1. Диаграмма оптических постоянных (v; n) отечественных и американских стекол в начале 50-х годов
ленных оптических стекол хорошо иллюстрируется диаграммой  $(v_d; n_d)$  стекол японской фирмы «Канон» (рис. IX, 2). Как видим, над зонами лантановых стекол LaK и LaF появились новые зоны стекол LaSK и LaSF, т. е. особотяжелые кроны и флинты.

Рассматривая оптические постоянные стекол как параметры при расчете оптических систем, укажем, что их применение может привести к одному из следующих результатов:



Рис. IX, 2. Диаграмма (v<sub>d</sub>; n<sub>d</sub>) оптических стекол, применяющихся японской фирмой «Канон»

a) к возможности достижения более совершенного исправления аберраций системы данной оптической схемы;

б) к повышению оптических характеристик, в частности относительного отверстия системы без усложнения ее оптической схемы.

Заметим, что качественно-новые результаты оказались бы, если бы стекла имели особые закономерности частных относительных дисперсий, обеспечивающие в комбинации с обычными стеклами возможность создания систем, обладающих апохроматическими или полуапрохроматическими свойствами. Как следует из теории хроматических аберраций, для этого прежде всего следует обратиться к диаграмме ( $v_{F,C}$ ;  $p_{F,D}$ ), характеризующей ход частных относительных дисперсий стекол. На рис. IX, 3 такая диаграмма приведена для стекол Национального бюро стандартов (NBS), «Истмен — Кодак» (ЕК) и «Говарда» (Нау) в области спектра F - C; там же приведены некоторые отечественные стекла. Как видим, отклонения от линейной зависимости в расположении сверхтяжелых новых стекол (исключая стекол типа ОФ и ОК) весьма невелики, что указывает на отсутствие комбинаций стекол, приводящих к простым апохроматическим системам\*. Более подробно к этому вопросу вернемся ниже.

<sup>\*</sup> При условии достижения при этом достаточно малых оптических сил линз системы и широкой области апохроматизации.





Оптические постоянные стекол как параметры при исправлении аберраций оптических систем проявляются особенно отчетливо при расчете простейших оптических систем, имеющих малое число коррекционных параметров.

В двухлинзовых комбинациях влияние констант стекол особенно отчетливо проявляется.

Как известно [3], можно представить коэффициент Петцваля  $\pi$  такой комбинации, как функцию хроматического параметра C и констант  $(n, \nu)$  стекол:

$$\pi = \frac{\left(\frac{\nu_2}{n_2} - \frac{\nu_1}{n_1}\right) - \nu_1 \nu_2 \left(\frac{1}{n_1} - \frac{1}{n_2}\right) C}{\nu_2 - \nu_1} . \quad (IX, 1)$$

Применение особотяжелого крона в сочетании с легким флинтом приводит к уменьшению коэффициента Петцваля л: вместо обычной величины 0,6—0,7 в двухлинзовой комбинации при применении новых стекол получаем значение этого коэффициента на 20—25% меньшее; при этом величины оптических линз остаются почти такими же, какими они были в двухлинзовой системе, содержавшей обычные стекла. Тем самым представляется возможным уменьшить кривизну поверхности изображения без снижения при этом относительного отверстия системы.

В простейших анастигматах «Триплет» и его вариациях (см. главу IV), в четырехлинзовых системах «Индустар», «Сириус», «Ортагоз» и т. п., в которых число коррекционных парамегров невелико, влияние оптических постоянных стекол особенно действенно. Как известно, в системах, состоящих из тонких линз, коэффициент  $S_{IV}$ , определяющий кривизну поверхности изображения, зависит только от оптических сил  $\phi_i$  линз и показателей преломления  $n_i$  стекол:

$$S_{\rm IV} = \sum_{j=1}^{j=0} \frac{\varphi_j}{n_j} \,. \tag{IX,2}$$

Применение стекол типа СТК позволяет и в этих системах на 15— 20% уменьшить кривизну поверхности изображения; соответственно оказывается возможным уменьшить величину коэффициента S<sub>III</sub>, влияющего на астигматизм системы. При необходимости можно повысить оптические характеристики системы (например, относительное отверстие), так как применение СТК приводит также к уменьшению сферической и сферохроматической аберраций.

Удачным примером применения новых стекол в простейших анастигматах «Индустар» является отечественный объектив «Индустар-61» (f' = 52 мм; 1: 2,8;  $2w = 45^{\circ}$ ; 24 × 36 мм), в котором применено стекло СТК6 ( $n_D = 1,7468$ ; v = 50,9) в обеих положительных линзах. Система имеет коэффициент аберраций  $S_{1V} = 0,235$ ,  $S_{111} = -0,076$ и хорошее исправление астигматизма и кривизны поля, которые обычно не удается хорошо корригировать в объективах этого типа. На рис. IX, 4 приведены сравнительные графики аберраций широких наклонных пучков в меридиональном и главном сагиттальном сечениях объектива из обычных стекол «Индустар-26», объектива из лантановых стекол «Индустар-61» и варианта последнего («Индустар-61А»), содержащего асферическую поверхность (см. ниже). Все эти объективы имеют аналогичные оптические характеристики (f' = 52 мм; 1 : 2,8; 2  $w = 45^{\circ}$ ). Аберрации приведены в плоскостях, смещенных относительно плоскости Гаусса в сторону объектива: на 0,34 мм — у «Индустара-26» на 0,24 мм — у «Индустара-61» и на 0,20 — у «Индустара-61А». Как видим, объектив с лантановыми стеклами имеет лучшее исправ-



Рис. IX, 4. Графики аберраций объективов «Индустар-61» (сплошные кривые); «Индустар-26» (пунктирные кривые); «Индустар-61А» (точечные кривые)

ление, в частности аберраций кривизны широких сагиттальных пучков. На кинопленке панхроматической тип 9 объектив «Индустар-26» разрешает около 28 мм<sup>-1</sup> в центре поля с падением разрешения до 17мм<sup>-1</sup> при средних углах поля (l' = 18 мм); объектив «Индустар-61» в тех же точках поля разрешает соответственно 35 мм<sup>-1</sup> и 27 мм<sup>-1</sup>, т. е. на 8—10 мм<sup>-1</sup> больше. Лишь вблизи края поля изображения (l' = 19—21,5 мм) разрешение объектива «Индустар-26» повышается до 18—17 мм<sup>-1</sup>, а у «Индустара-61» продолжает снижаться до 17 мм<sup>-1</sup>.

Обычно применение сверхтяжелых кронов в объективах данной оптической схемы и тождественных характеристик (одинаковых фокусных расстояний, отверстий и полей зрения) приводит к повышению фотографического разрешения приблизительно на 25% в центре поля и на 15—20% по полю. В данном случае эффект получился значительно лучший в пользу «Индустара-61», так как объектив «Индустар-26» был корригирован для средних углов поля не наилучшим образом.

В более сложных, многопараметровых (многолинзовых) системах влияние оптических постоянных стекол на расширение коррекционных возможностей оказывается не столь очевидным: требуется большая работа по нахождению оптимальных решений, но и здесь эффект не превышает указанных выше границ. Рассмотрим, например, широко применяющуюся схему светосильного шестилинзового объектива «Гелиос» В свое время для любительских зеркальных фотоаппаратов  $24 \times 36$  мм, в которых возможно применение лишь объективов с большим задним фокальным отрезком, был разработан объектив «Гелиос-44»; требуемая величина заднего отрезка  $s'_{F'} = 39$  мм была получена при фокусном расстоянии 58 мм. В объективе использовались обычные тяжелые кроны; получены неплохие результаты (табл. IX, 1).

Таблица IX,1

| Название<br>объектива                        | Эптические характеристики |                   |                   |                          | -ошмо)            | Фотографическая разрешаю-<br>щая сила, мм-1 |                |                |
|----------------------------------------------|---------------------------|-------------------|-------------------|--------------------------|-------------------|---------------------------------------------|----------------|----------------|
|                                              | f', мм                    | ε                 | 2w'               | ,<br>s <sub>F</sub> , мм | Число і<br>нентов | <i>l'</i> =0                                | l'=10 мм       | l'=20 мм       |
| «Гелиос-44»<br>«Гелиос-81»<br>«Планар» (ФРГ) | 58<br>52<br>52            | 1:2<br>1:2<br>1:2 | 45°<br>45°<br>45° | 39,0<br>39,0<br>37,2     | 4/6<br>4/6<br>5/6 | 46<br>52<br>52                              | 33<br>37<br>42 | 26<br>27<br>32 |

Объективы типа «Гелиос» для зеркальных камер 24×36 мм

Промышленное освоение сверхтяжелых кронов (СТК) позволило нам создать вариант объектива того же типа — «Гелиос-81». Как видно из таблицы, объектив имеет лишь четыре компонента, два из которых склеенные. Там же приведены характеристики наилучшего из известных вариантов объектива «Планар» (ФРГ), у которого не только применены сверхтяжелые кроны, но лишь один из компонентов оставлен склеенным, т. е. появился дополнительный радиус поверхности в качестве коррекционного параметра. Как видим, этот объектив в центральной части поля разрешает столько же, сколько и объектив в центральной части поля разрешает столько же, сколько и объектив «Гелиос-81», но приблизительно на 5  $mm^{-1}$  больше по полю. По сравнению с объективом «Гелиос-44» объектив «Планар» разрешает лишь на 6  $mm^{-1}$ в центре и на краю поля и на 9  $mm^{-1}$  в средней части поля. И эти, казалось бы, «скромные» результаты обеспечивают объективу «Планар» высокую оценку на всех выставках.

Более сложные оптические схемы объективов в большей мере вуалируют влияние оптических констант стекол на аберрационные свойства этих систем: иногда в них можно получить почти тождественное исправление аберраций при применении как сверхтяжелых, так и обычных тяжелых кронов. В свое время такие случаи были описаны автором [3].

Однако тогда, когда оптические постоянные стекол являются действенными (эффективными) коррекционными параметрами, пересчет системы с заменой сверхтяжелых кронов обычными тяжелыми кронами может потребовать применения дополнительной линзы, иногда замены простой линзы двухлинзовой склеенной комбинацией, восстанавливающей исправление хроматических аберраций. В этих случаях решается вопрос технико-экономического характера: применять ли систему из j + 1 линз, содержащих обычные оптические стекла, или перейти к

системе из *j* линз, некоторые из которых содержат сверхтяжелые кроны.

Для выявления оптимальных вариантов решений при применении особых кронов и флинтов в данной оптической схеме объектива необходимо проводить систематические исследования; такая работа сравнительно легко выполняется применением ЭВМ (см. ниже).

В нашей практике были случаи, когда и в очень сложных, десятидвенадцатилинзовых системах применение особых стекол оказывалось необходимым. В качестве примера можно назвать широкоугольные светосильные системы «Геогон III» (f' = 75 мм; 1: 2,5;  $2w = 94^{\circ}$ ), разработанные в США Ж. Бейкером (см. главу IV). Оптическая схема этого объектива была приведена на рис. IV, 13; она содержит 12 линз. В 1-й, 6-й, 7-й и 12-й линзах применено стекло тип 788505 ( $n_D$ = 1,78832; v = 50,45); в линзах 3-й, 5-й, 8-й и 10-й — стекло тип 880411 ( $n_D = 1,8804$ ; v=41,1). Попытка заменить эти стекла более простыми не привела к положительному результату, несмотря на то, что в системе имеется много коррекционных параметров, а две поверхности системы, расположенные по обе стороны от апертурной диафрагмы, как увидим ниже (см. § 2 этой главы), имеют сложную асферическую форму. Стекла типа 788505 и 880411 представляют большой интерес при разработке особосветосильных и широкоугольных объективов.

Большие трудности, особенно при создании длиннофокусных светосильных систем, представляет коррекция вторичных хроматических аберраций — вторичного спектра, сферохроматической аберрации, хроматической аберрации лучей широких наклонных пучков.

Величина вторичного спектра (см. главу II) зависит от относительных частных дисперсий оптических стекол; для обычных стекол параметры *р* и у связаны линейной зависимостью:

$$p = \overline{A} - \overline{B} \,\mathbf{v}. \tag{IX,3}$$

На рис. IX, 3 эта зависимость подтверждается тем, что основная масса стекол, характеризуемых координатами »; p, располагается вблизи проведенной прямой. Например, для двухлинзовой бесконечно тонкой системы, ахроматизованной для спектральных линий F и C, величина вторичного спектра  $\Delta_{F,D}$  пропорциональна отношению разности частных относительных дисперсий выбранной пары стекол к разности показателей средних дисперсий этих стекол:

$$\Delta_{F,D} = -f' \left[ \frac{(p_{F,D})_2 - (p_{F,D})_1}{(\nu_{F,C})_2 - (\nu_{F,C})_1} \right], \quad (IX,4)$$
$$p_{F,D} = \frac{n_F - n_D}{n_F - n_C}, \quad \nu_{F,C} = \frac{n_D - 1}{n_F - n_C}.$$

Таким образом, чтобы определить величину вторичного спектра системы, образованной двумя какими-нибудь стеклами, достаточно соединить прямой точки диаграммы, относящиеся к этим стеклам; тангенс угла ф, образованного этой прямой с осью абсцисс, определит величину  $\overline{B}$ , равную выражению, заключенному в прямые скобки формулы (IX,4):

$$\Delta_{F,D} = -f' \,\overline{B}. \tag{IX,4'}$$

Для большинства пар стекол величина  $\overline{B}$  колеблется в небольших пределах; например, для систем, ахроматизированных в области спектра F - C, величина  $\overline{B}$  изменяется от  $\frac{1}{2000}$  до  $\frac{1}{2500}$ ; для фотографических объективов, ахроматизированных для линий G' и C и корригированных для основной линии e, величина  $\overline{B}$  равна приблизительно  $\frac{1}{1200}$  (см. формулу (I1, 157).

Оптические стекла, постоянные которых у и *р* не удовлетворяют линейную зависимость (IX, 3), назовем особыми.

Величина  $\overline{B}$  может быть значительно уменьшена лишь в случае равенства относительных частных дисперсий применяемой пары стекол при неравных значениях v, т. е., если хотя бы одно стекло — особое. Однако, как показывают численные исследования, оптические силы линз такой апохроматизированной пары оказываются очень большими, что позволяет создавать объективы лишь весьма малых относительных отверстий.

Вместе с тем уже давно известны объективы, содержащие обычные стекла и имеющие уменьшенный вторичный спектр. Такие объективы состоят из двух положительных компонентов, силы которых  $\varphi_1$  и  $\varphi_2$  разделены воздушным промежутком d. В частности, такую оптическую схему имеют объективы типа Петцваля (см. рис. IV, 9, *a*). По мере уменьшения вторичного спектра  $\Delta$  у этих объективов (в результате увеличения d и  $\varphi_2$ ) весьма быстро возрастает величина коэффициента Петцваля  $S_{1V}$ , которая и без того у них велика.

Для значительного уменьшения величины вторичного спектра с одновременным достижением достаточно больших относительных отверстий необходимо применение оптических сред, у которых величины частных относительных дисперсий близки к таковым у обычных стекол при возможно большей разности величин показателей средних дисперсий. Такими особыми дисперсионными свойствами обладают некоторые кристаллы. На том же рис. IX, 3 нанесены координаты (p, v) фтористого бария ( $\Phi Б$ ), флюорита, фтористого лития ( $\Phi Л$ ) и особых кронов типа ОК. В табл. IX, 2 приведены некоторые сведения об оптических постоянных этих материалов. По оптическим постоянным особый интерес представляют фтористый барий и флюорит, у которых величины частных относительных дисперсий  $p_{F,D}$  равны соответственно 0,709 и 0,704 и которым соответствует довольно большая группа оптических стекол, имеющих тождественные величины  $p_{F,D}$ , но сильно отличные значения v.

Например, комбинации флюорита с тяжелыми кронами типа ГК13, ТК14, ТК15 и ТК23 обеспечивают почти полное исправление вторичного спектра при сравнительно малой оптической силе положительной (кроновой) линзы ахроматической пары  $\varphi_1 = 2,7$ . Еще более выгодным оказывается сочетание фтористого бария и стекла ОФЗ (табл. IX, 2), которое приводит к оптической силе кроновой линзы  $\varphi_1 = 2,18$ .

Таблица IX,2

| Оптические среды                                                                        | D۳                                                                                              | n <sub>F</sub>                                                                                                        | "C                                                                                                                     | ۶F <sub>1</sub> C                                                    | $p_{F_1} D$                                                                   | <i><sup>p</sup>D</i> <sub>1</sub> <i>C</i>                                    |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ОК1<br>ОК2<br>ОК3<br>ОФ3<br>ОФ4<br>ОФ6<br>Фтористый литий<br>Фтористый барий<br>Флюорит | 1,52220<br>1,55100<br>1,49615<br>1,59880<br>1,65050<br>1,60110<br>1,39200<br>1,47461<br>1,43384 | $\begin{array}{c} 1,52701\\ 1,55633\\ 1,50085\\ 1,60768\\ 1,66110\\ 1,60940\\ 1,39476\\ 1,47874\\ 1,43705\end{array}$ | $\begin{array}{c} 1,52018\\ 1,54876\\ 1,49419\\ 1,59510\\ 1,64614\\ 1,59762\\ 1,39081\\ 1,47292\\ 1,43294 \end{array}$ | 76,3<br>72,8<br>74,5<br>47,6<br>43,4<br>51,0<br>99,2<br>81,6<br>95,3 | 0,704<br>0,704<br>0,706<br>0,708<br>0,708<br>0,704<br>0,698<br>0,709<br>0,704 | 0,296<br>0,294<br>0,294<br>0,292<br>0,292<br>0,296<br>0,301<br>0,290<br>0,296 |

Оптические постоянные особых стекол и некоторых кристаллов

В качестве примера приведем разработанный нами апохроматический объектив—анастигмат типа «Таир», первый компонент которого



Рис. IX, 5 Объектив-апохромат «Апотапр-1»: а — оптическая схема; б — кривая вторичного спектра

вследствие малой величины показателя преломления флюорита ( $n_D = 1,43384$ ) пришлось усложнить (рис. IX, 5). Этот объектив был выпущен по название «Апотаир-1» (расчет его выполнен А.Монастырским). Как видим, первый компонент системы содержит две положительные флюоритовые линзы; план — анастигматическим компенсатором астигматизма и кривизны поверхности изображения является толстая менисковая линза подобно тому, как это в свое время было выполнено нами в системе «Таир». Объектив «Апотаир-1» имеет оптические характеристики, аналогичные серийному объективу «Таир-3»: фокусное расстояние 300 мм, относительное отверстие 1 : 4,5, формат изображения  $24 \times 36$  мм; длина объектива 140 мм, задний фокальный отрезок 156 мм. Этот объектив является апохроматом: в пределах спектра от 400 до 650 нм величина вторичного спектра оказывается в пределах

±0,03 мм (см. рис. IX, 5, б); при этом хроматические аберрации лучей широких наклонных пучков в указанной области спектра оказываются в пределах 0,01 мм для эффективной части зрачка системы.

Очевидно, такой апохромат, корригированный в столь широкой области спектра, представляет особый интерес для многих случаев научной и прикладной фотографии и кинематографии.

Среди отечественных особых стекол отметим стекло OK1 ( $n_D = 1,52220$ , v = 76,3,  $p_{F,D} = 0,704$ ), которое в комбинации с флинтом OФ6 ( $n_D = 1,60110$ , v = 51,0,  $p_{F,D} = 0,704$ ) приводит к полному исправлению вторичного спектра при следующей оптической силе кроновой линзы ахроматической пары  $\varphi_1 = 3,02$ . Однако оптическая сила оказывается в 1,4 раза большей, чем в случае применения фтористого бария; при этом показатель преломления  $n_D$  стекла OK1 лишь на 6% больше, чем у флюорита, и приблизительно на 3% больше, чем у фтористого бария. Особый интерее представило бы получение оптического материала, близкого по дисперсионным свойствам к фтористому барию, но с возможно большим показателем преломления и с меньшей температурной расстраиваемостью, что позволило бы проектировать достаточно светосильные апохроматические системы без чрезмерного усложнения их оптической схемы.

Если применение особого оптического материала (стекла или кристалла) приводит к нежелательно большой оптической силе линзы, то целесообразно «расщеплять» эту линзу на две (как было сделано в объективе «Апотаир-1» на рис. IX, 5, а).

Для создания более широкоугольного анастигмата-апохромата необходима оптическая система более сложной схемы — типа обобщенного триплета. Оптическая схема обобщенного триплета обеспечивает возможность создания высокоразрешающих анастигматов в результате усложнения каждого из компонентов системы.

Обозначив через  $\varphi_1$ ,  $\varphi_2$  и  $\varphi_3$  приведенные оптические силы компонентов при силе всей системы, равной единице, из условий масштаба, коррекции хроматизма и кривизны поля, имеем:

$$\varphi = h_{1} \varphi_{1} + h_{2} \varphi_{2} + h_{3} \varphi_{3} = 1,$$

$$S_{IV} = \frac{\varphi_{1}}{n_{1}} + \frac{\varphi_{2}}{n_{2}} + \frac{\varphi_{3}}{n_{3}} = 0;$$

$$m\delta s_{CF}^{'} \frac{h_{1}^{2} \varphi_{1}}{\nu_{1}} + \frac{h_{2}^{2} \varphi_{2}}{\nu_{2}} + \frac{h_{3}^{2} \varphi_{3}}{\nu_{3}} = 0,$$

$$(IX,5)$$

где  $n_1 v_1$ ;  $n_2 v_2$ ;  $n_3 v_3$  — упомянутые выше (IV, 26)—(IV, 27) эквивалентные (обобщенные) значения оптических констант компонентов, и лишь в частном случае — константы стекол линз;  $\delta s'_{CF}$  — продольная хроматическая аберрация для лучей некоторых двух длин волн, например лучей F и C; m — множитель пропорциональности.

Эта система может иметь решение при удовлетворении еще двум дополнительным условиям исправления продольных хроматических аберраций:

$$m\delta s'_{eF} = \frac{h_1^2 \varphi_1}{\nu_1} (p_{eF})_1 + \frac{h_2^2 \varphi_2}{\nu_2} (p_{eF})_2 + \frac{h_3^2 \varphi_3}{\nu_3} (p_{eF})_2 = 0;$$
  

$$m\delta s'_{eK} = \frac{h_1^2 \varphi_1}{\nu_1} (p_{eK})_1 + \frac{h_2^2 \varphi_2}{\nu_2} (p_{eK})_2 + \frac{d_3^2 \varphi_3}{\nu_3} (p_{eK})_3 = 0,$$
(IX,5')

где

$$p_{eF} = \frac{n_F - n_e}{n_F - n_C} \quad \text{M} \quad p_{eK} = \frac{n_K - n_e}{n_F - n_C}.$$

Очевидно, удовлетворение первому дополнительному условию ( $\delta s_{eF}' = 0$ ) приводит к системе апохромата; удовлетворение условиям (IX, 5) и (IX,5') приводит к анастигматической системе суперапохромата, понимая под последней систему, у которой вторичный спектр в широкой спектральной области корригирован для четырех длин волн.

Осуществление трехкомпонентной суперапохроматической системы возможно при выполнении следующего условия:

$$\widetilde{D} = \begin{vmatrix} 1 & 1 & 1 \\ (P_{eF})_1 & (P_{eF})_2 & (P_{eF})_3 \\ (P_{eK})_1 & (P_{eK})_2 & (P_{eK})_3 \end{vmatrix} = 0.$$
(IX,5")

Система типа обобщенного триплета обладает широкими возможностями получения локальных решений, к которым приходим, варьируя не только константой стекол сложного компонента, но и параметром h. Определитель  $\tilde{D} = 0$  (IX, 5'') может быть представлен выражением:

$$\begin{split} [(p_{eK})_3 - (p_{eK})_1] \ [(p_{eF})_2 - (p_{eF})_1] - [(p_{eF})_3 - (p_{eK})_1] \ [(p_{eK})_2 - (p_{eK})_1] \ [(p_{eK})_2 - (p_{eK})_1] = 0, \end{split}$$

описывающим прямую, проходящую через три точки:

$$[(P_{eF})_{1}, (P_{eK})_{1}]; [(P_{eF})_{2}, (P_{eK})_{2}]; [(P_{eF})_{3}, (P_{eK})_{3}]$$

представляющие три марки стекла в прямоугольной системе координат  $[(p_{eF}); (p_{eK})]$ . В частности, последнее условие будет выполнено и в том случае, если у двух стекол величины относительных дисперсий одинаковы для двух актиничных спектральных зон; при этом величины показателей дисперсий (числа Аббе) должны быть по возможности различными.

В заключение укажем, что погрешности измерений дисперсий и температурных приращений показателей преломления материалов значительно влияют на оценку возможных изменений хроматических и термооптических аберраций апохроматической системы. Для более уверенного определения вариаций хроматизма в таких системах, в частности в длиннофокусных, дисперсии оптических сред должны быть измерены с точностью до одной-двух единиц шестого знака, а температурные приращения показателей преломления для различных длин волн — с точностью до одной-двух единиц седьмого знака у кронов и до двух-трех единиц — у флинтов с последующим перерасчетом системы применительно к оптическим постоянным плавок.

## § 2. ПРИМЕНЕНИЕ АСФЕРИЧЕСКИХ ПОВЕРХНОСТЕЙ В ОБЪЕКТИВОСТРОЕНИИ

Мы рассматриваем здесь лишь высокоточные асферические поверхности, имея в виду их применение в объективостроении; асферические поверхности средней точности, используемые в некоторых офтальмоскопических, конденсорных и осветительных системах, оставляем в стороне.

В главе V были описаны светосильные широкоугольные киносъемочные системы, содержащие асферические поверхности, не имеющие оси симметрии, к каковым, в частности, относятся анаморфотные системы, обладающие двумя плоскостями симметрии. Здесь мы рассмотрим возможные применения асферических поверхностей, обладающих аксиально-симметричной формой; обычно осью симметрии таких поверхностей яляется оптическая ось. К группе простейших аксиальносимметричных асферических поверхностей относятся поверхности второго порядка — параболоиды, эллипсоиды и гиперболоиды, описываемые уравнением (см. главу II):

$$y^2 + z^2 = 2rx - (1 - e^2)x^2.$$
 (IX,6)

Асферические поверхности, описываемые уравнением, содержащим более высокие степени аргумента *x*, назовем асферическими поверхностями высших порядков:

$$y^2 + z^2 = a_1 x + a_2 x^2 + \dots + a_k x^k,$$
 (IX,7)

где  $a_1 = 2r$ ; r — радиус кривизны поверхности в ее вершине.

Как показывает практика оптических расчетов, если кривизна поверхности мала, т. е. если форма поверхности близка к плоской, то представление ее уравнением в виде (IX, 7) приводит к потере точности при аберрационных вычислениях хода лучей; в этих случаях рациональнее описывать поверхность функцией вида x = F(y, z):

$$x = b_2(y^2 + z^2) + b_4(y^4 + z^4) + \dots + b_{2k}(y^{2k} + z^{2k}), \quad (IX,8)$$

где нечетные степени отсутствуют вследствие симметрии поверхности относительно оптической оси.

Среди встречающихся форм асферических поверхностей высших порядков можно выделить поверхности, являющиеся деформацией сферы. Такие поверхности описываются тем же уравнением (IX, 7) но  $a_1 = 2r$ ,  $a_2 = -1$ :

$$y^2 + z^2 = 2rx - x^2 + a_3 x^3 + \dots + a_k x^k.$$
 (IX,9)

Представляя *x*, как функцию *y* для сферической поверхности, получим:

$$x = r \left( 1 - \sqrt{1 - \frac{y^2 + z^2}{r^2}} \right)$$
 (JX,10)

Приписав к этому выражению члены, содержащие высокие степени аргумента, приходим к уравнению деформированной сферической поверхности:

$$x = r \left( 1 - \sqrt{1 - \frac{y^2 + z^2}{r^2}} \right) + \beta \left( y^4 + z^4 \right) + \gamma \left( y^6 + z^6 \right) + \delta \left( y^8 + z^8 \right) + \dots$$
(IX,11)

Представив выражение (IX, 10) в виде ряда:

$$x = \frac{y^2 + z^2}{2r} + \frac{1}{2 \cdot 4} \cdot \frac{y^4 + z^4}{r^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} \cdot \frac{y^6 + z^6}{r^5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \cdot \frac{y^8 + z^8}{r^7} + \dots$$
(IX,12)

и сопоставив этот ряд с рядами (IX, 8) и (IX, 11), можно написать:

$$x = \frac{y^2 + z^2}{2r} + \left(\beta + \frac{1}{2 \cdot 4} \cdot \frac{1}{r^3}\right)(y^4 + z^4) + \left(\gamma + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} \cdot \frac{1}{r^5}\right)(y^6 + z^6) + \left(\delta + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \cdot \frac{1}{r^7}\right)(y^8 + z^8) + \dots, \quad (IX, 13)$$

где

$$b_{2} = \frac{1}{2r}, \quad b_{4} = \beta + \frac{1}{2 \cdot 4} \cdot \frac{1}{r^{3}}, \quad b_{6} = \gamma + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} \cdot \frac{1}{r^{5}}.$$
$$b_{8} = \delta + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} \cdot \frac{1}{r^{7}}. \quad (IX, 14)$$

ит.д.

Таким образом, имея профиль асферической поверхности, представленной в виде функции x = F(y) и зная, что  $b_2 = \frac{1}{2r}$ , последовательно из выражений (IX, 14) отделяем коэффициенты  $\beta$ ,  $\gamma$ ,  $\delta$  и т. д. и тем самым определяем отступление асферической поверхности от вершинной сферы. Заметим, что если кривизна асферической поверхности в вершине равна нулю ( $r = \infty$ ), то из (IX, 14) находим:

$$b_2 = 0; \quad b_4 = \beta; \quad b_6 = \gamma; \quad b_8 = \delta; \dots$$

и ряд (IX,11) принимает вид:

 $x = \beta (y^4 + z^4) + \gamma (y^6 + z^6) + \delta (y^8 + z^8) + \dots .$  (IX,15)

Применение асферических поверхностей в объективах преследует одну из следующих трех целей: а) повышение качества оптического изображения — разрешающей силы, контраста изображения и т. п.; б) расширение оптических характеристик — повышение относительного отверстия, расширение поля зрения; в) улучшение конструктивных или эксплуатационных характеристик — упрощение оптической схемы сложной системы (устранение ее многолинзовости), уменьшение ее габаритов и соответственно весов и т. п.

Ќогда применение асферических поверхностей обеспечивает возможность достижения повышенного качества оптического изображения, которое недостижимо иными средствами, асферическая оптика должна развиваться при любой стоимости ее изготовления и сложности технологии. Последнее, однако, практически возможно в уникальных приборах или в приборах мелкой серии.

Крупносерийное производство объективов с асферической оптикой, в которых достигнуто упрощение оптической схемы, окажется экономически оправданным только тогда, когда стоимость изготовления одной асферической поверхности не будет превышать стоимости изготовления приблизительно одной-двух линз. В частности, в этом случае массовые четырехлинзовые объективы «Индустар» с двумя асферическими поверхностями окажутся эквивалентными шестилинзовым объективам типа «Гелиюс».

За счет увеличения относительных отверстий компонентов большой оптической силы при введении асферических поверхностей иногда возможно сократить габариты оптической системы, что очень важно, например, в объективах с переменным фокусным расстоянием.

Вместе с тем асферизация поверхностей не всегда позволяет исправлять любые аберрации. Например, кривизна поверхности изображения, зависящая от четвертого (S<sub>IV</sub>) коэффициента аберраций, не меняется при асферизации поверхности; последнее не может также обеспечить коррекцию первичных хроматических аберраций и т. п.

В литературе достаточно подробно освещены вопросы, относящиеся к технике расчета лучей через поверхности асферической формы. В значительно меньшей степени изучены вопросы, относящиеся к методике проектирования оптических схем с введением в них асферических поверхностей. Под такой методикой мы понимаем разработку достаточно простых для практики критериев, изложенных в главе II, позволяющих, не прибегая к трудоемким расчетам лучей через асферические поверхности, уже в начальной стадии расчета хотя бы ориентировочно определять оптическую схему системы, так как последующая ее коррекция автоматически выполняется с помощью ЭВМ.

Нам представляется, что эти методические вопросы проще всего решаются на практике на основе применения теории аберраций третьего порядка с одновременным контролем аберраций высших порядков применительно к системам с асферическими поверхностями и разработанного нами дифференциального метода, более детальное изложение которого дано в монографии [3].

Исследования и разработки конкретных объективов, а также анализ патентной литературы показывают, что в объективостроении в ближайшие годы получат применение главным образом следующие типы высокоточных асферических поверхностей:

1) сложный профиль поверхности с малым отступлением от ближайшей сферы или плоскости в пределах до 10—20 *мкм*; 2) сложный профиль поверхности с большим отступлением от сферы или плоскости в пределах до 1—2 мм;

3) поверхности, профиль которых выражается уравнениями второго порядка (параболоиды, эллипсоиды и гиперболоиды), а также их небольшими деформациями, выражающимися членами уравнений более высоких порядков.

В зависимости от заданных оптических характеристик, требований к качеству оптического изображения и назначения разрабатываемой оптической системы устанавливается оптическая схема объектива и



Рис. IX, б. Концентрические системы: a — зеркальнолинзовая «Супер-Шмидт»; б — линзовая Сферогон»

определяется рациональное расположение в ней асферических поверхностей — одной или нескольких.

Мы имеем здесь следующие конструктивные возможности.

1. Расположение асферической поверхности вблизи апертурной диафрагмы для более совершенной коррекции сферической аберрации как осевого, так и широких наклонных пучков лучей и, следовательно, для повышения относительного отверстия системы.

Такое конструктивное решение рационально, во-первых, если предварительно рассчитана такая оптическая система, в которой исправлена кома и присутствует лишь «чистая» полевая сферическая аберрация. Во-вторых, в системах, в которых на асферизованных преломляющих (или отражающих) поверхностях нет резко выраженного разделения пучков лучей осевого и наклонных.

Эти условия сравнительно часто выполняются в длиннофокусных светосильных объективах с небольшим углом поля зрения, в концентрических системах, имеющих поверхность изображения сферической формы, в светосильных широкоугольных объективах. Сюда относятся двухзеркальные длиннофокусные системы Кассегрена с асферическими (часто гиперболоидальными) зеркалами (см. рис. IV, 1 8, б), в которых удается хорошо корригировать все аберрации, кроме дисторсии. Особосветосильные зеркальные системы Б. Шмидта (см. рис. IV, 16, *a*) и «Супер-Шмидт» Ж. Бейкера, в которых применены асферические коррекционные пластины (рис. IX, 6, *a*), расположенные в зрачке системы. К той же группе концентрических зеркально-линзовых систем принадлежат светосильные системы А. Бауэрса (см. рис. IV, 19, *a*) и «Антарес» Д. Волосова — В. Бабинцева (см. рис. VIII, 13, *б*), которые содержат преломляющие поверхности конической формы. Среди концентрических линзовых объективов назовем «Сферогон» (см. рис. IV, 14, г), позволяющий достигнуть поля зрения 120° и более при относительных отверстиях 1 : 2,5—1 : 3. Применение в этих системах асферической поверхности, расположенной вблизи апертурной диафрагмы (рис. IX, 6, б), позволило бы повысить их относительное отверстие до 1 : 2—1 : 1,5.

Светосильный широкоугольный объектив «Геогон» (см. рис. IV, 13, в) имеет необычно большое отверстие и поле (1 : 2,5 при поле зрения 94°) благодаря применению двух асферических поверхностей высших порядков, расположенных по обе стороны от апертурной диафрагмы.



Рис. IX, 7. Асферические киносъемочные объективы «Кукспид-панхро-ленз» («Тейлор — Гобсон»): a - f' = 18 мм;  $\delta - f' = 25$  мм

Обе поверхности (9-я и 10-я на рис. IV, 13, e) могут быть выражены уравнениями вида (IX, 11) при фокусном расстоянии объектива f' = 1:

$$x = \frac{0,055 (y^{2} + z^{2})}{1 + \sqrt{1 - 0,055^{2} (y^{2} + z^{2})}} + 0,39530 (y^{4} + z^{4}) - - 0,83499 (y^{6} + z^{6});$$

$$x = \frac{0,013685 (y^{2} + z^{2})}{1 + \sqrt{1 - 0,013685^{2} (y^{2} \times z^{2})}} + 0,31575 (y^{4} + z^{4}) + 3,83707 (y^{6} + z^{6}) + 33,849 (y^{8} + z^{8}).$$
(IX,16)

Фирмой «Тейлор — Гобсон» (Англия) были разработаны светосильные широкоугольные объективы (рис. IX, 7) «Кук-спид-панхро-ленз», в которых благодаря применению асферических поверхностей сложного профиля удалось повысить относительные отверстия до 1 : 2 у киносъемочных объективов с фокусными расстояниями 18 и 25 *мм* для съемки 35-*мм* фильмов.

Как видели в главе V, у аналогичных отечественных объективов со сферическими поверхностями отверстия не превышают величин 1 : 2,8 и 1 : 2,5 соответственно.

Во всех приведенных оптических схемах, как зеркально-линзовых, так и линзовых, асферизация поверхностей, расположенных вблизи апертурной диафрагмы, обеспечивает повышение относительных отверстий без снижения качества коррекции аберраций.

2. Асферизация поверхности, расположенной вдали от апертурной диафрагмы, где имеет место четкое разделение пучков лучей различных наклонов для более совершенной коррекции полевых аберраций лучей широких наклонных пучков или дисторсии для увеличения поля зрения системы. Такое конструктивное решение особенно эффективно в широкоугольных объективах. Частным решением этого типа является расположение асферической поверхности вблизи плоскости изображения, например асферизация для исправления дисторсии первой преломляющей поверхности прижимной пластины, выравнивающей фотографичес-



Рис. IX, 8. Особо широкоугольный ортоскопический объектив «Ортогон-8» с асферической поверхностью



Рис. IX, 9. Асферическая коррекционная пластина для совершенного исправления дисторсии широкоугольного объектива

кую пленку в широкоугольных топографических аппаратах высокой ортоскопии.

Примерами применения этой конструктивной схемы является широкоугольная система «Супер-Тежеа», в которой применена простая параболоидальная поверхность (см. рис. V, 35); широкоугольные светосильные киносъемочные объективы «Ликар», содержащие вогнутые эллипсоидальные поверхности (см. рис. V, 39); особо широкоугольный топографический объектив «Ортогон-8» (рис. IX, 8), в котором удалось при наличии прижимного плоскопараллельного стекла, выравнивающего аэропленку корригировать дисторсию в пределах 0,02 *мм*. Форма асферической поверхности несколько необычна: сферическая в вершине е последующим появлением доставляющих полинома при высоких степенях *х*:

$$y^{2} + z^{2} = -144,22x - x^{2} + 3,971 \cdot 10^{-3} x^{3} + 1,64125 \cdot 10^{-8} x^{6} + 1,7052 \cdot 10^{-15} x^{10}.$$
 (IX,17)

Уравнение написано для асферической поверхности объектива f' = 55 мм; 1: 7;  $2w = 133^{\circ}$ ; отступление поверхности диаметра около 115 мм от ближайшей сферы достигает 0,3 мм.

Перспективным представляется асферизация поверхности в первых компонентах панкратических объективов в целях коррекции дисторсии и астигматизма при малых фокусных расстояниях, что позволило бы расширить их поля зрений, величины которых в современных системах не превышают 65—70°.

В заключение укажем, что асферизация первой поверхности прижимной пластины, выравнивающей аэропленку (рис. IX, 9), на которой

происходит четкое разделение лучей различных наклонов, позволяет полностью корригировать дисторсию, хотя этот способ коррекции нам представляется не рациональным, так как достигается слишком сложными средствами.

3. В ведение асферических поверхностей в сложных многолинзовых компонентах системы для упрощения оптической схемы компонентов и для уменьшения габаритов и веса объектива.

Как показывают численные исследования, ведение одной асферической поверхности позволяет устранить в системе приблизительно одну-две линзы; в отдельных случаях этот эффект оказывается и более ощутимым, например в упомянутых выше особосветосильных системах Б. Шмидта.

В компонентах большой оптической силы введение асферических поверхностей позволяет повысить относительное отверстие, следствием чего является возможность сокращения габаритов и веса объективов.

Одной из систем, в которых практически может быть реализована эта конструктивная схема, является классической триплет. Асферизация одной из поверхностей всех трех линз системы приводит к весьма совершенному исправлению аберраций лучей осевого и широких наклонных пучков в пределах полей зрения 15—20°. Отступления асферических поверхностей от ближайших сфер остаются в пределах 3—5 мкм при диаметрах поверхностей около 70 мм. Аберрации оказывается возможным хорошо корригировать для относительных отверстий 1 : 5 — 1 : 4,5 при фокусных расстояниях объективов 300—500 мм. Применение сферических поверхностей при тождественных оптических характеристиках и качестве оптического изображения потребовало бы введения пяти-шести линзовых оптических схем, что приблизительно на 30% увеличило бы длину объектива.

Известны попытки асферизации первой поверхности в двухкомпонентной схеме светосильного апланата Петцваля (см. рис. IV, 9, *a*), в результате чего относительное отверстие системы удается повысить до 1 : 1,2 и даже до 1 : 1. При этом, естественно, вследствие некорригированной кривизны поля используемое поле зрения системы в полтора-два раза сокращается.

Широкую известность получили английские телевизионные объективы «Варотал-З» (см. рис. VIII, 11) и «Варотал-5» (см. рис. VIII, 9,6), в корректорах которых применены асферические поверхности сложного профиля, но с небольшим отступлением от сферы. Это позволило весьма совершенно корригировать прежде всего сферическую аберрацию панкратической системы при всех фокусных расстояниях, поскольку асферика расположена вблизи апертурной диафрагмы, и, как показали наши численные исследования, упростить оптическую схему корректора: замена асферической поверхности сферическими требует дополнительного усложнения компонента одной-двумя линзами.

Некоторый положительный эффект дает асферизация первой поверхности простого анастигмата «Индустар». На рис. 1Х, 4 приведены графики аберраций (обозначенные точечными кривыми) объектива «Индустар 61А», имеющего оптические характеристики такие же, как в объективе «Индустар-61»; в отличие от последнего первая поверхность «Индустара-61А» имеет эллипсоидальную форму, выражающуюся уравнением:

$$y^2 + z^2 = 40,862x - 0,9269x^2.$$
 (IX,18)

Как видим, коэффициент при x<sup>2</sup> близок к единице, т. е. эллипсоидальная поверхность близка к сферической; однако уже это позволило несколько уменьшить аберрации высших порядков широких наклонных пучков как в меридиональном, так и сагиттальном сечениях и несколько повысить пропускание лучей меридиональных пучков по полю.

Мы ограничимся здесь приведенными конкретными примерами, дающими представление о формах применяемых асферических поверхностей и их расположении в оптических схемах в зависимости от решаемых коррекционных задач. Нам представляется, что эти примеры являются типичными и должны дать представление о возможностях и перспективах применения асферики в ближайшие годы.

Вместе с тем во всех разработках были применены не более однойдвух асферических поверхностей, учитывая большие технологические трудности их изготовления. Между тем существенный эффект, как показывает анализ, может быть достигнут асферизацией в системе нескольких поверхностей, что, конечно, является проблемой более отдаленного времени.

4. Исправление хроматических аберраций введением асферических поверхностей.

В меньшей степени используется пока асферизация для коррекции хроматических аберраций. Очевидно, элементарные хроматические аберрации не целесообразно корригировать столь сложными средствами.

Применение асферических поверхностей позволяет корригировать такие аберрации, как сферохроматическую у светосильных систем и хроматическую разность увеличений высших порядков у широкоугольных объективов. В этих случаях простейшим решением является асферизация поверхности склейки, изготовление которой требует в несколько раз меньшей точности, чем изготовление поверхностей, граничащих с воздухом. Последним свойством более 40 лет назад воспользовался Вандерслеб («К. Цейсс») при разработке анастигматов типа «Тессар» повышенной светосилы, у которых поверхность склейки последнего компонента имела асферическую форму при различных показателях преломления стекол в целях коррекции аберраций лучей широких пучков и астигматизма. В 1963 году Б. Л. Нефедовым была использована асферизация поверхности склейки, разделяющей две среды с одинаковыми показателями преломления и различными дисперсиями для коррекции сферохроматической аберрации, а при необходимости хроматизма положения; при этом асферическая поверхность склейки располагается вблизи входного зрачка исправляемой системы как в параллельных, так и в сходящихся пучках лучей. Этот способ может представить, в частности, интерес при необходимости изменения коррекции хроматизма и сферохроматической аберрации оптических приборов, уже находящихся в употреблении, вводя для этих целей двухлинзовый компонент с наружными плоскопараллельными плоскостями и асферической поверхностью склейки. Допуски для изготовления такой асферической поверхности могут быть в десятки раз расширены.

Если асферическая поверхность склейки расположена далеко от входного зрачка, то она может корригировать хроматическую разность увеличений высших порядков.

# § 3. АВТОМАТИЗАЦИЯ КОРРЕКЦИИ АБЕРРАЦИЙ СЛОЖНЫХ ОПТИЧЕСКИХ СИСТЕМ С ПОМОЩЬЮ ЭВМ

За последние годы стала особенно актуальной проблема создания ускоренных автоматизированных методов расчета оптических систем. Как в отечественной, так и в иностранной литературе достаточно подробно освещены методы предварительного проектирования и аберрационных расчетов оптических систем любой сложности. В частности, в монографии Г. Г. Слюсарева [16] изложены методы расчета оптических систем, состоящих из бесконечно тонких компонентов; эти методы опираются в основном на теорию аберраций третьего порядка и при достаточном опыте оптических схем исходных систем. В монографии [3] излагаются методы расчета сложных анастигматических систем, состоящих из компонентов конечной (большой) толщины; в монографии даны также основы теории и методики расчета объективов с переменным фокусным расстоянием.

Весьма трудоемким оставался процесс коррекции аберраций сложных многолинзовых объективов. Оптические схемы исходных вариантов систем подвергались систематическим исследованиям с целью определения оптимального решения (в данной локальной области) с точки зрения аберраций высших порядков. В хорошо корригированной оптической системе величины аберраций третьего порядка оказывались весьма малыми и рациональным образом сбалансированными со столь же малыми аберрациями более высоких порядков; только при этих условиях разработанный объектив обладал высоким качеством оптического изображения.

Проблема коррекции аберраций и отыскания оптимальных областей решений усложнялась при переходе к светосильным широкоугольным системам, содержащим, в частности, преломляющие асферические поверхности сложной формы, а также при расчете объективов с переменным фокусным расстоянием. В этих случаях коррекция, как правило, проводится для целой группы лучей — иногда до 100 и большего количества: одновременно для лучей широких пучков нескольких наклонов, причем как лучей меридионального, так и сагиттального сечений, и в то же время для соответственных пучков лучей по крайней мере двух спектральных цветов, а в случае объективов с переменным фокусным расстоянием — для нескольких (не менее трех) значений фокусных расстояний одновременно.

Трудоемким был даже предварительный анализ, какой из преломляющих поверхностей системы рационально придать асферическую форму и хотя бы приближенно оценить влияние вводимой асферической поверхности на изменение структуры пучков лучей как осевых, так и наклонных.

На протяжении многих десятилетий расчеты оптических систем производились комбинированным методом [3], который заключается в коррекции аберраций третьего порядка и последующем расчете точных аберраций лучей. Однако система с малыми аберрациями третьего порядка далеко не всегда обладает удовлетворительной коррекцией аберраций высших порядков, вследствие чего требуется большая систематическая работа по отысканию оптимальных решений и совершенствованию аберрационных свойств системы. Только опыт, наблюдательность и интуиция помогают оптику определять дальнейшее направление работы.

Появление электронных цифровых вычислительных машин (ЭВМ) позволило весьма существенно ускорить решение таких задач и, более того, сделало почти единым подход к коррекции аберрации любых сложных оптических, в частности фотографических, систем как с постоянными, так и переменными оптическими характеристиками. Вместе с тем создание автоматизированных методов коррекции позволило существенно расширить круг обследуемых локальных решений в направлении отыскания оптимальных решений для нескольких из выбранных локальных областей.

Однако применение ЭВМ существенно изменяет подход к разработке оптических систем и к анализу конечных вариантов расчета. Вначале ЭВМ воспринималась как большой арифмометр, позволя-

Вначале ЭВМ воспринималась как большой арифмометр, позволяющий чрезвычайно быстро производить вычисления, и это обстоятельство само по себе было уже очень важным. Позднее выяснилось, что ЭВМ обеспечивает возможность введения новой технологии переработки информации и, следовательно, нового уровня принятия решений.

Как известно, одним из наиболее громоздких и трудоемких этапов разработки объектива является нахождение такой комбинации численных значений конструктивных параметров, при которой аберрационные свойства оптической системы, наиболее близки к требуемым. Особенно сложен этот этап при расчете объективов с повышенными оптическими характеристиками и качеством оптического изображения, так как они могут быть обеспечены только применением сложных многолинзовых (многопараметровых) схем, а иногда и асферических поверхностей. Решающее значение при разработке объектива имеет выбор оптичес-

Решающее значение при разработке объектива имеет выбор оптической схемы, который требует глубокого знания возможностей различных типов объективов, умения сочетать и комбинировать известные свойства существующих оптических систем, предвидеть, какая из возможных комбинаций окажется наилучшей. Этот этап разработки объектива пока не допускает формального описания ввиду отсутствия достаточно общей теории, на основании которой был бы возможен единый подход к ее решению. Вся отечественная и зарубежная литература по теории и методам расчета оптических систем, как уже говорилось в главе IV, посвящена в основном методам коррекции аберраций, и вряд ли это положение радикально изменится в ближайшие годы. Поэтому все автоматические методы поиска аберрационного решения предполагают фиксированной оптическую схему, а во многих случаях и марки оптических стекол.

Общая математическая постановка задачи коррекции аберраций объектива сводится к решению системы нелинейных алгебраических уравнений:

$$f_i(x_1, x_2, \dots x_j, \dots x_n) - \overline{f}_i = 0;$$
 (IX,19)  
 $i = 1, 2, \dots m,$ 

где f<sub>i</sub> — аберрации или некоторые параметры оптической системы;  $\overline{f_i}$  — их желаемые значения (которые могут и не задаваться); х. — коррекционные параметры.

При решении системы (IX, 19) в общем случае должны учитываться условия сохранения конструктивности оптической схемы, т. е. должны выполняться некоторые заданные граничные условия на конструктивные параметры или на некоторые функции от них, например расстояния между линзами, толщины положительных линз на краю и т. д.

Рассматриваемая проблема эквивалентна минимизации квадратич-

ного функционала 
$$\Phi = \sum_{i=1}^{m} p_i^2 (f_i - \overline{f_i})^2$$
 в пространстве переменных  $x_j$ 

при наличии ограничении в виде неравенств:

$$A_j \leqslant x_j \leqslant B_j \quad \text{if } \quad \varphi_j \left( x_1, \, x_2, \, \dots \, x_n \right) \ge 0; \tag{IX,20}$$

*p<sub>i</sub>* — весовые множители, позволяющие сбалансировать между собою входящие в систему (IX, 19) отдельные уравнения для более равномерного использования заключенной в них информации.

В течение ряда лет у нас и за рубежом проводились исследования по поиску достаточно эффективных методов минимизации функционала Ф. Были привлечены различные итерационные методы нахождения локального минимума: градиентный, сопряженного градиента, наименьших квадратов и некоторые их модификации. Все эти методы основаны на линейной аппроксимации корригируемых функций *f*, около текущей итерационной точки:

$$f_i \approx f_i^{(k)} + \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j \approx f_i^{(k)} + \sum_{j=1}^n \frac{\Delta f_i^{(k)}}{\Delta x_j} \Delta x j^{(k)}; \quad (IX,21)$$

или в матричной форме:

$$f \approx f^{(k)} + A \Delta \mathbf{X}^{(k)} \,. \tag{IX,21'}$$

Как показали исследования, методы градиентный, сопряженного градиента и наименьших квадратов малоэффективны из-за сильной нелинейности функций f<sub>i</sub> и правомочности линейной аппроксимации только в очень малой окрестности текущей точки Х<sup>*k*</sup>. Это приводит к плохой обусловленности матрицы А<sup>т</sup> А и, как следствие, к плохой сходимости этих методов.

Более предпочтительным для решения данной аберрационной задачи является сдерживающий метод наименьших квадратов Левенберга. предложенный им в 1944 году для решения систем уравнений в случае сильной нелинейности функций  $f_i$ . В настоящее время именно этот метод с теми или иными модификациями служит математической основой большинства программ автоматической коррекции аберраций. Остановимся на нем несколько подробнее.

Идея сдерживающего метода наименьших квадратов заключается в том, что минимизация функционала Ф производится одновременно с ограничением длины шага итерационного процесса. Задача сводится к минимизации функционала  $\overline{\Phi} = \Phi + q |\Delta X|^2$ , где q > 0 — весовой коэффициент, определяющий степень сдерживания длины шага итераций  $\Delta X$ . Условие минимума $\frac{\partial \Phi}{\partial X} = 0$  с учетом (IX, 21') приводит к нормальной системе уравнений:

$$(A^{T}A+qI)\Delta X + A^{T}(f-\overline{f}) = 0.$$
 (IX,22)

Так как матрица  $A^{T}A$  положительно определена, то все ее собственные значения  $\mu_{j}$  положительны. Очевидно, у матрицы  $A^{T}A + qI$  собственные значения  $\overline{\mu_{j}} = \mu_{j} + q$ . Таким образом, в основе сдерживающего метода наименьших квадратов лежит решение нормальной системы уравнений с матрицей  $A^{T}A + qI$ , обусловленность которой лучше, чем матрицы  $A^{T}A$ .

Хотя математической основой большинства программ автоматического расчета является сдерживающий метод наименьших квадратов, каждому из разработчиков программ для улучшения его сходимости при решении своих конкретных задач (применительно к ЭВМ) потребовалось внесение некоторых модификаций.

Из литературы известно о применении сдерживающего метода наименьших квадратов: в СССР — Н. Цено и С. Родионовым; в США — Д. Федером, Дж. Мейроном, Р. Хопкинсом, Б. Брикснером и другими; в Англии — Ч. Дж. Винном, М. Киндером, Дж. Блеком и другими; во Франции — А. Жираром; в Японии — Т. Сузуки, И. Мацуи, Р. Хирозе.

Ниже кратко описан алгоритм метода, положенный в основу автоматической программы, разработанной Н. Цено применительно к ЭВМ БЭСМ-2, БЭСМ-4 и БЭСМ-6.

Первоначально был использван в «чистом» виде метод, предложенный Левенбергом. Однако из проведенных расчетов стало ясно, что принцип выбора сдерживающего параметра q по условию  $\Phi(q) = \min$  при решении данной оптической задачи приводит к слишком сильному ограничению длины шага итераций, вследствие чего происходит фактически ограничение числа независимых переменных (коррекционных параметров). Направление вектор — решения  $\Delta X$  от шага к шагу меняется довольно мало, длина их также мала из-за недостаточной эффективности этих направлений. Сходимость метода заметно снижается по мере приближения к минимуму  $\Phi$ . Проведенные исследования привели к следующей логической схеме выбора q. За начальное значение q принимается некоторое малое число, практически не ограничивающее решения  $\Delta X^{(\kappa+1)}$ . Затем производится его увеличение в  $\vartheta$  раз до

тех пор, пока не будет удовлетворяться неравенство  $\Phi(X^{(\kappa+1)}) < \Phi(X^{(\kappa)})$ . При этом значении q и выбирается решение  $\Delta X^{(\kappa+1)}$  на данном шаге итераций. Выбор  $\vartheta$  также в сильной степени влияет на сходимость и даже на конечный результат. При слишком большом значении  $\vartheta$ происходит сильное ограничение решения  $\Delta X^{(\kappa+1)}$  и, как следствие, замедление сходимости итерационного процесса. При малом значении  $\vartheta$  приближаемся к принципу  $\Phi(q) = \min$ , о недостатках которого говорилось выше. При нахождении q по данному алгоритму выбор шага производится всегда при меньшем значении q, чем по условию  $\Phi(q) = \min$ .

Расчет некоторых оптических систем данным методом иногда приводит к сильной неравномерности изменения коррекционных параметров (радиусов, толщин линз, коэффициентов асферических поверхностей и др.) из-за несоизмеримости их численных значений между собой. Следствием этого может быть нарушение конструктивности оптической схемы. Значительно лучшие результаты получаются при дифференцированном ограничении этих коррекционных параметров, т. е. при выборе дифференцированных значений сдерживающего параметра  $q:q_j = \frac{\overline{q}}{[\tau x_j^{(\kappa)}]^2} = \frac{\overline{q}}{h_i^2}$ , где  $\tau$  — процентное изменение неза-

висимой переменной при счете производной по конечно-разностной формуле. Введение дифференцированных значений  $q_j$  равносильно изменению метрики пространства переменных  $x_j$ , так как система (IX,22) переходит в систему

 $(B^T B + \overline{q}I) \Delta Y + B^T (f - \overline{f}) = 0,$  (IX,23) где *B*— матрица, составленная из первых разностей функции *f*<sub>*i*</sub>;  $\Delta y_j = \frac{\Delta x_j}{m_j}$  Принцип выбора  $\overline{q}$  сохраняется.

Логическая схема контроля и удовлетворения необходимых условий сохранения конструктивности оптической схемы, используемая в программе, различна в зависимости от этих условий.

Напомним, что в группу граничных условий включаются, во-первых условия нахождения коррекционных параметров  $x_j$  в заданном интервале их возможных изменений  $A_j \leq x_j \leq B_j$  (явные граничные условия), во-вторых, условия, определяющие оптико-конструктивную реализуемость системы: сохранение технологически допустимых толщин положительных линз на краю, допустимых осевых толщин отрицательных линз, конструктивно приемлемых расстояний и воздушных зазоров между линзами:  $\varphi(x_1, x_2, \dots x_n) \ge 0$  (неявные граничные условия). Исходная система должна удовлетворять всем заданным граничным условиям.

При нарушении на k-м шагу итерационного процесса граничных условий на коррекционные параметры  $x_j$  производится увеличение соответствующих им сдерживающих параметров  $q_j$ , добавляемых к диагональным элементам матрицы  $B^T B$ , в  $\vartheta$  раз до тех пор, пока  $x_j^{(\kappa+1)} = x_j^{(\kappa)} + \Delta x_j^{(\kappa)}$  будет удовлетворять неравенствам  $A_j \ll x_j^{(\kappa+1)} \ll B_j$ . Очевидно, это произойдет, так как при достаточно большом  $q_j$  решение  $\Delta x_j$  мало, а  $x_j^{(\kappa)}$  находится в заданном интервале изменения.

При нарушении граничных условий, задаваемых на некоторые функции от коррекционных параметров  $\varphi_i(x_1, x_2,...,x_n)$ , было принято во внимание, что нарушение их происходит из-за слишком сильного изменения целого ряда параметров, предшествующих положению линзы в оптической системе. В этом случае производится одновременное и одинаковое увеличение всех сдерживающих параметров  $q_j$ .

Сдерживающий метод наименьших квадратов пригоден для решения задач с любым соотношением числа уравнений и числа неизвестных.

Сходимость метода является вполне удовлетворительной при использовании различных коррекционных параметров и корригируемых функций. В разработанной программе в качестве коррекционных параметров могут быть выбраны радиусы и толщины линз, воздушные промежутки, коэффициенты асферических поверхностей, углы первого параксиального луча с оптической осью, положение действующей диафрагмы, показатели преломления стекол и др. Критерием оценки качества коррекции могут служить аберрации третьего порядка, волновые и геометрические аберрации лучей (монохроматические и хроматические), в частности дисторсия, условие изопланатизма. Кроме того, корригируемыми могут быть такие параметры, как фокусные расстояния оптической системы и отдельных ее компонентов, фокальные отрезки, расстояния между главными плоскостями соседних компонентов и др.

Для оптических систем с переменными оптическими характеристиками коррекция аберраций, как правило, производится для нескольких фиксированных значений фокусного расстояния.

При автоматической коррекции волновых аберраций *L* для их вычисления с достаточной точностью при сравнительно малой затрате машинного времени предпочтительнее использование следующих формул, основанных на определении разностей длин оптических путей:

$$L = (l_{\mathbf{r}.\mathbf{n}} - \overline{l}) - (l_{\mathbf{p}.\mathbf{n}} - \overline{l}), \qquad (IX, 24)$$

где  $\overline{l} = \sum_{i=1}^{\kappa} n_i d_i$  — длина оптического пути луча вдоль оптической оси

системы между вершинами ее наружных (1-й и k-й) преломляющих поверхностей;  $l_{\mathbf{r}.\mathbf{n}}$  — длина оптического пути вдоль главного луча;  $l_{\mathbf{r}.\mathbf{n}}$  — длина оптического пути вдоль некоторого «текущего луча» пучка. Очевидно, длина оптического пути  $l_{\mathbf{n}}$  вдоль любого луча (главного или «текущего») представится выражением:

$$l_{\pi} - \overline{l} = \sum_{i=1}^{k} n_i \Delta_i, \qquad (IX, 25)$$
$$u_i^2 + v_i^2$$

где:

$$\Delta_i = \frac{x_i - x_{i-1} + d_i \frac{(\gamma_i^2 + \gamma_i^2)}{1 + \lambda_i}}{\lambda_i} ; \qquad (IX \ 26)$$

*x*<sub>i</sub>, μ<sub>i</sub>, ν<sub>i</sub>, λ<sub>i</sub> — координаты луча на *i*-й поверхности.

Для бесконечно удаленной плоскости предметов

$$\Delta_{\mathbf{i}} = \frac{x_1}{\lambda_1} + \mu_{\mathbf{i}} y_0 + \mathbf{v}_{\mathbf{i}} z_0,$$

где y<sub>0</sub>, z<sub>0</sub> — координаты точки пересечения луча с плоскостью касательной к вершине первой поверхности системы.

При положении предметов на конечном расстоянии s<sub>пр</sub> от оптической системы

$$\Delta_{i} = \frac{x_{1} - s_{np} \frac{\mu_{1}^{2} + v_{1}^{2}}{1 + \lambda_{1}}}{\lambda_{1}}.$$
 (IX,27)

Для k-й (последней) составляющей

$$\Lambda_{k} = \frac{x_{c\Phi} - x_{k} + s_{BLX, 3p} \frac{\mu_{k}^{2} + \nu_{k}^{2}}{1 + \lambda_{k}}}{\lambda_{k}}, \qquad (IX, 28)$$

где x<sub>сф</sub> — абсцисса точки пересечения луча со сферой сравнения, вершина которой расположена на оптической оси и совмещена с началом координат; s<sub>вых.зр</sub> — расстояние центра выходного зрачка от вершины последней преломляющей поверхности оптической системы.

Критерием качества коррекции оптической системы кроме геометрических или волновых аберраций являются функции, характеризующие ее физические свойства; таковой, в частности, является частотно-контрастная характеристика (ЧКХ) оптической системы\*. Увеличение быстродействия ЭВМ дало возможность широкого привлечения критерия ЧКХ для анализа различных вариантов рассчитываемого объектива. Непосредственная оптимизация ЧКХ по данной программе, как показали исследования, недостаточно эффективна. Малая область линейности этих функций приводит к существенному ухудшению сходимости сдерживающего метода наименьших квадратов. Поэтому критерий ЧКХ обычно подключается на последних этапах коррекции оптической системы. В стадии «тонкой» коррекции рациональна минимизация волновых аберраций, что особенно эффективно при расчете оптических систем предельно высокого разрешения. Оптимизация полихроматических ЧКХ достигается одновременной коррекцией аберраций для пяти-семи длин волн, выбранных в актиничной области спектра.

Применение среднеквадратичного критерия при поиске аберрационного решения по автоматической программе не всегда позволяет получить оптическую систему требуемого качества коррекции. В оптической системе, соответствующей минимуму функционала  $\Phi = m$ 

 $=\sum_{i=1}^{n} p^{2}_{i} (f_{i} - \overline{f}_{i})^{2}$ , некоторые из поставленных условий иногда оказываются невыполненными вследствие того, что отражающие

<sup>\*</sup> Или функция передачи модуляций (ФПМ).

эти условия функции  $f_i$  имеют слишком малый вес в общем массиве корригируемых аберраций и почти не участвуют в образовании нормальной системы уравнений (1 X, 23), т. е. некоторая важная для данной оптической системы информация не учитывается при выборе направления минимизации аберраций. Чтобы придать больший вес этой информации, необходимо введение соответствующих весовых коэффициентов. Практика показала, что «гибкое», логически правильное введение условий перебалансировки аберраций всегда позволяет получить удовлетворительное по аберрационной картине решение (если только при выбранной оптической схеме это принципиально возможно), хотя для получения этого решения иногда необходимо выполнить ~ 15—20 вариантов расчета по автоматической программе.

Современные программы автоматической коррекции аберраций, широко внедренные в практику работы оптических центров как у нас, так и за рубежом, позволили не только сократить сроки разработки объективов, но в ряде случаев повысить их качество, особенно при создании оптических систем с повышенными оптическими характеристиками. Однако вопрос об оптимальности полученного решения до сих пор остается открытым. Вследствие неуклонного повышения требований к оптическим характеристикам и качеству оптического изображения разрабатываемых объективов проблема поиска оптимального аберрационного решения или наиболее предпочтительного экстремума функционала Ф остается весьма актуальной. Выбор начальных значений конструктивных параметров для автоматического расчета полностью предопределяет получение решения в некоторой локальной области и является весьма существенным моментом, определяющим эффективность автоматического процесса. Поиск хорошего начального приближения иногда становится главным звеном при решении поставленной задачи. Применение других аберрационных критериев оценки качества коррекции, включение дополнительных, еще не использованных коррекционных пара-метров и даже подключение других итерационных методов поиска решения в некоторых случаях не позволяет выйти из локальной облас-ти выбранной начальной точки. Заметим также, что иногда оптическая система с малыми аберрациями третьего порядка не является хоро-шим начальным приближением для коррекции реальных аберраций и не является надежным критерием существования удовлетворительного решения при выбранной оптической схеме. Одним из путей решения проблемы выбора начальных значений конструктивных параметров для автоматической коррекции является применение какоголибо алгоритма синтеза начальных точек в заданной области пространства переменных. С этой целью к программе автоматической коррекции аберраций для синтеза исходных систем можно подключить методы нелокального поиска, которые работают в сочетании с локальным сдерживающим методом наименьших квадратов. Например, эффективным при расчете длиннофокусных высокоразрешающих систем являным при расчете длиннофокусных высокоразрешающих систем явля-ется метод «слепой» случайной выборки, в котором конструктивные параметры «случайной» системы находятся по формуле:  $x_j = A_j + (B_j - A_j)p_j$ , где  $p_j$  — совокупность n псевдослучайных чисел. Од-нако нахождение оптимальных областей решения с помощью нелокальных методов требует применения очень быстродействующих ЭВМ. Поэтому весьма актуальным является проведение исследований по разработке автоматизированных методов поиска оптимальных областей решения, основанных на теории аберраций. Существенную помощь в этих исследованиях могут оказать имитационные диалоговые системы «человек — машина» с богатыми возможностями неформального анализа.

Разработка оптической системы является комплексной проблемой, удовлетворяющей совокупности технических параметров: оптикофизических, технологических, механических, климатических и других,



Рис. IX, 10. Оптическая схема (а) и результаты автоматической коррекции асферического объектива «Телур» (б)

учитывающих условия эксплуатации оптической системы. Процесс конструирования объектива состоит из ряда звеньев различных оптимизационных задач. Так как разработка обобщенного алгоритма. позволяющего формализовать и затем автоматизировать задачу поиоптимально-компромиссного ска решения на основе полного изоморфного описания всей совокупности предъявляемых требований, иногда противоречивых, пока практически невозможна, то в настоящее время выбор так называемого опти-

мального варианта сводится к анализу некоторой довольно сложной ситуации и занимает значительное место в процессе проектирования. Для большей автоматизации этого весьма ответственного этапа разработки объектива программа автоматического расчета непрерывно развивается в направлении дальнейшего повышения информативности при системном анализе получаемых вариантов решения.

В заключение приведем примеры автоматизированного расчета нескольких объективов различной сложности: светосильных и широкоугольных со сферическими и асферическими поверхностями, а также системы с переменным фокусным расстоянием.

Пример I. Фотографический объектив «Теллур» с фокусным расстоянием 250 *мм*, относительным отверстием 1 : 1,5 и углом поля зрения 5°. По конструктивным соображениям была задана величина заднего фокального отрезка объектива s' = 120 *мм*, которая должна была быть получена в процессе автоматического расчета и коррекции аберраций.

На рис. IX, 10, а представлена оптическая схема объектива, в которой с целью более совершенного исправления аберраций лучей осевого и широких наклонных пучков была асферизована третья поверхность:

$$y^2 + z^2 = \sum_{k=1}^{k=6} a_k x^k.$$

В табл. IX, 3 даны конструктивные элементы оптики исходной системы, у которой третья поверхность пока была сферической (r<sub>3</sub> = = 105,75), а аберрации абсолютно не исправленными: на рис. IX, 10,6 приведены пунктирные кривые поперечных аберраций в масштабе 0,5 мм (!) в одном делении. При исправлении аберраций в качестве коррекционных параметров использовались радиусы поверхностей  $r_1, r_3, r_5, r_6,$  все коэффициенты  $a_b$ , толщина линзы  $d_3$ , воздушный промежуток  $d_5$ ; последние параметры предназначались в основном для коррекции астигматизма и кривизны поля. Оптические постоянные указанных марок стекол обеспечивали коррекцию хроматических аберраций уже в исходной системе и сохранились в системе окончательной. Во втором столбце приведены конструктивные элементы оптики окончательной системы, у которой аберрации автоматически корригированы весьма совершенно; на том же рис. ІХ, 10, б сплошными кривыми же поперечные аберрации, но уже в масштананесены те бе 0,05 мм в одном делении. Коэффициенты уравнения третьей асферической поверхности ЭВМ также определила автоматически:

$$y^{2} + z^{2} = 192,0740x - 0,92543x^{2} - 1,2540 \cdot 10^{-2} x^{3} - 0,42629 \cdot 10^{-4} x^{4} + 0,99796 \cdot 10^{-6} x^{6} - 0,10452 \cdot 10^{-7} x^{6}.$$
 (IX,29)

Таблица IX,3

| Радиусы<br>поверхно-<br>стей, фо-                  | Сис                                                   | Системы Толи                                                                                                  |                                                                  |                                               | стемы                                           |                            |
|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------|
| кусное<br>расстояние<br>и задний<br>отрезок,<br>мм | исходная                                              | окончагель-<br>ная                                                                                            | воздуш-<br>ные про-<br>межутки,<br><i>мм</i>                     | исходная                                      | окончатель-<br>ная                              | Марки<br>стекол            |
| r1<br>r2<br>r3<br>r4<br>r5<br>r6<br>r7<br>f'<br>S' | 189,75937,50105,75-352,5069,00187,50-510,00240,0109,4 | $\begin{array}{r} 239,05\\ 937,50\\ 96,037^*\\ -352,50\\ 70,58\\ 167,95\\ -510,00\\ 250,0\\ 120,0\end{array}$ | $\begin{array}{c} d_1\\ d_2\\ d_3\\ d_4\\ d_5\\ d_6 \end{array}$ | 26,25<br>1,5<br>60,0<br>22,5<br>52,5<br>18,75 | 26,25<br>1,5<br>51,34<br>22,5<br>52,58<br>18,75 | ТҚ20<br>ТҚ3<br>ТФ3<br>БФ12 |

Конструктивные элементы оптики исходной и окончательной системы «Теллур», автоматически корригированной

Примечание. Знаком\* помечена асферическая поверхность.

**Пример II.** Расчет телевизионного объектива «Алькор-7» с переменным фокусным расстоянием, изменяющимся от 60 до 357 *мм* при постоянном относительном отверстии  $\varepsilon = 1:4$ . Оптическая схема объектива представлена на рис. IX, 11. В табл. IX, 4 даны величины переменных воздушных промежутков между компонентами  $d_5$ ,  $d_{10}$ ,  $d_{15}$ ,  $d_{19}$  для трех значений фокусных расстояний f' системы: минимального, максимального и некоторого среднего значения.

Расстояния между компонентами системы «Алькор-7» для трех значений фокусных расстояний



Рис. IX, 11. Оптическая схема объектива «Алькор-7»

В качестве исходной была выбрана оптическая система, уже предварительно исправленная оптиком обычным (не автоматизированным)





Рис. IX, 12. Аберрации объектива «Алькор-7».

методом. Была поставлена задача: выяснить возможность хотя бы некоторого дальнейшего улучшения коррекции с помощью ЭВМ при тех же оптических характеристиках объектива. Корригировались аберрации лучей — монохроматические и хроматические и дисторсия для трех положений фокусного расстояния f': 60, 131 и 357 мм. Поиск решения производился при условии сохранения этих значений фокусных расстояний объектива и оптических сил OTдельных компонентов, а также при сохранении плоскости изображения на заданном расстоянии от оптической системы. В качедействующих стве параметров использовались радиусы поверхностей линз.

При автоматическом расчете контролировались условия сохранения конструктивности оптической схемы, а именно минимально допустимые значения толщин линз и расстояний между ними. Критерием оценки качества коррекции служили в одном случае геометрические, в другом — волновые аберрации лучей.

На рис. IX, 12 представлены графики геометрических аберраций лучей исходной системы и окончательных систем, рассчитанных на ЭВМ автоматической минимизацией геометрических и волновых аберраций.

В табл. ІХ, 5 приведены конструктивные элементы оптики: системы I (исходной), системы II (рассчитанной на основе минимизации геометрических аберраций) и системы III (рассчитанной на основе минимизации волновых аберраций).

Таблица IX.5

| Радиусы<br>поверх-<br>ностей,<br>мм                                                                                                                                                                                                                                                                   | Система I —<br>исходная                                                                                                                                                                                                                                                                                                                                 | Система II—<br>минимум<br>геометриче-<br>ских аберра-<br>ций                                                                                                                                                                                                                                                                                                      | Система III—<br>минимум<br>волновых<br>аберраций                                                                                                                                                                                                                                                                                                         | Толщин<br>воздушные<br>ки,                                                                                                                                                                                                                                                                           | ы линзи<br>промежут-<br>мм                                                                                                                                                                                  | Показатели<br>преломления<br>стекол                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $r_1$<br>$r_2$<br>$r_3$<br>$r_4$<br>$r_5$<br>$r_6$<br>$r_7$<br>$r_8$<br>$r_9$<br>$r_{10}$<br>$r_{11}$<br>$r_{12}$<br>$r_{13}$<br>$r_{14}$<br>$r_{15}$<br>$r_{16}$<br>$r_{17}$<br>$r_{18}$<br>$r_{20}$<br>$r_{21}$<br>$r_{22}$<br>$r_{23}$<br>$r_{24}$<br>$r_{25}$<br>$r_{28}$<br>$r_{29}$<br>$r_{30}$ | $\begin{array}{c} 787,0\\ 183,23\\ -295,1\\ 106,91\\ 302,7\\ -155,6\\ 41,88\\ 74,47\\ -196,34\\ 116,95\\ 172,19\\ -214,3\\ 117,22\\ 55,72\\ -145,88\\ -114,02\\ 58,08\\ 60,53\\ 100,93\\ 54,58\\ -62,23\\ 69,18\\ 508,2\\ -62,23\\ 69,18\\ 508,2\\ -63,68\\ 202,8\\ -63,68\\ 202,8\\ \infty\\ \infty\\ \infty\\ \infty\\ \infty\\ \infty\\ \end{array}$ | $\begin{array}{c} 1031, 32\\ 197, 63\\ -251, 82\\ 109, 39\\ 290, 79\\ -155, 83\\ 42, 803\\ 77, 726\\ -160, 14\\ 125, 23\\ 261, 61\\ -243, 04\\ 92, 304\\ 50, 777\\ -147, 67\\ -150, 49\\ 57, 360\\ 62, 061\\ 92, 633\\ 61, 357\\ \infty\\ -85, 815\\ 81, 131\\ 498, 61\\ -76, 937\\ 212, 98\\ -212, 98\\ -212, 22\\ \infty\\ \infty\\ \infty\\ \infty\end{array}$ | $\begin{array}{c} 838, 19\\ 184, 73\\ -316, 70\\ 101, 78\\ 283, 37\\ -188, 17\\ 42, 647\\ 78, 374\\ -180, 23\\ 99, 745\\ 194, 11\\ -230, 91\\ 100, 40\\ 52, 595\\ -157, 81\\ -147, 85\\ 57, 342\\ 61, 347\\ 91, 738\\ 62, 410\\ \infty\\ -80, 585\\ 84, 992\\ 500, 16\\ -78, 322\\ 191, 52\\ -200, 96\\ \infty\\ \infty\\ \infty\\ \infty\\ \end{array}$ | $\begin{array}{c} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \\ d_7 \\ d_8 \\ d_{9} \\ d_{10} \\ d_{11} \\ d_{12} \\ d_{13} \\ d_{14} \\ d_{15} \\ d_{16} \\ d_{17} \\ d_{18} \\ d_{19} \\ d_{20} \\ d_{21} \\ d_{22} \\ d_{23} \\ d_{24} \\ d_{25} \\ d_{26} \\ d_{27} \\ d_{28} \\ d_{29} \end{array}$ | $\begin{array}{c} 6,67\\ 12,22\\ 0,05\\ 8,89\\ 6,28\\ 5,0\\ 7,56\\ 49,92\\ 5,5\\ 0,05\\ 3,7\\ 9,2\\ 149,92\\ 5,5\\ 0,05\\ 3,7\\ 9,2\\ 14,66\\ 122,44\\ 18,06\\ 17,54\\ 1,27\\ 71,55\\ 2,0\\ 4,5\end{array}$ | 1,7550<br>1,5163<br>1,5163<br>1,5163<br>1,7550<br>1,5163<br>1,5163<br>1,5163<br>1,5163<br>1,5163<br>1,5163<br>1,7550<br>1,6171<br>1,7172<br>1,6222<br>1,6222<br>1,5163<br>1,4800 |

#### Конструктивные элементы оптики панкратической системы «Алькор-7» до и после ее автоматической коррекции на ЭВМ

При использовании критерия минимизации геометрических аберраций потребовалось пять этапов расчета последовательного введения условий перебалансировки аберраций; в результате было достигнуто уменьшение аберрационных фигур рассеяния лучей для всех трех значений фокусного расстояния по сравнению с исходной системой (см. рис. IX, 12).

Применение «волнового» критерия оказалось более эффективным: первый же этап расчета по автоматической программе с минимизацией волновых аберраций привел к оптической системе с лучшим качеством коррекции, чем это было достигнуто на основе критерия



Рис. IX, 13. Оптическая схема широкоугольного объектива, автоматически корригированного на ЭВМ

минимизации геометрических аберраций. По-видимому в области «тонкой» коррекции рационально вводить «волновой» критерий.

**Пример III.** Приведем расчет широкоугольного объектива с фокусным расстоянием 150 мм, ототверстием 1:5.6носительным 80°. B углом зрения И поля частности, необходимо корригировать дисторсию до нескольких микрометров в пределах всего поля при наличии плоскопараллельной пластины толщиной 7,2 мм, вырав-

нивающей фотопленку. На рис. IX, 13 приведена оптическая схема девятилинзового объектива, у которого слабая линза IV являлась постоянным оранжевым светофильтром OC-14. Монохроматические аберрации исправлялись для спектральной линии C; хроматические для линий D и C. Общее число одновременно корригируемых аберраций лучей превышало 90. Коррекционными параметрами являлись все радиусы, толщины линз и воздушные промежутки между линзами, кроме толщины  $d_{16}$  прижимной пластины.

В табл. ІХ, 6 приведены конструктивные элементы оптики исходной и окончательной систем.

На рис. IX, 14 представлены графики аберраций исходной и окончательной систем; аберрации исходной системы обозначены пунктирными кривыми. Коррекция выполнялась для центра поля и четырех широких наклонных пучков в меридиональном и главном сагиттальном сечениях.

Проследим изменение величины дисторсии в результате коррекции: в исходной системе дисторсия на краю поля (см. табл. IX, 7) достигала 0,5 *мм*; в окончательном варианте системы ее величина не превышает 3 *мкм* в пределах всего поля.

### Таблица IX,6

#### Конструктивные элементы оптики исходной и окончательной систем широкоугольного объектива, автоматически корригированного на ЭВМ

| -онхс                                                                                                                                                            | Системы                                                                                                                                                                            |                                                                                                                                                                                                          | и<br>оме-                                                                                                                                                                                      | Сист                                                                                                                                        | емы                                                                                                                                   | Показатели прелом-<br>ления                                                                                                              |                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Радиусы повеј<br>стей, <i>мм</i>                                                                                                                                 | исходная                                                                                                                                                                           | оконча-<br>тельная                                                                                                                                                                                       | Толщины линз<br>воздушные про<br>жуткя, <i>мм</i>                                                                                                                                              | исходная                                                                                                                                    | оконча-<br>тельная                                                                                                                    | n <sub>C</sub>                                                                                                                           | пD                                                                                                        |
| $\begin{array}{c} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\ r_{10} \\ r_{11} \\ r_{12} \\ r_{13} \\ r_{14} \\ r_{15} \\ r_{16} \end{array}$ | $ \begin{bmatrix} 733,32\\172,64\\80,274\\44,195\\274,392\\37,312\\31,949\\-37,595\\-43,037\\-885,42\\-43,037\\-885,42\\-41,263\\-74,496\\-98,748\\-297,77\\\infty \end{bmatrix} $ | $\begin{array}{c} 739,74\\ 174,276\\ 79,014\\ 45,609\\ 268,19\\ 37,523\\ 31,837\\ -37,802\\ -43,520\\ -899,22\\ -889,22\\ -889,22\\ -888,24\\ -39,648\\ -72,496\\ -95,556\\ -282,03\\ \infty\end{array}$ | $\begin{array}{c} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \\ d_{7} \\ d_{8} \\ d_{9} \\ d_{10} \\ d_{11} \\ d_{12} \\ d_{1.1} \\ d_{12} \\ d_{1.1} \\ d_{15} \\ d_{16} \end{array}$ | $\begin{array}{c} 5,93\\ 58,18\\ 5,40\\ 24,23\\ 1,79\\ 5,45\\ 34,74\\ 3,54\\ 1,80\\ 6,0\\ 25,21\\ 19,15\\ 6,14\\ 6,38\\ 7,20\\ \end{array}$ | 5,92<br>53,40<br>5,399<br>24,16<br>1,79<br>5,47<br>34,07<br>3,48<br>1,79<br>5,96<br>24,50<br>5,199<br>116,52<br>6,095<br>6,34<br>7,20 | 1,60085<br>1<br>1,60273<br>1,60085<br>1<br>1,79716<br>1<br>1,79716<br>1<br>1,52085<br>1,61001<br>1,60907<br>1<br>1,60907<br>1<br>1,51390 | 1,6038<br>1<br>1,6067<br>1,6038<br>1<br>1,8060<br>1<br>1,52357<br>1,61300<br>1<br>1,61380<br>1<br>1,51630 |



Рис. IX, 14. Аберрации широких наклонных пучков до и после автоматической коррекции широкоугольного объектива

Таблица ІХ,7

Величина дисторсии широкоугольного объектива до и после его коррекции

| Углы полей зрения           |                          | 10°     | 20°             | 30°     | 40°    |  |
|-----------------------------|--------------------------|---------|-----------------|---------|--------|--|
| Величины ди-<br>сторсии, мм | исходной<br>системы      | -0,0072 | <b>—0,</b> 0564 | -0,0018 | 0,4980 |  |
|                             | окончательной<br>системы | -0,0006 | -0,0030         | -0,0011 | 0,0009 |  |

Пример IV. В ранее разработанном телевизионном объективе «Мир-10Т», имеющем фокусное расстояние 27 мм, относительное отверстие 1:3,5 и угол поля зрения 73° (формат изображения 24×32 мм),



Рис. IX, 15. Оптическая схема телевизионного объектива «Мир-10Т»

требовалось повысить полихроматическую ЧКХ в области малых пространственных частот до N =13  $mm^{-1}$ . Оптическая схема объектива представлена на рис. IX, 15.

Для повышения полихроматической ЧКХ аберрации корригировались в центре поля и по полю одновременно для лучей семи длин волн, равномерно

распределенных в актиничной спектральной зоне, в основном простиравшейся между линиями h и D.

В качестве коррекционных параметров использовались все конструктивные элементы оптической системы: радиусы преломляющих поверхностей, толщины линз и воздушные промежутки между ними.

В табл. IX, 8 приведены конструктивные элементы оптики исходной системы и системы, полученной после автоматической ее коррекции на ЭВМ. Заметим, что численные значения радиусов *r* и толщин *d* пока еще не «округлены» и оставлены с таким числом знаков после запятой, как их «выдала» ЭВМ.

На рис. IX, 16 представлены графики аберраций этих систем в меридиональном и главном сагиттальном сечениях. Аберрации исходной системы представлены пунктирными кривыми; аберрации усовершенствованной системы — сплошными кривыми, прерываемыми кружками.

На рис. IX, 17 даны полихроматические ЧКХ исходной и окончательной (усовершенствованной) систем. Кривые ЧКХ приведены для центра поля и для углов поля 10°, 20°, 30° и 36°30′ (край поля). Как видим, достигнуто существенное повышение ЧКХ в рабочем диапазоне пространственных частот до  $N = 13 \ \text{мm}^{-1}$  и особенно начиная со средних углов поля зрения.





Рис. IX, 16. Аберрации объектива «Мир-10Т»

| Радиусы<br>поверх-<br>ностей,<br>мм | Системы                  |                             | Толщины<br>линзи<br>воздуш-       | Сис          | темы               |                                  |
|-------------------------------------|--------------------------|-----------------------------|-----------------------------------|--------------|--------------------|----------------------------------|
|                                     | исходная                 | окончательная               | ные про-<br>межутки,<br><i>мм</i> | исходная     | эконча-<br>тельная | Марки стекол                     |
| r <sub>1</sub><br>r <sub>2</sub>    | 62,57<br>27,5            | 64,566<br>32,787            | $d_1$<br>$d_2$                    | 3,34<br>10,0 | 3,492<br>8,100     | TK21                             |
| r <sub>3</sub><br>r <sub>4</sub>    | -100,046                 | -169,73                     | $d_3$<br>$d_4$                    | 0,11         | 0,11               |                                  |
| 75<br>76                            | -529,3<br>32,77<br>23,29 | -341,70<br>63,994<br>25,611 | $d_6$                             | 23,19        | 19,79              | Τ <u>π</u> 5                     |
| r <sub>8</sub>                      | 199,857                  | 182,63                      | $d_{8}$                           | 1,0          | 0,9762             | TK 21                            |
| r <sub>10</sub>                     | 71,9<br>8,87             | 88,572<br>8,0619            | $d_{10}$<br>$d_{11}$              | 0,79<br>6,7  | 0,8126<br>6,967    | ΤΦ10                             |
| $r_{12}$<br>$r_{13}$                | 9,772<br>11,453          | 7,3336<br>8,8158            | $d_{12}$<br>$d_{13}$              | 1,13<br>0,15 | 1,153<br>0,1460    | ΤΦ5                              |
| r <sub>14</sub><br>r <sub>15</sub>  |                          | -217,30<br>-13,282          | $d_{14}$<br>$d_{15}$              | 4,3<br>32,5  | 2,518<br>22,69     | БФ6                              |
| r <sub>16</sub><br>r <sub>17</sub>  | 80<br>80                 | 00<br>00                    | $d_{16}$<br>$d_{17}$              | 2,0<br>0,1   | 2,0<br>0,1         | K8                               |
| r <sub>18</sub><br>r <sub>19</sub>  | 80<br>80                 | 80<br>80                    | d <sub>18</sub>                   | 4,5          | 4,5                | стекло телеви-<br>зионной трубки |

### Конструктивные элементы оптики телевизионного объектива «Мир-10Т» до и после ее автоматической коррекции

В заключение еще раз отметим, что не решенной пока остается проблема оптимизации расчетов при системном (комплексном) анализе в нелокальной области, — когда все параметры, определяющие оптикофизические, механические, габаритно-весовые и другие характеристики разрабатываемой оптической системы, изменяются в широких пределах. Эта проблема сможет быть решена лишь на основе развития теоретико-методических исследований применительно к ЭВМ, быстродействие которых в 50—100 раз превысит скорость счета машин типа БЭСМ — 6.

### ЛИТЕРАТУРА

- 1. Бегунов Б. Н. Геометрическая оптика. Изд-во МГУ, 1961.
- 2. Берек М. О. Основы практической оптики. ГТТИ, 1933.
- 3. Волосов Д.С. Методы расчета сложных фотографических систем. Огиз. 1948.
- 4. Волосов Д.С., Цивкин М.В. Теория и расчет светооптических систем. «Искусство», 1960. Герцбергер М. Современная геометрическая оптика. ИЛ, 1962.
- 5.
- 6. Гороховский Ю. Н., Левенберг Т. М. Общая сенситометрия. «Искусство», 1963.
- 7. Ландсберг Г.С. Оптика. ГИТТЛ, 1957.
- Максутов Д. Д. Астрономическая оптика. Огиз, 1944. 8.
- 9. Марешаль А., Франсон М. Структура оптического изображения. «Мир», 1964.
- 10. Мартин Л. Техническая оптика. Физматгиз, 1960.
- 11. Михайлов В. Я. Фотография и аэрофотография. Изд-во геодез. картографии, 1952.
- 12. Новик Ф.С., Ногин П.А. Киносъемочная оптика. «Искусство», 1968.
- 13. Русинов М. М. Техническая оптика. Машгиз, 1961.
- 14. Русинов М. М. Фотограмметрическая оптика. Геодезиздат, 1962.
- 15. Рыфтин Я. А. Телевизионная система. «Сов. радио», 1967.
- 16. Слюсарев Г. Г. Методы расчета оптических систем «Машиностроение», 1969.
- 17. Слюсарев Г. Г. Расчет оптических систем. «Машиностроение», 1975.
- 18. Тудоровский А.И. Теория оптических приборов. Изд-во. АН СССР, ч. І, 1948; ч. ІІ, 1952.
- 19. Турыгин И. А. Прикладная оптика. «Машиностроение», ч. 1, 1965; ч. ІІ, 1966.
- 20. Фефилов Б. В. Прикладная оптика, Геодезиздат, 1947.
- 21. Чуриловский В. Н. Теория оптических приборов. «Машиностроение», 1966.
- 22. Шершень А.И. Аэрофотосъемка. Геодезиздат, 1949. 23. Buchdahl H.A. Optical Aberration Coefficients. Oxford, 1954.
- 24. Gonrady A. E. Applied Optics and Optical Design. Dover, 1957.
- 25. Gzapski und Eppenstein. Grundzüge der Theor. d. Opt. Instr., 1924.
- 26. Ghretien H. Gours de calcul des combinaisons optiques, Revue d'Optique theorie et instrument, 1934.
- 27. Gox A. A. System of Optical Design. London and New York, 1964.
- 28. Flugge I. Das Photographische Objectiv. Springer, 1955.
- Flugge S. (Editor), Grundlagen der Optik, Springer, 1956. (Vol. 24 of Handbuch der Physik.)
   Hopkins H. H. Wave Theory of Aberrations, Oxford, 1950.
   Kingslake R. Lenses in Photography, Garden City Books, 1951.
   Merte W., Rohr M. und Richter R. Das Photographische Objektiv, Springer, 1930.
   Rohr M., Die Bilderzeug. in Opt. Instr., 1904.
   Wolf E. (Editor), Progress in Optics, Vol. 1, Interscience Publisher, 1961.

## ОГЛАВЛЕНИЕ

| Предисло  | вие ко второму изданию                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Часть пер | рвая. Основные оптические свойства объективов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                         |
| Глава     | I. СВОЙСТВА ИДЕАЛЬНОГО ОБЪЕКТИВА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |
|           | <ul> <li>§ 1. Область параксиальной оптики</li> <li>§ 2. Идеальная оптическая система</li> <li>§ 3. Оптика узких наклонных пучков</li> <li>§ 4. Сложная оптическая система</li> <li>§ 5. Ограничение пучков лучей в объективах</li> <li>§ 6. Определение габаритов объективов</li> <li>§ 7. Перспектива и глубина пространства, изображаемого объективом</li> <li>§ 8. Освещенность изображения, образуемого объективом, и расчет экспозиций</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | 9<br>29<br>38<br>41<br>47<br>56<br>59<br>68                               |
| Глава     | <ul> <li>II. ОПТИЧЕСКИЕ АБЕРРАЦИИ ОБЪЕКТИВОВ</li> <li>§ 1. Аберрации оптических систем</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91<br>92<br>154<br>159<br>169                                             |
| Глава     | <ul> <li>III. КАЧЕСТВО ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ ОБЪЕК-<br/>ТИВОВ</li> <li>§ 1. Разрешающая сила совершенного объектива</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 235                                                                       |
|           | <ol> <li>Изображение точки совершенным объективом .</li> <li>Разрешающая сила совершенного объектива в случае двух светящихся точек.</li> <li>Влияние дефокусировки на дифракционную картину изображения точки .</li> <li>Разрешающая сила и контраст изображения решетки совершенным объективом .</li> <li>Разрешающая сила объектива при несамосветящемся объекте .</li> <li>Разрешающая сила реального объектива .</li> <li>Освещенность в точке на оси при сферической аберрации .</li> <li>Разрешающая сила реального объектива .</li> <li>Разрешающая сила реального объектива .</li> <li>Освещенность в точке на оси при сферической аберрации .</li> <li>Разрешающая сила реального объектива .</li> <li>Освещенность в изображении точки в общем случае .</li> <li>Разрешающая сила реального объектива .</li> </ol> | 235<br>242<br>243<br>246<br>251<br>253<br>253<br>253<br>256<br>260<br>261 |

| § 3                       | <ul> <li>З. Характеристики качества изображения объектива         <ol> <li>Способы оценки качества оптического изображения</li> <li>Функция рассеяния и распределение освещенности в<br/>изображении полуплоскости</li> <li>Образование изображения некогерентно излучающего<br/>объекта</li> </ol> </li> </ul> | 264<br>266<br>267<br>268                      |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| § 4                       | или функция передачи модуляции (ФПМ)                                                                                                                                                                                                                                                                            | 269<br>272<br>273                             |
|                           | <ol> <li>Приближенная оценка влияния аберраций на ЧКХ<br/>(или ФПМ)</li> <li>Хроматические аберрации и ЧКХ (ФПМ)</li> <li>Функции передачи модуляций реальных объективов</li> <li>Качество изображения системы объектив-приемник</li> </ol>                                                                     | 276<br>278<br>284<br>289                      |
| Глава IV                  | . СВОЙСТВА ОПТИЧЕСКИХ СХЕМ ОБЪЕКТИВОВ РАЗ-<br>ЛИЧНЫХ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК                                                                                                                                                                                                                                   |                                               |
| § 1<br>§ 2<br>§ 3<br>§ 4. | Классификация объективов                                                                                                                                                                                                                                                                                        | 293<br>295<br>301<br>310<br>311<br>314<br>316 |
| § 5.<br>§ 6.<br>§ 7.      | 4. Светосильные широкоугольные объективы                                                                                                                                                                                                                                                                        | 318<br>329<br>333<br>342                      |
| § 8.                      | Объективы с переменным фокусным расстоянием                                                                                                                                                                                                                                                                     | 348                                           |
| Часть вторая              | . Объективы различного назначения                                                                                                                                                                                                                                                                               | 353                                           |
| Глава V.                  | ФОТОГРАФИЧЕСКАЯ И КИНОСЪЕМОЧНАЯ ОПТИКА                                                                                                                                                                                                                                                                          |                                               |
| § 1.                      | Объективы фотоаппаратов широкого применения<br>1. Объективы малоформатных и миниатюрных фотоаппаратов<br>2. Объективы для среднеформатных фотоаппаратов 6×6,<br>6×9 и 9×12 см                                                                                                                                   | 360<br>361<br>385<br>387                      |
| § 2.<br>§ 3.              | Киносъемочные объективы для 35- <i>мм</i> пленки<br>Киносъемочные анастигматы-анаморфоты для широко-                                                                                                                                                                                                            | 388                                           |
| § 4.                      | экранной кинематографии<br>Объективы для съемки широкоформатных 70- <i>мм</i> кино-                                                                                                                                                                                                                             | 395                                           |
| <b>§</b> 5.               | фильмов<br>Объективы для киносъемки узкопленочных 16-мм филь-                                                                                                                                                                                                                                                   | 409                                           |
| <b>§</b> 6.               | Мов<br>Объективы для любительской киносъемки на 8-мм пленку<br>и формат «Супер-8»                                                                                                                                                                                                                               | 422                                           |
| Глава Vl.                 | ФОТОГРАФИЧЕСКИЕ ОБЪЕКТИВЫ СПЕЦИАЛЬНО-<br>ГО ПРИМЕНЕНИЯ                                                                                                                                                                                                                                                          |                                               |
| § 1.<br>§ 2.              | Объективы для обзорной аэрофотосъемки<br>Ортоскопические объективы для топографической аэро-<br>съемки                                                                                                                                                                                                          | 430<br>441                                    |

| <ul> <li>§ 3. Объективы для репродукции, микрофильмирования и<br/>микроэлектроники</li></ul>                                                                                                      | 8<br>5<br>7      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Глава VII. ПРОЕКЦИОННЫЕ СИСТЕМЫ ШИРОКОГО ПРИМЕ-<br>НЕНИЯ<br>§ 1. Объективы для проекции нормальных и широкоэкранных<br>35-мм фильмов                                                              | 4<br>3<br>6<br>9 |
| Глава VIII. ОБЪЕКТИВЫ ДЛЯ ТЕЛЕВИДЕНИЯ<br>§ 1. Объективы телевизионных передающих камер 482<br>§ 2. Объективы для проекции изображений с кинескопов на<br>большие экраны                           | 2<br>7           |
| Глава IX. ПЕРСПЕКТИВЫ РАЗВИТИЯ ОБЪЕКТИВОСТРОЕНИЯ<br>НА ОСНОВЕ ПРИМЕНЕНИЯ НОВЫХ ТЕХНИЧЕСКИХ<br>И ТЕХНОЛОГИЧЕСКИХ СРЕДСТВ<br>§ 1. О рациональности применения новых оптических сред<br>в объективах | 24               |
| Литература                                                                                                                                                                                        | 2<br>9           |

.

## Давид Самуилович Волосов ФОТОГРАФИЧЕСКАЯ ОПТИКА

Редактор В. С. Богатова. Художник Г. Ю Сомов. Художественный редактор В. А. Крючков, Технический редактор А. Н. Ханина. Корректоры В. П. Акулинина и Н. Н. Прокофьева.

## ИБ № 589

Сдано в набор 01.12.77. Подп. в печ. 17.08.78. А 13431. Формат издания 60×90<sup>1</sup>/и. Бумага тип. № 3. Гарнитура литературная. Высокая печать. Усл. п. л. 34. Уч.-изд. л. 31,476. Изд. № 16681. Тираж 10 000. Заказ 921. Цена 1 р. 42 к. Издательство «Искусство», 103009 Москва, Собиновский пер., З. Ярославский полиграфкомбинат Союзполиграфирома при Государственном комитете Совета Министров СССР по делам издательств, полиграфии и книжной торговли. 150014, Ярославль, ул. Свободы, 97.

| Cmp. | С <b>трока</b>    | Напечатано                                                                                                                                 | Следует читать                                                                                                                                          |
|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 357  | форму-<br>ла V, З | $N^{(oc)} = N^{(c)}K_t \left[1 - \right]$                                                                                                  | $N^{(oc)} = N^{(c)} \left[ 1 - \right]$                                                                                                                 |
| 357  |                   | $-\exp\left(-\frac{N_0^{(o)}}{K_t N^{(c)}}\right)\right]$                                                                                  | $\left -\exp\left(-\frac{N_0^{(o)}}{N^{(c)}}\right)\right].$                                                                                            |
|      | 22—23<br>снизу    | $\exp\left(-\frac{N_0^{(c)}}{K_t N^{(c)}} \right) paз-ложить в ряд и ограни-читься первыми двумячленами разложения, топри K_t = 1 получим$ | $\exp\left(-\frac{N_0^{(c)}}{N^{(c)}}\right)$ разложить<br>в ряд и ограничиться<br>первыми двумя членами<br>разложения, то при лю-<br>бом $K_t$ получим |

## ОПЕЧАТКИ К КНИГЕ Д. С. ВОЛОСОВА «ФОТОГРАФИЧЕСКАЯ ОПТИКА»

